System-on-Chip Environment
SCE Version 2.2.0 Beta

Tutorial

Samar Abdi
Junyu Peng

Haobo Yu
Dongwan Shin

Andreas Gerstlauer
Rainer Doemer
Daniel Gajski

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425
+1 (949) 824-8919
http://www.cecs.uci.edu

System-on-Chip Environment: SCE Version 2.2.0 Beta; Tutorial
by Samar Abdi, Junyu Peng, Haobo Yu, Dongwan Shin, Andreas Gerstlauer, Rainer
Doemer, and Daniel Gajski

Center for Embedded Computer Systems
University of California, Irvine

Irvine, CA 92697-3425

+1 (949) 824-8919
http://www.cecs.uci.edu

Published July 23, 2003

Copyright © 2003-2017 CECS, UC Irvine

Table of Contents

L. INErOdUCHION ...ucceeiiiniiiniiiiiniisniisnicsenisnessissassssnesssnesssssssssssssssessssssssssssssssssssassssssssases 1
L1 IMIOTIVALION ..ttt ettt et et 1
1.2, SCE GOAIS ..ttt 2
1.3. Models for System Desi@n.........cooieriiiiiiiiiiiiiiiieeieeiceeceeee e 2
1.4. System-on-Chip Environment.............coccoeeiiniiiiiiiiinicnieiceceeeeeeceeee 4
1.5. Design Example: GSM VOCOETcoceiiiiriiiiiiiiiniciicciecceceeeeeeceee 4
1.6. Organization of the Tutorial............ccccoiiiiiiiiiiiiic e 5

2. System Specification ANALYSIS ..ccccccerercrsarcsssnecssancsssnscssasesssnsessasesssassssasssssasessasssssasesss 9
2.1 OVEIVIEW ..ttt et ettt ettt e et e it eebae e 9
2.2. Specification CaAPIULEccutiiiiiiieiteeiere ettt 10

2.2.1. SCE WINAOWcoouiiiiiiiiieiieie ettt et 11
2.2.2. OPEN PIOJECTveeieeiiieeeeiiiieeeiitee e et e e e et e e e et ee e st e e e staeeeeeabeeeesaneeas 13
2.2.3. Open specification model...........cccoecvieriiiieiiiiiiieeiieeee e 18
2.2.4. Browse specification modelcccceeeeiieeriiiiiiieeiiecee e 24
2.2.5. View specification model source code...........cccouevvireriieenieeenieeinenne, 28
2.3. Simulation and ANALYSISc..eeevieeiiieeiiie ettt 30
2.3.1. Simulate specification MOdelcceeovierriiiiiieeiieeee e 31
2.3.2. Profile specification model.............ccoceeriiiiiniiiiiiniiiicniececce 38
2.3.3. Analyze profiling resSults.........cccoeeviiriiiiiiiiiiiiiiececeeeeeeeece 41
2.4, SUIMIMATY .ottt ettt ettt ettt e 48

3. System Level DeSINcccveeervueicnreicssnicssnncssannessanessssscssasesssssessasessssssssasssssassssasssssases 49
Bl OVEIVIEW ..ttt ettt ettt e ettt e s 49
3.2. Architecture EXplOTation........c.c.covieiiiriiiiiieiiineeniceeeiecee e 51

3.2.1. Try pure software implementation...........c.cccecueecueenienieniieeneeneeneeeene. 52
3.2.2. Estimate performanceccocueeeeriieenienienieeieeieeee e 65
3.2.3. Try software/hardware implementationcccccveeeeueeerveeenieeeneneenne. 71
3.2.4. Estimate performancecooueeierieenienieiieeieeiee e 79
3.2.5. Generate architecture modelccooiiiiiiiiiiiiiiiiiiicnieece, 84
3.2.6. Browse architecture model.............ccoceeiiiiiiiiiiiiiiiiiienieeeeecee 87
3.2.7. Simulate architecture model (optional)...........cccceevvieriiieiieeeiieeiiene, 92
3.3. Software Scheduling and RTOS Model Insertion............ccoceeveiiienienicnnncenn 95
3.3.1. Serialize BEhaVIOTscccviiiiiiiiiieiiieeciee e 96
3.3.2. Generate serialized model............ccocceeiiiiiiiiiiiiiiiiieen 105
3.3.3. Simulate serialized model (optional)ccceoceeriiiiiniiiniiiiieee. 109
3.4. Communication SYNthesiscocceeviiriiriiiiiiniiiiccecece e 112
3.4.1. Select bus ProtoCOlScccueevuieriiriiriiienieieeieeteeee e 113
3.4.2. Map channels t0 BUSESccccuviiiiriiiiiiiiieeeeeeeeee e 118
3.4.3. Generate communication Modelcccooiiiiiiiiiiiiiiiinicecen 120

il

3.4.4. Browse communication MOAELcooovmmeiiiiimeeeiiiieeee e 124

3.4.5. Simulate communication model (optional)............cccceeeveeriirenireennnnn. 128

3.5 SUIMMATY Lottt st et et 131

4. Custom Hardware DeSIZIcccveeeeruricsnicsssnscssancsssnssssassssssssssassssssssssasssssassssassssnss 133
AT OVEIVIEW ..ttt ettt et e ettt e e ettt e e s et e e e st e e e abaeeesentaeeeennes 133

4.2. RTL PreproCeSSINg........ueiiiiiiieieiiiieieiiieeeeiitee et e et e et eesiaee e eiaeee e 135
4.2.1. View behavioral input modelccccooceriiiiiiiiiniiiniiiccceeen 136

4.2.2. Generate SFSMD model..........ccoooviiiiiiiiiiiiiiec e 139

4.2.3. Browse SFSMD modelcccoiieiiiiiiiiiiiieccieee e 142

4.2.4. View SFSMD model (optional)ccoceeriiiiniieiiiiieiiieiieeeieeee 144

4.2.5. Simulate SEFSMD model (optional)ccccceeeiriieniieniiniiniinieeee. 147

4.2.6. Analyze SESMD modelcccooviiieiiiiiiieeiiecee e 150

4.3. RTL AILOCAtIONeeivieeiiie ettt ettt e tee e et e eesnseesnneeees 157
4.3.1. Allocate functional UNItScccueeeruiieriieeeiiieeiee e e 158

4.3.2. AlloCate StOTAZE UNILS.....cccvieriireeieeeiieeeieeeieeeereeeereeeaeeesreeeseeennns 164

4.3.3. AlIOCALE DUSESeeeiiniiiiieiiiiieeeiitee ettt eeee e 170

4.4. RTL Scheduling and BInding...........cccccoceviiiiiiiiiiiiiinieiceececec e 179
4.4.1. Schedule and bind manually (optional)cc.cccceevviieniinieniinicnnen. 180

4.4.2. Schedule and bind automaticallycccccoceeviiiiiniiiniiniincceee, 192

4.5. RTL RefiN@MENt.......ccccviiiiiiiiiieeiiee ettt et e e e aae e e 198
4.5.1. Generate RTL model............ccocoviiiiiiiiiiiiiie e 199

4.5.2. Browse RTL modelcc.ooiiiiiiiiiiiiieiiecee e 204

4.5.3. View RTL model (optional)cccccueeeemiiieiiniiiiiiiieeeiiiee e 206

4.5.4. View Verilog RTL model (optional)ccccceeriiiiiiiniiiiniiiiieene 209

4.5.5. Simulate RTL model (optional)c.ccoeeeeiiieeiiieeiiieeiie e 211

4.6, SUMIMATY ...oeieieeiiiiieeeie ettt ettt e e et e e e e etteee s eabeeeesabteeenabbeeesesaeeeannns 214

5. Embedded Software DeSIZNcccvuieerrccsercssncsssaresssnesssassssssesssassssssssssasssssssssases 215
ST OVEIVIEW ...ttt e ettt e e et ee e eabaeesenesees 215

5.2. SW COAE ZENETALIONevveeiieeeiieeiiee ettt et eeee et et e et e saeeesnseeseseeees 216
5.2.1. Generate C COUC......uuiiiiiiiiiiiiiie et 217

5.2.2. Browse and View C COdecccouimiiiiiiiiiiiiiiiiieiiieeeeeeee e 221

5.2.3. Simulate C model (0ptional)...........coceevieiiiniiiiiiiniiiicnieeeeeeceee 222

5.3. Instruction Set SIMUIAtIONc.eeiiiiiiiiiiiiiiie it 225
5.3.1. Import instruction set simulator model..............ccoeceeiiiiiniiiiniennnneen. 226

5.3.2. Simulate cycle accurate model...........coooeeiiiiiiiiiiiiiiiiiieeeeeen 231

R TR TN 11141 0 1) AU PRUSRPR 236

6. CONCIUSION ..uuceeneinneinnrcniniuensnecsnecsanesnessanssansssnsssnsssssessesssssssassssasssssssassssssssssssasssse 237
A. Frequently Asked QUESLIONScccceeeeeenneeccsssnnicssssnnecssssssscsssssesssssassssssssssssssassassone 239
REfEIENCES ...ccuvrirnnniinsrnissrnicssnnssniesssnssssnnssssnesssasssssnssssasssssnssssassssssssssassssasssssassssasssssanes 243

v

Chapter 1. Introduction

The basic purpose of this tutorial is to guide a user through our System-on-Chip design
environment (SCE). SCE helps designers to take an abstract functional description of
the design and produce an implementation. We begin with a brief overview of our SoC
methodology by describing the design flow and various abstraction levels. The overview
also covers the user interfaces and the tools that support the design flow.

We then describe the example that we use throughout this tutorial. We selected the GSM
Vocoder as an example for a variety of reasons. For one, the Vocoder is a fairly large
design and is an apt representative of a typical component of a System-on-Chip design.
Moreover, the functional specification of the Vocoder is well defined and publicly avail-
able from the European Telecommunication Standards Institute (ETSI).

The tutorial gives a step by step illustration of using the System-on-Chip Environment.
Screenshots of the GUI are presented to aid the user in using the various features of
SCE. (Please note that, depending on your specific version of the System-on-Chip Envi-
ronment SCE and your system settings, the screen shots shown in this document may be
slightly different from the actual display on your screen.) Over the course of this chap-
ter, the user is guided on synthesizing the Vocoder model from an abstract specification
to a clock cycle accurate implementation. The screenshots at each design step are sup-
plemented with brief observations and the rationale for making design decisions. This
would help the designer to gain an insight into the design process instead of merely fol-
lowing the steps. We wind up the tutorial with a conclusion and references. This tutorial
assumes that the readers of this tutorial have basic knowledge of system design tasks
and flow. In case the reader feels difficulty going following this tutorial, he can always
go to the Appendix A: FAQ (Frequently Asked Questions) at the end of the tutorial to
seek more explanation.

1.1. Motivation

System-on-Chip capability introduces new challenges in the design process. For one,
co-design becomes a crucial issue. Software and Hardware must be developed together.
However, both Software and Hardware designers have different views of the system and
they use different design and modeling techniques.

Secondly, the process of system design from specification to mask is long and elaborate.
The process must therefore be split into several steps. At each design step, models must
be written and relevant properties must be verified.

Chapter 1. Introduction

Thirdly, the system designers are not particularly fond of having to learn different lan-
guages. Moreover, writing different models and validating them for each step in the
design process is a huge overkill. Designers prefer to create solutions rather than write
several models to verify their designs.

It is with these aspects and challenges in mind that we have come up with a System-
on-Chip Environment that takes off the drudgery of manual repetitive work from the
designers by generating each successive model automatically according to the decisions
made by the designers.

1.2. SCE Goals

SCE represents a new technology that allows designers to capture system specification
as a composition of C-functions. These are automatically refined into different models
required at each step of the design process. Therefore designers can devote more effort
to the creative part of designing and the tools can create models for validation and syn-
thesis. The end result is that the designers do not need to learn new system level design
languages (SystemC, SpecC, Superlog, etc.) or even the existing Hardware Description
Languages (Verilog, VHDL).

Consequently, the designers have to enter only the golden specification of the design and
make design decisions interactively in SCE. The models for simulation, synthesis and
verification are generated automatically.

Chapter 1. Introduction

1.3. Models for System Design

Figure 1-1. System-on-Chip Environment

Refinement

Validation
User Interface (RUI)

User Interface (VUI)
Alg. selection
Browsing Capture
Spec. optimization - Simulate
Profiling Profiling Specification model
weights Verify
1 Profiling data
Comp. /IP i
Allocation Arch. synthesis
L Design g decisions X
Beh. partitioning Arch. refinement
SW Scheduling / —a— Sl
RTOS Comp. /1P Architecture model
models Verify
Estimation results
5
Protocol selection attrﬁb?.:t::s SOMMISMIGSIS
Desi decisi
Channel partitioning SoOn yoecsone Comm. refinement
Arbitration SO S
Protocol Communication model
models Verify
Estimation results
R
RTL Units / i
Cycle scheduling HW/SW synthesis
Desit decisi
Protocol scheduling SS0T yoeoeon HW/SW refinement
SW assembly > Simulate
L3 cle -accurate model
I /1ss Verify
Estimation results

The System-on-Chip design environment is shown in Figure 1-1. It consists of 4 lev-
els of model abstraction, namely specification, architecture, communication and cycle-
accurate models. Consequently, there are 3 refinement steps, namely architecture refine-
ment, communication refinement and HW/SW refinement. These refinement steps are
preformed in the top-down order as shown. As shown in Figure 1-1, we begin with an
abstract specification model. The specification model is untimed and has only the func-
tional description of the design. Architecture refinement transforms this specification to
an architecture model. It involves partitioning the design and mapping the partitions onto
the selected components. The architecture model thus reflects the intended architecture
for the design. The next step, communication refinement, adds system busses to the de-
sign and maps the abstract communication between components onto the busses. The
resulted design is a timing accurate communication model (bus functional model). The
final step is HW/SW refinement which produces clock cycle accurate RTL model for

Chapter 1. Introduction

the hardware components and instruction set specific assembly code for the processors.
All models have well defined semantics, are executable and can be validated through
simulation.

1.4. System-on-Chip Environment

The SCE provides an environment for modeling, synthesis and validation. It includes a
graphical user interface (GUI) and a set of tools to facilitate the design flow and perform
the aforementioned refinement steps. The two major components of the GUI are the
Refinement User Interface (RUI) on the left and the Validation User Interface (VUI) on
the right as shown in Figure 1-1. The RUI allows designers to make and input design
decisions, such as component allocation, specification mapping. With design decisions
made, refinement tools can be invoked inside RUI to refine models. The VUI allows the
simulation of all models to validate the design at each stage of the design flow.

Each of the boxes corresponds to a tool which performs a specific task automatically.
A profiling tool is used to obtain the characteristics of the initial specification, which
serves as the basis for architecture exploration. The refinement tool set automatically
transforms models based on relevant design decisions. The estimation tool set produces
quality metrics for each intermediate models, which can be evaluated by designers.

With the assistance of the GUI and tool set, it is relatively easy for designer to step
through the design process. With the editing, browsing and algorithm selection capa-
bility provided by RUI, a specification model can be efficiently captured by designers.
Based on the information profiled on the specification, designers input architectural de-
cisions and apply the architecture refinement tool to derive the architecture model. If the
estimated metrics are satisfactory, designers can focus on communication issues, such
as protocol selection and channel partitioning. With communication decisions made, the
communication refinement tool is used to generate the communication model. Finally,
the implementation model is produced in the similar fashion. The implementation model
is ready for RTL synthesis.

We are currently in the process of developing tools for automating the synthesis tasks
for system level design shown in the exploration engine. The tutorial presents automatic
RTL synthesis. The next challenge is to automatically perform architecture and commu-
nication synthesis.

Chapter 1. Introduction

1.5. Design Example: GSM Vocoder

Figure 1-2. GSM Vocoder

Long-Term
Pitch Filter

Delay / Adaptive codeboo

Short-term
@ Synthesis Filter Speech

kx
Residual / 10th-order LP filter

Pulses

Fixed codebook

The example design used throughout this tutorial is the GSM Vocoder system , which is
employed worldwide for cellular phone networks. Figure 1-2 shows the GSM Vocoder
speech synthesis model. A sequence of pulses is combined with the output of a long
term pitch filter. Together they model the buzz produced by the glottis and they build the
excitation for the final speech synthesis filter, which in turn models the throat and the
mouth as a system of lossless tubes.

The example used in this tutorial encodes speech data comprised of frames. Each frame
in turn comprises of 4 sub-frames. Overall, each sub-frame has 40 samples which trans-
late to 5 ms of speech. Thus each frame has 20 ms of speech and 160 samples. Each
frame uses 244 bits. The transcoding constraint (ie. back to back encoder/decoder) is
less than 10 ms for the first sub-frame and less than 20 ms for the whole frame (consist-
ing of 4 sub-frames).

The vocoder standard, published by the European Telecommunication Standards Insti-
tute (ETSI), contains a bit-exact reference implementation of the standard in ANSI C.
This reference code was taken as the the basis for developing the specification model.
At the lowest level, the algorithms in C could be directly reused in the leaf behaviors
without modification. Then the C function hierarchy was converted into a clean and
efficient hierarchical specification by analyzing dependencies, exposing available par-
allelism, etc. The final specification model is composed of 9139 lines of SpecC code,
which contains 73 leaf behaviors.

Chapter 1. Introduction

1.6. Organization of the Tutorial

Figure 1-3. Task flow for system design with SCE

Specification

Analysis untimed

System level
Design

Architecture
Exploration

SW Scheduling/ timed

RTOS
Y

Communication
Synthesis

Custom HW SW code cycle
generation generation accurate

The tasks in system design with SCE are organized as shown in Figure 1-3. Each of the
tasks is explained in a separate chapter in this tutorial. We will start with a specification
model and show how to get started with SCE. At this level, we will be working with
untimed functional models. Following that, we will look at system level exploration and
refinements, where the involved models will have a quantitative notion of time. Once
we get a system model with well defined HW and SW components and the interfaces
between them, we will proceed to generate custom hardware and processor specific soft-
ware. These final steps will produce cycle accurate models.

Each design task is composed of several steps like model analysis, browsing, generation
of new models and simulation. Not all these steps are crucial for the demo to proceed
smoothly. Some steps are marked as optional and may be avoided during the course of
this tutorial. If the designer is sufficiently comfortable with the tool’s result, he or she
can avoid the typically optional steps of simulation and code viewing.

If the designer is booting from the CD-ROM, the setup is already prepared.

Chapter 1. Introduction

Otherwise, the designer may follow the following steps to set up the demo. Start
with a new shell of your choice. If you are working with a c-shell, run "source
$SCE_INSTALLATION_PATH/bin/setup.csh". If you are working with bourne shell,
run "$SCE_INSTALLATION_PATH/bin/setup.sh". Now run "setup_demo" to setup the
demonstration in the current directory. This will add some new files to be used during
the demo.

Acknowledgment:

The authors would like to thank Tsuneo Kinoshita of NASDA, Japan for his patience in
going through the tutorial and helping us make it more understandable and comprehen-
sive. We would also like to thank Yoshihisa Kojima of the University of Tokyo for his
help in uncovering several mistakes in the tutorial’s text.

Chapter 1. Introduction

Chapter 2. System Specification Analysis

2.1. Overview

Figure 2-1. Specification analysis using SCE

Specification

Analysis untimed

System level
Design

Architecture
Exploration

SW Scheduling/ timed

RTOS
v

Communication
Synthesis

Custom HW SW code cycle
generation generation accurate

The system design process starts with the specification model written by the user to
specify the desired system functionality. It forms the input to the series of exploration
and refinement steps in the SoC design methodology. Moreover, the specification model
defines the granularity for exploration through the size of the leaf behaviors. It exposes
all available parallelism and uses hierarchy to group related functionality and manage
complexity.

In this chapter, we go through the steps of creating a project in SCE and initiating the
system design process as highlighted in Figure 2-1. The various aspects of the speci-
fication are observed through simulation and profiling. Also, the model is graphically
viewed with the help of SCE tools.

Chapter 2. System Specification Analysis

2.2. Specification Capture

The system design process starts with the specification model written by the user to
specify the desired system functionality. It forms the input to the series of exploration
and refinement steps in the SoC design methodology. Moreover, the specification model
defines the granularity for exploration through the size of the leaf behaviors. It exposes
all available parallelism and uses hierarchy to group related functionality and manage
complexity.

In this section, we go through the steps of creating a project in SCE and initiating the
system design process. The various aspects of the specification are observed through
simulation and profiling. Also, the model is graphically viewed with the help of SCE
tools.

The models that we will deal with in this phase of system design are untimed functional
models. The tasks of the system specification, referred to as behaviors in our parlance,
follow a causal order of execution. The main idea in this section is to introduce the user
to the SCE GUI and to demonstrate the capability of graphically viewing the behaviors
and their organization in the specification model.

10

Chapter 2. System Specification Analysis

2.2.1. SCE window

Design |Descﬂpﬁ0n

A compie | sinuiate | analyze | Refine | stei |

[Ready

|

To launch the SCE GUI, simply run "sce" from the shell prompt. On launching the
System-on-Chip Environment (SCE), we see the above GUI. The GUI is divided broadly
into three parts. First is the "project management" window on the top left part of the GUI,
which maintains the set of models in the open projects. This window becomes active
once a project is opened and a design is added to it. Secondly, we have the "design
management" window on the top right where the currently active design is maintained.
It shows the hierarchy tree for the design and maintains various statistics associated with
it. Finally, we have the "logging" window at the bottom of the GUI, which keeps the log
of various tools that are run during the course of the demo. We keep logs of compilation,
simulation, analysis and refinement of models.

The GUI also consists of a tool bar and shortcuts for menu items. The File menu handles
file related services like opening designs, importing models etc. The Edit menu is for
editing purposes. The View menu allows various methods of graphically viewing the
design. The Project menu manages various projects. The Synthesis menu provides for
launching the various refinement tools and making synthesis decisions. The Validation

11

Chapter 2. System Specification Analysis

menu is primarily for compiling or simulating models.

12

Chapter 2. System Specification Analysis

2.2.2. Open project

The first step in working with SCE is opening a project. A project is associated with
every design process since each design might impose a different set of databases or
dependencies. The project is hence used by the designer to customize the environment
for a particular design process. We begin by selecting Project— Open from the menu
bar.

13

Chapter 2. System Specification Analysis

2.2.2.1. Open project (cont’d)

@..

=]

[[& SCE_Tutarial
dsrc

B vocodersce

A Open file window pops up. For the purpose of the demo, a project is pre-created. We
simply open it by selecting the project "vocoder.sce" and left click on Open button on
the right corner of the the pop-up window.

14

Chapter 2. System Specification Analysis

2.2.2.2. Open project (cont’d)

File Edit Miew Emjectlgynthesis Yalidation Windows

Mew...

'l

T

10

Qpen...

Design |Descripti € Close

Save

Save As..
Add Design

Eecent Projects -

Seftings...

A compie | sinuiate | analyze | Refine | stei |

Froject Settings A

Since we need to ensure that the paths to dependencies are correctly set, we now check
the settings for this precreated "vocoder.sce" project by selecting Project— Settings...
from the top menu bar.

15

Chapter 2. System Specification Analysis

2.2.2.3. Open project (cont’d)

[=I[Bix]

Eile Edit Miew Project Synthesis Validation Windows Help

.. X

Design | Description

Compiler |_

Include path: |srcfcnmmun

Import path: I_Ioop:srcfclnsed_luop:srcﬁcudebouk:srcfupdate:srcfprocessing

Libirary path: |

Libraries: |

Cefines:

|
Undefines: |
-

Options: W

ﬂ Compile | I
M kK, I Cancel
4

[Ready A

We now see the compiler settings showing the import path for the model’s libraries and
the ’-v’ (verbose) option. The Include path setting gives the path which is searched
for header files. The Import path is searched for files imported into the model. The
Library path is used for looking up the libraries used during compilation. There are
also settings provided for specifying which libraries to link against, which macros to
define and which to undefine. These settings basically form the compilation command.
To check the simulator settings, left click on the Simulator tab.

16

Chapter 2. System Specification Analysis

2.2.2.4. Open project (cont’d)

r

Aterm -title %e -e

ch_unxinp nodt<hit nodt< && diff -5 srcsspeechiiles/nodt_good bit nodi< hit

=] e

We now see the simulator settings showing the simulation command for the
"vocoder.sce" project. There are settings available to direct the output of the model
simulation. As can be seen, the simulation output may be directed to a terminal, logged
to a file or dumped to an external console. For the demo, we direct the output of the
simulation to an xterm. Also note that the simulation command may be specified in the
settings. This command is invoked when the model is validated after compilation. The
vocoder simulation processes 163 frames of speech and the output is matched against a
golden file. Press OK to proceed.

17

Chapter 2. System Specification Analysis

2.2.3. Open specification model

Eile | Edit iew Project Synthesis Yalidation Windows

[] hew.. Ciri+M |y & | 3¢ o
| = Open.. cirl+0 [
& Close Crl+4 _l
Reload Cirl+R
Reload All
M z=ve Ctrl+3
Save As..
Il save Al
Import...
Export..
o Erint Cirl+F
Froperties...
Recent Files -
Exit Ctrl+@

X compile | Simulats || Analyze || Refine || Shell |

Open design (Ctrl+0) |

We start with the specification that was already captured as a model. We open this model
to see if it meets the desired behavior. Once the model is validated to be "golden", we
will start refining it and adding implementation details to it. We open the specification
model for the Vocoder example by selecting File—Open from the menu bar.

18

Chapter 2. System Specification Analysis

2.2.3.1. Open specification model (cont’d)

Eile Edit iew Project Synthesis Yalidation Windows Help

Design

Look in: |afh0mefspeccfdemnf

@..
=]
[[& SCE_Tutarial

dsrc
[testhench.sc

FiIename:l I Open |

SpecC files (*.5c) =l Cancel |
SIR files ("5 A

SpecC files (".5c)

Preprocessed SpecC files (i) |

File type:

Select design to apen... A

A file Open window pops up showing the SpecC internal representation (SIR) files. The
internal representation files are a collection of data structures used by the tools in the
environment. They uniquely identify a SpecC model. At this time however, the design
is available only in its source form. We therefore need to start with the sources. Select
"SpecC files (*.sc)" to view the source files.

19

Chapter 2. System Specification Analysis

2.2.3.2. Open specification model (cont’d)

Eile Edit iew Project Synthesis Yalidation Windows

Help

Design

Look in: |afh0mefspeccfdemnf

@..

=]

[[& SCE_Tutarial
dsrc

P& testhenchsc

File natne: |testbench.sc || Open

File type: SpecC files (".5c)) | Cancel |

=1
Iodels

)

__ﬂ Compile

Select design to apen...

|

The Open is updated to show the available source files of the GSM Vocoder design
specification. Select the file containing the top hierarchy of the model. In this case, the
file is "testbench.sc". The testbench instantiates the design-under-test (DUT) and the

corresponding modules for triggering the test vectors and for observing the outputs. To
open this file Left click on Open.

20

Chapter 2. System Specification Analysis

2.2.3.3. Open specification model (cont’d)

vocodersce - S0C Environment QEE
Eile Edit Miew Project Synthesis Validation Windows Help

Design | Description

_[Mama

@ local_db<_m
(I dix_maode
Thserial_hits
rspeech_san
[idt=_cirl

&rcoder
&rmonitar

&astimulus

A stimulus

R (L]

X Compile | sinuiste | analyze | Remne | Syrmesize | Sl |

Input: ‘“testbench,zi"
Output: <internal representation?
Dumping. ..
Input: <internal representation>
Output: "testhench,sir"
Daone.,

[Ready A

Note that a new window pops up in the design management area. It has two
sub-windows. The sub-window on the left shows the Vocoder design hierarchy. The
leaf behaviors are shown with a leaf icon next to them. For instance, we see two
leaf behaviors: "stimulus", which is used to feed the test vectors to the design, and
"monitor", which validates the response. "coder" is the top behavior of the Vocoder
model. It can be seen from the icon besides the "coder" behavior that it is an FSM
composition. This means the Vocoder specification is captured as a finite state
machine. Also note in the logging window that the SoC design has been compiled
into an intermediate format. Upon opening a source file into the design window, it is
automatically compiled into its unique internal representation files (SIR) which in turn
is used by the tools that work on the model.

21

Chapter 2. System Specification Analysis

2.2.3.4. Open specification model (cont’d)

0C Environment g @ IZ
Eile Edit Miew Project Synthesis Validation Windows Help

N EIE]

Design | Description | [Mame |T5-' [J Mame IType i
"5 Main o pich m ool
B+ % coder Co cF re in short int [4
b+ B pre_process Pre C@reset_ﬂag in boal
[+ B coder_12k2 Co 1 h in shart int [1
-4 seqt Co) in short int [1
G- & lp_analysis LRI e scal_rac in short int
0 trecite_ctrl inout shart ir
@ Walh_flag hool
Snodtx_setflags Modix_Setfla
&nop Mop
Brte_dtx TH_Dbe
& vad cnmootatinon YAD Comnl
S]

Hierarchy J

X Compile | sinuiste | analyze | Remne | Syrmesize | Sl |

Input: ‘“testbench,zi"
Output: <internal representation?
Dumping. ..
Input: <internal representation>
Output: "testhench,sir"
Daone.,

[Ready A

The model may be browsed using the design hierarchy window. Parallel composition is
shown with |l shaped icons and sequential composition with *:” shaped icons. On select-
ing a behavior in the design hierarchy window, we can see the behavior’s characteristics
in the right sub-window. For instance, the behavior "vad_Ip" has ports shown with yel-
low icons, variables with gray icons and sub-behaviors with blue icons.

22

Chapter 2. System Specification Analysis

2.2.3.5. Open specification model (cont’d)

Eile Edit Miew Project Synthesis Validation Windows Help

- — [
Design | Description | N | Mame ITS"PE
- Main & dt<_mode i_receiver
o —] el i_sender
-
b+ : pre_prag SOUTCE... d’speech_samples i_receiver
o= C;j:;al Hierarchy... G tctt_ctrl i_sender
m 2 Ip_al Connectivity... @ local_dtx_mode ool
&Fir Isalate @ prm short int [57]
g | @ reset_flag_1 hool
' K Ll @reset_flag_2 bool
¥ 3 Delete Del | g speech_frame short int [160
e L P shart int [15C
B v otwdt_ctri_val shortint
11 s Change Type G s o,
N 5ot A5 Top-Level 1]
Hierarchy I_—J
Graphs

X Compile | Simuite | Analyze | Refine | Synthesize | shell |

Input: ‘“testbench,zi"
Output: <internal representation?
Dumping. ..
Input: <internal representation>
Output: "testhench,sir"
Daone.,

[Ready A

Before making any synthesis decisions, it is important to understand the composition of
the specification model. It is useful because the composition really tells us which fea-
tures of the model may be exploited to gain maximum productivity. Naturally, the most
intuitive way to understand a model’s structure is through a graphical representation.
Since system models are typically very complex, it is more convenient to have a hier-
archical view which may be easily traversed. SCE provides for such a mechanism. To
graphically view the hierarchy, from the design hierarchy window, select "coder". Right
click and select Hierarchy. Notice that the menu provides for a variety of services on
individual behaviors. We shall be using one or more of these in due course.

23

Chapter 2. System Specification Analysis

2.2.4. Browse specification model

[=I[Bix]

dation Windows Help

Window Miew
reac-only]

=R

[J Mame |T5.'pe
ain P dt<_mode i_receiver
7 serial i_sender
- E pre_process cF speech_samples i_raceiver
- & coder_1zkZ 5 tedte_ctrl i_sender
[]_—glspe_q;nalysis @ local_d_mode hool .
&Finit @ prm short int [57]

@ reset_flag_1 ool
@reset flag_2 hool

o+ Il seqi
A az_lsp_1

W az_lsp_2 @ speech_frame shart int [160]
A copyi & 54N short int [160]
o3 vad_lp otedb_ctr_val shortint
Il seq2 P P

I= -

_

Daone.,

[Ready A

A new window pops up showing the Vocoder model in graphical form. As noted earlier,
the specification is an FSM at the top level with three states of pre-processing, the bulk
of the coder functionality itself and finally post-processing.

24

Chapter 2. System Specification Analysis

2.2.4.1. Browse specification model (cont’d)

Window WView |

Connectivity

Zoom in
Zoatn out

Clrl++
Ctrl+-

Add level
Bemave level

Clrl+4
Ctrl+R

dation Windows

[=I[Bix]

Help

=
15,

MName |T5.'pe
ain P dt<_mode i_receiver
7 serial i_sender
- E pre_process ' speech_samples i_receiver
- & coder_12k2 G tectt_ctrl i_sender
[]_—glspe_q;nalysis @ local_dt<_mode bool
&Finit @ prm shart int [57]
a1l seq @ reset_flag_1 hool
A az_lsp_1 @reset flag_2 hoal
W az_lsp 2 @ speech_frame short int [160]
A copyi & 54N short int [160]
o3 vad_lp otedb_ctr_val shortint
Il seq2 G amin P

T

_

[Ready

|

At this stage, we would like to delve into greater detail of the specification. To view
the model graphically with higher detail, select View—;Add level. Perform this action
twice to get a more detailed view. As can be seen, the View menu provides features like
displaying connectivity of behaviors, modifying detail level and zooming in and out to
get a better view.

25

Chapter 2. System Specification Analysis

2.2.4.2. Browse specification model (cont’d)

Window WView |

Connectivity

Zoom in
Zootm aut
Add level
Remave level

Clrl+8
Ctrl+R

dation Windows

[MName

|T5.'pe

_process
- m coder_1Zke
|- & seqt
- B Ip_analysis
A init
o+ Il seqi
A az_lsp_1
W az_lsp 2
Ao capy
b3 vad_lp
Il seq2

P dt<_mode

7 serial

e speech_samples
G teite_ctrl

@ local_dix_mode
@ prm

@ reset_flag_1
@reset flag_2

@ speech_frame
@ 54N

@ t=dt<_ctrl_val
i

F

i_receiver
i_sender
i_receiver
i_sender
hoal

short int [57]
hool

hool

shart int [160]
shart int [160]
short int

e A mLn

T

_

Daone.,

[Ready

s

Zoom out to get a better view by selecting View—;Zoom out

26

Chapter 2. System Specification Analysis

2.2.4.3. Browse specification model (cont’d)

Window Miew

[=I[Bix]

DlE

_[MName

|T5.'pe

| 12k2

1
analysis
Finit

seql
Faz_lsp_1
Faz_lsp_2
fcopyl
vad_lp

P dt<_mode
7 serial

G teite_ctrl

@ local_dix_mode
@ prm
@ reset_flag_1
@reset flag_2
@ speech_frame
@ 5¥n
@ t=dt<_ctrl_val

[

Y

i_receiver
i_sender

e speech_samples i_receiver

i_sender
hoal

short int [57]
hool

hool

shart int [160]
shart int [160]
short int

e A mLn

T

_

x |]|

|

Scroll down the window to see the FSM and sequential composition of the Vocoder
model. Note that the specification model of the GSM Vocoder does not contain much
parallelism. Instead, many behaviors are sequentially executed. This is due to the several
data dependencies in the code. For our implementation, this is an important observation.
Since there is not much parallelism in the code to exploit, speedup can be achieved only
by use of faster components. One way to speed up is to use dedicated hardware units.

Exit the hierarchy browser by selecting Window—Close

27

Chapter 2. System Specification Analysis

2.2.5. View specification model source code

Eile Edit Miew Project Synthesis Validation Windows

Help

D Bd 3|9

o
X

; — 1
Design |Descr|pt|0n | Mame |T5.' [J Mame IType
F A tain 2 dt<_mode i_receiver
e = Source... 7 serial i_sender
b m pre_f X d’speech_samples i_receiver
- & code Higrarchy... G tctt_ctrl i_sender
_!SE Connectivity.. @ local_dt¢_mode bool
L] .
A lsolate @ prm short int [37]
[l |ﬂrap @ reset_flag_1 hool
A — B @reset flag_2 hoal
A5 & @ speech_frame shart int [160
A Renarme @5y shart int [160
S hange Type obab_ctr_val short int
1 G 4 e A
N Set As Top-Level]
Hierarchy I_ Graphs J

X Compile | Simuite | Analyze | Refine | Synthesize | shell |

Input: ‘“testbench,zi"
Output: <internal representation?
Dumping. ..

Input: <internal representation>
Output: "testhench,sir"
Daone.,
[Ready A

We can also view the source of the models conveniently in SCE. For example, to check
the source for behavior "coder", just click on the row in the hierarchy to select it. Then
right click to bring up a menu and click on Source.

28

Chapter 2. System Specification Analysis

2.2.5.1. View specification model source code(cont’d)

File Edit Search Miew

=S
i=1ES]

] 3

void main(void)

B i
#1fdef PIPED_CODER
pipe
B H
| St Filter + downscaling
i pre_process.main(d;

i coder_12k2.main() ;

¢ post_process.main();

felse
fsm
=] H
§ S filter + downscaling
| pre_process:

i coder_12k2:

=] i post_process: §

goto pre_process;
i3

3
#endif

| /* Find speech parameters

it insert comfort noisze and convert parameters to seriazl bits S

| /* Find speech paramsters

| /% Insert comfort noise and converd parameters fo serial Aits S

174

s

174

17

|/

[Line: 60 Col: 1 4

24

The SpecC Editor pops up containing the source code for the selected behavior.
Changes to the source code can be made using the editor. After reviewing the source
code, close the editor by selecting File—Close from its menu bar.

29

Chapter 2. System Specification Analysis

2.3. Simulation and Analysis

Once we have captured the specification as a model and browsed through its behavioral
hierarchy and connectivity, we need to ensure that our specification is correct. We also
need to analyze our specification model to derive interesting observations about the na-
ture of the computation. The check for correctness is done by simulating the model.
Note that the model is purely functional, so the simulation runs very quickly. This is
also a good time to debug the model for functional errors that might have crept in while
writing it.

After the model is verified to be functionally correct, we proceed to the analysis phase.
For this, we need to profile the model using the profiling tool available in SCE. The
profile gives us useful information like the about of computation, its distribution over
the various behaviors in the model and its nature. This information is need to make
crucial architectural choices as we will see as the demo proceeds.

30

Chapter 2. System Specification Analysis

2.3.1. Simulate specification model

File Edit Yiew Erojectlﬁynthesis Yalidation Windows

Help

Hierarchy

D B@ bew
Open...
; v £ Close
Dasign | Descripti (12 |T5-' [J Mame % ITS"PE
Save ain 2 dt<_mode i_receiver
Save As.. . code Co G serial i_sender
; B 8 pre_process Pre 7 speech_samples i_receiver
fidd Design - & coder_12k2 o pREEN_SaMmpEs 1
] el Tecdt=_cirl i_sender
Recent Projects - |- seqt Ca
- 8 Ip_analysis LP @ local_dtx_mode ool
Settings... ,iinit LF. @ prm short int [37]
o+ I seqt LF, o reset_flag_1 hool
A az_lsp_1 Az @reset_flag_2 bool
W az_lsp_2 @speech_frame shot int [160
A copyi o 54N short int [160
B3 vad_Ip otaboctl_val shartint
Il seq2 Gro o amn e L
=] =

_

X Compile | Simuite | Analyze | Refine | Synthesize | shell |

Input: ‘“testbench,zi"
Output: <internal representation?
Dumping. ..
Input: <internal representation>
Output: "testhench,sir"
Daone.,

&dd Design to Project

|

We must now proceed to validate the specification model. Remember that we have a
"golden" output for encoding of the 163 frames of speech. The specification model
would meet its requirements if we can simulate it to produce an exact match with the
golden output. In practice, a more rigorous validation process is involved. However, for
the purpose of the tutorial, we will limit ourselves to one simulation only. Start with
adding the current design to our Vocoder project by selecting Project— Add Design

from the menu bar.

31

Chapter 2. System Specification Analysis

2.3.1.1. Simulate specification model (cont’d)

C Environment

Eile Edit Miew Project Synthesis Validation Windows

[=I[Bix]

Help

I~
Hierarchy

Diesign I Descriptionl [Mame |T5-' [J Mame % ITS"PE
Lfesmemﬁﬁff "5 Main o7 dtx_mode i_receiver
: P serial i_sender
b+ E Pre_process Prg cF speech_samples i_receiver
o= c;ier_112k2 gu G tctt_ctrl i_sender
= Ispe_qanalysis LI?‘_ @ local_dtx_mode ool .
&Finit LF. @ prm short int [37]
o+ I seqt LP, @ reset_flag_1 bool
A az_lsp_1 Az @reset_flag_2 haal
W az_lsp_2 @speech_frame short int [160
A copyi o 54N short int [160
B3 vad_Ip otaboctl_val shartint
Il seq2 G et s

_

X Compile | Simuite | Analyze | Refine | Synthesize | shell |

Input: ‘“testbench,zi"
Output: <internal representation?
Dumping. ..

Input: <internal representation>
Output: "testhench,sir"
Daone.,
[Ready A

The project is now added as seen in the project management workspace on the left in the

GUL

32

Chapter 2. System Specification Analysis

2.3.1.2. Simulate specification model (cont’d)

Eile Edit Miew Project Synthesis Validation Windows

Help

wo(xen X EFEE]

[

2. B Coder - testhench - testbench.sir [read-only]

Delete Del 8 pre_process

& coder_12k2

|- seqt

Change Description... - B Ip_analysis
A init

o+ Il seqi
A az_lsp_1
W az_lsp 2
Ao capy

b3 vad_lp

Il seq2

Bename...

Statistics...

I~
Hierarchy

[J Mame % IType
2 dt<_mode i_receiver
P serial i_sender

e speech_samples i_receiver

gg el Tecdt=_cirl i_sender
LP @ local_dtx_mode ool
LF. @ prm shart int [37]
LF. @ reset_flag_1 hool
Az @ reset_flag_2 haool
@ speech_frame shart int [16C

@ 5¥n
@ t=dt<_ctrl_val
[1

short int [160
shart int

X Compile | Simuite | Analyze | Refine | Synthesize | shell |

Input: ‘“testbench,zi"
Output: <internal representation?
Dumping. ..
Input: <internal representation>
Output: "testhench,sir"
Daone.,

[Ready

|

We must now rename the project to have a suitable name. Remember that our method-
ology involved 4 models at different levels of abstraction. As these new models are
produced, we need to keep track of them. Right click on "testbench.sir" and select Re-
name to rename the design to "VocoderSpec". This indicates that the current model
corresponds to the topmost level of abstraction, namely the specification level. Note that
the extension ".sir" would be automatically appended. Also note that a model may be
made activated, deleted, renamed and and its description modified by right click on its

name in the project management window.

33

Chapter 2. System Specification Analysis

2.3.1.3. Simulate specification model (cont’d)

Eile Edit Miew Project Synthesis Vglidatiunlﬂindows Help

B”'[| [S| [y [S~ Enable Instrumentation |a @ | O

Compile

Simulate

Open Terminal
Kill simulation

Mame % IType
2 dt<_mode i_receiver
P serial i_sender

DES|gn

Yiew Log.. d«’speech_samples i_receiver
Erofile el Tecdt=_cirl i_sender

@ local_dtx_mode ool
Analyze & prm shart int [57]
Evaluate @ reset_flag_1 hool
Metrics... @reset flag_2 haool

@ speech_frame shar int [160
@ 5y¥n shart int [16C

Show Estimates

Estimate gix[ﬁx ctrl_val short int
— Analyze BTL o dmim e
Hic @ Stop

X Compile | simulate | analyze | Reine | Syrthesize | sl |

¥ sir_rename -i Jhomespeng jfdemnostesthench,sir —o Jhomedpeng jidenosocoderSpec.sir testhench VocoderSpec

Compile A

After the project is renamed to "VocoderSpec.sir", we need to compile it to produce an
executable. This may be done by selecting Validation— Compile from the menu bar.
Note that the validation menu also provides for code instrumentation which is used for
profiling. Moreover, we have choices for simulating the model, opening a simulation
terminal, killing a running simulation, viewing the log, profiling, analyzing simulation
results, model evaluation, displaying metrics and estimates etc. All these features will
be used in due course of our system design process.

34

Chapter 2. System Specification Analysis

2.3.1.4. Simulate specification model (cont’d)

Eile Edit Miew Project Synthesis Validation Windows

[=I[Bix]

Help

Hierarchy

DIESIET M| Mame Mame % IType
: "5 Main 2 dt<_mode i_receiver
] P serial i_sender
- e speech_samples i_receiver
o a c;ier_112k2 gu G tctt_ctrl i_sender
a2 Ispe_qanalysis LI?‘_ @ local_dtx_mode ool .
&Finit LF. @ prm short int [37]
o 1 &g LF @ reset_flag_1 bool
A az_lsp_1 Az @reset_flag_2 haal
W az_lsp 2 @ speech_frame shottint [160
A copyi o 54N short int [160
B3 vad_Ip otaboctl_val shartint
Il seq2 Gro o amn P
] 1

_

X Ccompile | Simuite | Analyze | Refne | Synthesize | shell |

Input: “"VocoderSpec,cc"
Output : "VocoderSpec.,o
Linking. ..

Input: “"VocoderSpec.o"
Output t "VocoderSpec"
Daone.,

[Ready

|

Note that in the logging window we see the compilation messages and an output exe-

cutable "VocoderSpec" is created.

35

Chapter 2. System Specification Analysis

2.3.1.5. Simulate specification model (cont’d)

[=I[Bix]

Eile Edit “iew Project Synthesis ‘alidation | Windows Help
|D = [=] ﬂ [S|y cu [S Enable Instrumentation |a ez} .
Campile ~Talx
i Simulate
DESI . 1 6 Fsp— Mame IType
| pen Zemmina & dt<_mode i_receiver
Kill simulation 7 serial i_sender
Yiew Log.. d«’speech_samples i_receiver
Erofile el Tecdt=_cirl i_sender
anal @ local_dtx_mode ool
Sl & prm shart int [57]
Evaluate @ reset_flag_1 hool
Metrics... @reset_flag_2 boal
Show Estimates @ speech_frame shart int [16C
r— @ 5y¥n shart int [16C
Estimale otwdt_ctri_val shortint
Analyze BTL e e dman
- e A ———
Hic @ Stop |
X Compile | simuiate | analyze | Rene | synnesize | shel |
EE Input: “"VocoderSpec,cc"
Output : "VocoderSpec.,o
Linking. ..
Input: “"VocoderSpec.o"
Output t "VocoderSpec"
Daone.,
Simulate A

The next step is to simulate the model to verify whether it meets our requirements or

not. This may be done by selecting Validation—Simulate from the menu bar.

36

Chapter 2. System Specification Analysis

2.3.1.6. Simulate specification model (cont’d)

Help
frame=147 encoding delay = 0,00 ms

ez frame=148 encoding delay = 0,00 mz

— frame=149 encoding delay = 0,00 mz

Ly frame=150 encoding delay = 0,00 ms IT z

m frame=151 encoding delay = 0,00 ms e
frame=152 encoding delay = 0,00 mz e i_receiver
frame=153 encoding delay = 0,00 mz i sender
frame=154 encoding delay = 0,00 ms =
frame=155 encoding delay = 0,00 ms |samples i_receiver
frame=156 encoding delay = 0,00 mz | i_sender
frame=157 encoding delay = 0,00 ms
frame=1h3 encoding delay = 0,00 me _mode boal
frame=159 encoding delay = 0,00 ms short int [57]
frame=160 encoding delay = 0,00 ms g1 hoo
frame=161 encoding delay = 0,00 ms .
frame=162 encoding delay = 0,00 mg q_2 hoo
frame=163 encoding delay = 0,00 mz | frame shart int [16C
done, 163 frames encoded short int 160

I_val short int
Files srcszpeschfilesdnodty_good,bit and nodtx,bit are identical AT et A
imulation exited with status 0

resz return to continue ...

X Conpie | simite | andyze | Rene | Synvesize | Stel |

% xterm -title VocoderSpec -e /bindsh o . AVocoderSpec srodspeechfiles/spoh_unx, inp nodbx,bit nodbx ze dif
f -z sroc/speschf iles/nodbx_good,hit nodtx,bit: echo "Simulation exited with status #7" :echo "Press return
to continue ,,.," rread confirm

[Ready A

Note that an xterm pops up showing the simulation of the Vocoder specification model
on a 163 frame speech sample. The simulation should finish correctly which is indicated
by the exit status being "0’. It can be seen that 163 speech frames were correctly simu-
lated and the resulting bit file matches the one given with the vocoder standard. It may be
noted that each frame has an encoding delay of 0 ms. This is a because our specification
model has no notion of timing. As explained in the methodology, the specification is a
purely functional representation of the design and is devoid of timing. For this reason,
all behaviors in the model execute in O time thereby giving an encoding delay of O for
each frame. Press RETURN to close this window and proceed to the next step.

37

Chapter 2. System Specification Analysis

2.3.2. Profile specification model

X Conpie | simite | andyze | Rene | Synvesize | Stel |

Eile Edit “iew Project Synthesis ‘alidation | Windows Help
| 0= [| [%HO Cu [% ~ Enable [nstrumentation |a @D
A[Im Eiigie .sir [read-only]
Design IDescripl [Emutate : ! [Name N |T5.'pe
Open Terminal - & dt<_mode i_receiver
Kill simulation - 7 serial i_sender
Yiew Log.. d’speech_samples i_receiver
Erofile el Tecdt=_cirl i_sender
anal @ local_dt<_mode hool
Sl & prm shart int [57]
Evaluate @ reset_flag_1 hool
Metrics... @reset flag_2 baal
Show Estimates @ speech_frame shart int [160]
r— @ 5y¥n short int [160]
Estimale otedte_ctr_val short int
n_ 'a'nalyze BTL :‘H_..I_.. 4 A o R I Y P Y n
Hic @ Stop |

% xterm -title testbench -e /bindsh -c |/ testbench src/speechfiles/spch_unx, inp nodbx,bit nodbx 22 diff -=
sro/speechf'ilesnodbx_good,hit nodtx,bit: echo "Simulation exited with status $7" :echo "Press return to o
ontirue ,,.," rread confirm

Simulation exited, exit status: 0

Frofile

|

In order to select the right architecture for implementing the model, we must begin by
profiling the specification model. Profiling provides us with useful data needed for com-
parative analysis of various modules in the design. It also counts the various metrics like
number of operations, class and type of operation, data exchanged between behaviors
etc. These statistics are collected during simulation. Profiling may be done by selecting

Validation—Profile from the menu bar.

38

Chapter 2. System Specification Analysis

2.3.2.1. Profile specification model (cont’d)

[=I[Bix]

Eile Edit Miew Project Synthesis Validation Windows Help

D93|gn Name 7| arme Type
'i:iirnam
- & Coder
|- dtx_mode i_receive
[B coder_12k2 Co | serial i_sender
—!setﬂ) Lo ¢ speech_samples i_receive
- = I'p.—.a.m.?lws tE - becdt_ctrl i_sender
o=l Isn;m LP: - @local_di<_mode bool .
¥ =z_lsp_1 &z, = @prm shortint [
W az_lsp 2 - greset_flag_1 hoal
A copyl - @reset flag_z bool
b vad_lp - @ speech_frame shortint |
Il se02) chort int [
I~
Hierarchy

Erls

X Conpe | Sinuite | Andyze | Reine | Synvesize | Stel |

Comput ing statistics for
Comput.ing =statistics for
Comput ing statistics for
Annotating statistics to
Behavior profiling

operat ions
traffic
storaze
SIR file

[Ready

|

The logging window now shows the results of the profiling command. Note that there
is a series of steps for computing statistics for individual metrics like operations, traffic,
storage etc. Once these statistics are computed, they are annotated to the model and
displayed in the design window.

39

Chapter 2. System Specification Analysis

2.3.2.2. Profile specification model (cont’d)

SI=IES
[]] Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
IS B iEEEEEIE
5} Name 3l Type | Cooe Computation
Desig ipll & & Main [expressions] | [operations]
B [}P 1 16614 1912355169
8 pre_process ade i_tecaiver
- & coder_12k2 | i_sender
il) ch_samples i_receiver
m =2 I.p._analyms ol i sender
init B -
1 seql | dt<_mode bool _
A az_lsp_1 short int [37]
A az_lsp_2 | flag_1 hool
A copy | flag_2 bool
@& vad_lp ch_frame shortint [160]
Il seqz2 | shatt int [160]
A no_speech | ctr_val shortint
L :ﬁf}“fggp r1zkz Coder_12k2 163 16004 11564811
E 3) oo Popomerss s oo
i~ I -

] | -
hodels | Imports | Sources Hierarchy | Behaviars I C: |] Ramw |

5 Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Comput ing statistice for operations K

Comput.ing =tatistics for traffic

Comput ing statistics for storage

Annotating statistics to SIR file
End: Behavior profiling

[Ready A

It may also be noted that the design management window now has new column entries
that contain the profile data. Maximize this window and scroll to the right to see vari-
ous metrics for behaviors selected in the design hierarchy. The current screen shot shows
Computation, Data, Connections and Traffic for the top level behavior "coder". Com-
putation essentially means the number of operations in each of the behaviors. Data
refers to the amount of memory required by the behaviors. Connections indicate the
presence of inter-behavior channels or connection through variables. Traffic refers to the
actual amount of data exchanged between behaviors. The metrics may also be obtained
for other behaviors in the design besides "coder".

40

2.3.3. Analyze profiling results

Chapter 2. System Specification Analysis

= | vocoder.sce - 50C Environment - [Shifl_Signals - Vocoderspec - VocoderSpec.sit'] [EEIE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
N B8 &8 |0 e X EiaEEEEE
X Tl
_ 0 Mame |Type = e Type M Code
Desigh Sl & Wain [expire
LE % coder Code & shifn_Signals 163
B+ B pre_process Pre_F o old_ewc inout short int [314]
B & coder_12k2 Code & ald_speech inout short int [320]
& old_wsp inout shart int [303]
P ixdte_ctl ot short int
& txatbe_ctri_cur in short int
k- B post_process /
F == T]] =
Madels | Imparts || Sources ||| Hierarchy [Behaviars | Channels | Raw |
__ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: Computing statistics for operations A
Computing statistics for traffic
Comput ing statistics for storage
Annotating statistics to SIE file
End: Behavior profiling
[Ready A

Once we have the profiling results, we need a comparative analysis of the various be-
haviors to enable suitable partitioning. Here we analyze the six most computationally
intensive behaviors namely "lp_analysis", "open_loop", "closed_loop", "codebook_cn",
"update" and "shift_signals." They may be multi-selected in the design hierarchy by
pressing CNTRL key and left clicking on them. These particular behaviors were selected
because these are the major blocks in the behavior "coder_12k2", which in turn is the
central block of the entire coder. Thus the selected behaviors show essentially the major
part of the activity in the coder. We ignore the pre-processing and the post-processing
blocks, because they are of relatively lower importance.

41

Chapter 2. System Specification Analysis

2.3.3.1. Analyze profiling results (cont’d)

§| vocodersce - S0C Environment - [Open_Loop - YocoderSpec - YocoderSpec.sir] ||Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help =|=| x|
EEIEIEEES X EEE| B e ®
= L
:]| Mame |Type Mame Type M
Design A - @ rain
B - coder Code & open_Loop 11

- B pre_process Pre_F et in shart int [4][11]
- B coder _12k2 Code G TO_max_1 aut short int
G TO_max_2 out short int
A T0 min_1 out short int
Source n_2 out short int
ierarchy... e in boal
annectivity... ech in short int
aut hool
lsolate fag in bool
YWrap irl in shart int
Delete Del inout short int
short int [11
. Rename short int {11}
[]

E- & post_process f Change Type st ik P41 £
= ' =™ : ‘Setas Top-Level |F— =
Maodels | Imports | Sources Hierarchy | Behaviars | Channels |—e ® lop-Leve

Graphs I Code.. —
__E Compile | Sitrulate | analyze | Refine | Synthesize | Shell | Computation...
: Comput ing statistics for operations Diata... &
Computing statistics for traffic H
Computing statisztics for storage Dl.o-
Annotating statistics to SIR file Connection...
End: Behavior profiling Trafiic

Computation graph

%

In order to select a suitable architecture for implementing the system, we must per-
form not only an absolute but also a comparative study of the computation require-
ments of the selected behaviors. SCE provides for graphical view of profiling statistics
which may be used for this purpose. After the multi-selection, we right click and select
Graphs—Computation from the menu bar.

42

Chapter 2. System Specification Analysis

2.3.3.2. Analyze profiling results (cont’d)

= | wocoder.sce - 50C Environment - [Open_Loop - testbench - testbench.sir® [read-only]] |Q|E|E
; L ; ; - ; Help w ||]
| |festbench - Operation Graph 5 I .l
—| Window Miew Arrange i
= g
ol Operation Profile Name Type
Rel. operations
n . & Open_Loop
Wl corovtation o At in short int [4][11]
- e dt<_mode in hool
Ml - — P . _._._. -7 p_speech in short int
- pteh out bool
- reset_flag in bool
2+ B phiaEE R P T0_maw_1 aut short int
7 TO_maw_2 aut short int
2 TO_min_1 aut short int
7 o L T0_min_2 out shart int
5 tedte_ctrl in unsigned bit[5:
o B =P wsp inout shart int
— @ apl shortint [11]
& fud .
#@‘" o S }y" || F gapz shart int [11]
b w \efh ‘@2“# LA s bt et 111
i B o g
= . I =
odefs [Imports | Sources | || Hierarchy | Behaviors | Channels Raw I
X Compile | Simulate | Analyze | Refne | Shell |
i COMpLUTING STatstcs 10F Operanons Y
Computing statistics for traffic
Computing statistics for storage
Annotating statistics 1o SIR file
End: Behavior profiling
[Ready A

We now see a bar graph showing the relative computational intensity of the various
behaviors in the selected behaviors. Essentially, the graph shows the number of opera-
tions on the Y-axis for the individual behaviors on the X-axis. Double click on the bar
for codebook_cn to view the distribution of its various operations. Note that we select
"codebook_cn" because it is the behavior with the most computational complexity.

Note that the bars representing the computation for "codebook_cn" and "closed_loop"
have two sections. The lower section is filled with red color and the upper section is par-
tially shaded. Each speech frame consists of four sub-frames and the behaviors "code-
book_cn" and "closed_loop" are executed for each subframe in contrast to other behav-
iors in the graph, which are executed once. Hence the filled section of the bar represents
computation for each execution of behavior and the complete bar (including the shaded
section) represents computation for the entire frame.

43

Chapter 2. System Specification Analysis

2.3.3.3. Analyze profiling results (cont’d)

=|vocoder.sce - 30C Enviranment - [Update - VacoderSpec - VocoderSpec.sir'] |Q|E|E
[LFile Edit View Proiect Suynthesis Walidation indow: Help =|=| x|
E|Vocoderspec - Operation Graph IIQIEIEB I .|
Window Miew Arrange
= [Mame Type M e
D AP [st
|| Rel. operations Window Customize & Update 757
dH— - — - o R .
Computation - ana out short int
[operations] o ag N in shortint [11]
sH— - — - 4 e CM_excitation_gain in short int
Raw: -7 code in short int [40]
[control o e inout short int [40]
M- - — - o [Access - ain_code in shot int
[au —¢F gain_pit in short int
[l other P i_subfr in int
1H— - o .
- mem_err aut short int [10]
- mem_w0 aut short int [10]
o ! reset_flag in hool
) - speech_i ir shart int [40]
ﬁ“” o synth_i aut short int [40]
|| ! o TN fi el 11 7
~ -~ | =
odels | Impors Raw
I codebook_cn —,
X | Compile | Simumm—— e
i COMpUTNG STatsics 10F operaions &
Computing statistics for traffic
Computing statistics for storage
Annotating statistics 1o SIR file
End: Behaviar profiling
[Ready A

A new window pops up showing a pie chart. This pie chart shows the distribution of
various operations like ALU, Control, Memory Access etc. We are interested in seeing
the types of ALU operation for this design. To do this double click on the ALU (green)
sector of the pie chart.

44

Chapter 2. System Specification Analysis

2.3.3.4. Analyze profiling results (cont’d)

=|vocoder.sce - 30C Enviranment - [Update - VacoderSpec - YocoderSpec.sir'] |Q|E|E
| File Edit View Project Svnthesis Validation ‘Window Help =|=| x|
— = | VocoderSpec - Operation Graph IIQIEIEB I .l
—| Window Miew Arrange I
= = Cadehonk_cn - Operation Chart ToEx | | ame Type N fﬁf
mi Rel.ql;pel’aliolls Window Customize & Update 757
Computation I—Cp ana. out short int
[codehook_on - Operation Char [olgx| inshortint[11]
sH— - — - 4 — P— _gain in short int
Window Customize in short int [40]
ALU inout short int [40]
i R [operations)] in short int
in shart int
Rave: in int
1M 1 [it ALu aut short int [10]
out short int [10]
o in hool
. in short int [40]
ﬁ“” out short int [40]
|| ! o b il IELOT 7
N T B
odels | Imports
C
X | Compile | Simumm——rere—T
COmpUing stafsics 1 &
Computing statistics fi
Computing statistics fi codehook_cn
Annotating statistics t
End: Behavior profiling J
[Ready A

A new window pops up showing another pie chart. This pie chart shows the distribution
of ALU operations. It can be seen that all the operations are integer operations, which
is typical for signal processing application like the Vocoder. Since all the operations are
integral, it does not make sense to have any floating point units in the design. Instead,
we need a component with fast integer arithmetic like a DSP. To see the distribution of
these integer operations, again double click on the pie chart.

45

Chapter 2. System Specification Analysis

2.3.3.5. Analyze profiling results (cont’d)

|mr8pec - VocoderSpec.sir']

End: Behavior profiling

[Ready

codebook_ch

[SEIET
| File Edit View Project Svnthesis Validation ‘Window: Help =|=| x|
] |WacoderSpec - Operation Graph IIQIEIEB l .|
—| Window Miew Arrange I
= = Cadehonk_cn - Operation Chart ToEx | | ame Type N fﬁf
mi Rel.ql;pel’aliolls Window Customize &Update 757
Computation I—Cp ana. out short int
'codehook_cn - Operation Chart M=IE] in shart int [11]
sH— - — - 4)] _gain in short int
Window Customize i ot int L)
"cadebook_cn - Operati
| o peration Chart ||_|||:|||X L 0]
EH— - — - o Window Customize
Int ALU
TH-— - [operations] 0]
10]
Raw:
o- Bl 1ot Avith i
it .IntComp 4]D
O Hmeswe |1}, /
1 B 1ot Logic =
odels | Imports
[=
X compile | Simues - —
= |
i COMpUing statsics 1] &
Computing statistics fi
Computing statistics fi
Annotating statistics t

%

A new window pops up showing another pie chart. This pie chart shows the distribution
of the type of integer operations. We can see that the majority of the operations is integer
arithmetic. To view the distribution of the arithmetic operation types, again double click

on the sector for "Int Arith".

46

Chapter 2. System Specification Analysis

2.3.3.6. Analyze profiling results (cont’d)

=|vocoder.sce - 30C Enviranment - [Update - VacoderSpec - YocoderSpec.sir'] |Q|E|E
- L ; ; o ; Help |3 x|
—=| - Operation Graph Q@ﬁa I .l
— Window Miew Arrange I
o = |codebook_cn - Operation Chart == luame Type n gtf
mi Rel.ql;pel’aliolls Window Customize &Update 757
Computation I—Cp ana. out short int
'codehook_cn - Cperation Chart (™=1ES] in shart int [11]
sH— - — - 4)] _gain in short int
Window Customize . . 0]
| cadebook_cn - Operation Chart =] B
} 1l
b ey Window Cus ‘codebook_cn - Operation Chart I=][=le
Window Customize
TH— -4
Int Arith
[operations]
ol
- Rave:
& 0 nt)
- 7 o g int
odels | Imports 0 =int B
C I Along
_,'n«t —
A compile | Sinumerr— HP:*""
Compuing stansics 19 i __’im =
Camputing statistics fi P !
Computing statistics f =it
Annotating statistics 1 [others
End: Behavior profiling
codebook_cn
[Ready]

We can now observe the distribution of arithmetic operations like "multiplication”, "ad-
dition", "increment", "decrement"”, etc. on a new pie chart. Note that 3 quarters of the

operations are additions or multiplications, thus it would be a good idea to have these
two operations directly supported by a specific hardware unit.

The combination of visual aids like bar graphs and pie charts gives a good idea of the

nature of intended system. Please close all the pop-up windows to conclude the specifi-
cation analysis phase.

47

Chapter 2. System Specification Analysis

2.4. Summary

In this chapter we looked at how to start with the system specification and analyze its
characteristics. We were familiarized with the SCE graphical user interface and the pro-
filing, analysis and simulation tools. By means of graphical tools, we were able to tra-
verse the hierarchy of the system specification model. Graphical representations also
provided us with information on connectivity between behaviors in the design. The user
friendliness of these representations allows us to analyze our design better which would
otherwise be very cumbersome.

Profiling and statistical data about the specification model also gives us interesting hints.
For instance, the nature of computation in the model shows us the appropriate compo-
nents to consider for the system architecture. Similarly, pie charts and bar graphs for the
distribution of computation show us the critical behaviors and their nature. As we move
forward in the system design process, we will have to make design decisions at various
stages and such statistical analysis will be of great value. In future implementations on
the tool, these analysis results may even be fed to automatic tools to generate optimal
system architectures.

48

Chapter 3. System Level Design

3.1. Overview

Figure 3-1. System level design phase using SCE

Specification

Analysis untimed

System level
Design

Architecture
Exploration

SW Scheduling/ timed

RTOS
v

Communication
Synthesis

Custom HW SW code cycle
generation generation accurate

System design is increasingly being performed at higher levels of abstraction to deal
with a variety of issues. In this chapter, we look at system level design tasks with SCE
as highlighted in Figure 3-1. Firstly, we need to deal with both HW and SW in a sin-
gle model. Secondly, and more importantly, complexity becomes unmanageable. In this
chapter we will look at the system level design phase as shown in the above figure. This
phase comprises of architecture exploration, serialization/RTOS insertion and commu-
nication synthesis. Architecture exploration deals with coming up with a suitable system
architecture and distributing the system tasks in the specification onto those components.
Since each component has a single control, we need to serialize the tasks in each com-
ponent. Tasks that are mapped to SW can be dynamically scheduled on the processor
by inserting an RTOS model. Finally, we perform communication synthesis to come up
with a communication architecture and refine the data transfer and interfaces to use the

49

Chapter 3. System Level Design

communication architecture. The goal of this phase is to come up with a model that can
serve as an input to RTL synthesis for HW components and SW generation for proces-
SOrs.

50

Chapter 3. System Level Design

3.2. Architecture Exploration

Architecture exploration is the design step to find the system level architecture and map
different parts of the specification to the allocated system components under design con-
straints. It consists of the tasks of selecting the target set of components, mapping behav-
iors to the selected components and implementing correct synchronization between the
components. Note that the components themselves are independent entities that execute
in a parallel composition. In order to maintain the original semantics of the specifica-
tion, the components need to be synchronized as necessary. Architecture exploration is
usually an iterative process, where different candidate architectures and mappings are
experimented to search for a satisfactory solution.

As indicated earlier, the timing constraint for the Vocoder design is the real time re-
sponse requirement, i.e., the time to encode and decode the speech should be less than
the speech time. The test speech has a 3.26 seconds duration. Therefore, the final im-
plementation must meet this time constraint. In this chapter we see how we arrive at
a suitable architecture with keeping this requirement in mind and using the refinement
tool.

51

Chapter 3. System Level Design

3.2.1. Try pure software implementation

The goal of our exploration process is to implement the given functionality on a minimal
cost architecture and still meet the timing constraint. The first approach is to implement
everything in software so that we do not have the overhead of adding extra hardware and
associated interfaces. To accomplish this, we first select a processor out of our compo-
nent database. Thereafter, we map the entire specification on to this processor. Once the
mapping is done, we invoke the analysis tool to see if the processor alone is sufficient to
implement the system.

52

Chapter 3. System Level Design

3.2.1.1. Try pure software implementation (cont’d)

= | vocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsic] [EEIE
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
EXSIES EEEEEEIE
[
X Mame IType L
[Narme
A & vain I
- R ——— || (& Cos
8 pre_process Source.. PSS o dte_mode
i f;tl:ier_112k2 Hierarchy... tg sout - serial
se e
= qanal sig Sonnectivity.. s g 0 speech_sampl
c;a oppian Inyup T o 5 tedte_ctrl
_ Isolate
- subframes . — @local_dtc_mod
L @ior_init P _Init — @pm
I & for_hody1 Delete Del k. Bodyl - ¢ reset_flag_1
k- & ClDSEd_lUP Rename pop — ¢ reset_flag_2
|- @ for_hodyz _Body2 - & speech_frame
- & codehook Change Type _CH | - o sun
{! NOp | sSet &s Top-Level — atedte_ctrl_val
codeh L
& buil_ Graphs = | Code FPcoder 1z
3 & update T | | [Fpestoroees [
| - [~ =
Madels | Imparts || Sources ||| Hierarchy [Behaviars | Channels | Raw |

ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Computing statistics for operations A

Computing statistics for traffic

Comput ing statistics for storage

Annotating statistics to SIE file
End: Behavior profiling

|I;:eady A

Before we move on, the top level behavior of the design needs to be specified. This is
necessary because the specification model may have some test bench behaviors, which
are not going to be included in the final design. It may be recalled that the project we
are working with involves not only the design-under-test (DUT) but also the behaviors
that drive it. For example, the behaviors "Monitor" and "Stimilus" are just testbench
behaviors while the behavior "Coder" represents the real design. To specify "Coder" as
the top level behavior, right click on "Coder" to bring up a drop box menu then left click
on Set As Top-Level.

53

Chapter 3. System Level Design

3.2.1.2. Try pure software implementation (cont’d)

Environment - [Coder - | pec - Yocoderspecsr] =
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
EXSIES EEEEEEIE
I
X Mame IType L
[Narme
A & vain
B & Coder
DIE_OCess Fre_Frocess 62 dts_mode
B B coder TEAE Coder TERE L serial
MW seqt _ Coger_ 12RE_Seq? | speech_sampl
B luv_anaivsis LP_Analsts
0 tedbe_ctr
B open_loop Cparr_Loog local db< mod
- subiames Subfzmes [~ @local_tbmn
| ror it Surames_ it [@pm
| o poay T Sutrfames_Body T — @reset_flag_1
b B civsad foop Crosed Loog — @ reset_flag_2
|- o pogys Subiraines Boay s - & speech_frame
O & cogetook_cr Codebaok_CN — - osyn
{! . g - o beate_ctrl_val
B codeboo letete) |
W bt _cn_code Bt O Cofe g £e dte 12k
b B update Lingate / —mpos _PIOEEss /
| - [~ =
Madels | Imparts || Sources ||| Hierarchy [Behaviars | Channels | Raw |

ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Computing statistics for operations

Computing statistics for traffic

Comput ing statistics for storage

Annotating statistics to SIE file
End: Behavior profiling

|I;:eady A

As shown in the figure, when the top level behavior "Coder" is specified, the names of
all its child behaviors are italicized to distinguish them from the test bench behaviors. In
general, any behavior which needs to be tested can be set as top level. So, in a generic
sense, the design under test can be identified by the italicized font.

54

Chapter 3. System Level Design

3.2.1.3. Try pure software implementation (cont’d)

= | vocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsic] [EEIE
[] File Edit ¥iew Project §ynthesis| Walidation Windows Help =|=] x|
n Allocate PEs... |'@) I .l
Show Mariables I
@ [Type 1R
Descrif Architecture Pluging - Ame
B8 Architecture Refinement... & Coder
Fre_ Frocess i
Schedule behaviors... Coder TERE gdtx._nrode
"~ -+ serial
Scheduling Pluging - Coder TERE_Seq? o speech_sampl
2 Scheduling Refinement... 5’°—j”f£f3 | bedibe_ctrl
allocate Busses %ﬁé g — @local_dbx_mod
Bi s
; @ prm
5 Show Channels Suames_ind oF
Sutrfames_Body T — @reset_flag_1
Communication Plugins -~ Cimsed Loop I ¢ reset_flag_2
22 Communication Refinement... Stbitames_Soay s [~ & speech_frame
=— - o Cogehook_CN — - @ syn
RIL Preprocessing... Mo | o beaibe_ctrl_val
#llacate RTL Units.. ok Codebook L 12k
) _code Bty O Codle Sﬁcoder_12k2
Schedule & Bind RTL... - Lpdate —&post_process
: o £ o o £
RTL Pluging - e F | I~
Models | Imports | Sources | @ RTL Refinement.. brinels | Raw I
C Caode Generatian...]
X compile | Simulate | 4na Ra C o el |
i Impart Decisions... iy
Comput.:
Comput.: @ Siop
Comput I St IEtIes Tor Storese
Annotating statistics to SIE file
End: Behavior profiling
Processing element allocation A

We begin by exploring the available set of components in the database. This is required
to select a suitable processor. To view all available components and select the desired
processor, select Synthesis— Allocate PEs... from the menu bar.

55

Chapter 3. System Level Design

3.2.1.4. Try pure software implementation (cont’d)

= vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacoderSpec.sir] [EEIE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
| FE Allocation
Desig Mame IType |Clock |Pr0gram |Data |Instructi0n IData |Char |Cost |Desc
_ [Ao
ode
Copy I
h_sampl
Remove | ctrl
dix_mad
Parameters...l flag_1
flag_2
Tables... | h_frame
ctrl_val
| 12k2
rocess
ﬂﬂﬂﬂﬂﬂ £
=
Models I
__ﬂ Caompil
b A
-] [| =)
Help | Ok I Cancel
H 4
[Ready A

Now a PE Allocation window pops up. This window includes a table to display impor-
tant characteristics of components selected for the design. In addition, it also provides
a number of buttons (on the right side) for user actions, such as adding a component,
removing a component, and so on. Since we have not allocated any component at this
point, the table has no entry.

To view the component database and select the desired component, press the Add...
button.

56

Chapter 3. System Level Design

3.2.1.5. Try pure software implementation (cont’d)

> Environment - [Coder - ¥ BC - WO [=[a][x]

Component % Max. clock Instruction

- anD_KE AG4.85 Wiz 32 hits
- aMD_K7 FOR.G MHz 32 hits
—&RM1020 350 MHz 32 hits
—A&RMTZ0 TO0.0 MHzZ . 32 hits
Contraller —A&RMIZO 2S00 Wiz 32 hits
DT _32300 FO00 MHz . 32 hits
—Intel_FP1 Z48.0 MHz 32 hits
Intel_PZ 9588 WiHz 32 hits
Intel_P3 SGG.8 Wz 32 hits
PSS FO00 MHz . 32 hits
-MIPS 64 3500 MHz 64 hits
—Matorola_B3000 EO.G WHz . 32 hits
—Matorola_B3010 TEGG MHZ 32 hits
—Motarala_Coldfire O8O MHz 32 hits
UitraSparcil 484.0 MHz 64 hits

Ready

Now a PE Selection window is brought up. The left side of the window (Categories)
lists five categories of components stored in the database. The right side of the window
displays all components within a specific category along with their characteristics. As
shown in the above figure, since the Processor category is selected on the left side, 15
commonly used processor components are displayed in detail on the right side.

The Component description includes features like maximum clock speed, measure of
the number of instructions per second, a cost metric, cache sizes, instruction and data
widths and so on. These metrics are used for selecting the right component. Remember
that the profiling data has given us an idea of what kind of component would be suitable
for the application at hand.

57

Chapter 3. System Level Design

3.2.1.6. Try pure software implementation (cont’d)

SoC Envirohment - [Coder - Vo

_ 126.0 kB 32 hits
Processar _| 64.0 kB 16 hits
hemory _ 1080 MHzZ 126.0 kB 32 hits

Custom Hard _ TOEG MAZ 64.0 kB 16 hits
Cantraller

Now if we go to the Mem category, a number of memory components will be displayed
in detail on the right side of the window. If the memory in the processor is insufficient
for the application, we can add external memory components from this table.

58

Chapter 3. System Level Design

3.2.1.7. Try pure software implementation (cont’d)

0C Environtment - [Coder - Vocoderspec - Voo

DsP _50C_| 306.0 Mz] 16 bits
Pracessor 30 Mz . @ hits
8.8 Mz) 16 bits

8 bits

Controller i - 16 hits

Now if we go to the Controller category, a number of widely used micro-controller
components will be displayed in detail on the right side of the window.

59

Chapter 3. System Level Design

3.2.1.8. Try pure software implementation (cont’d)

0C Environment - [Coder - YocoderSpec - Yo g@

Fragram Instruction

16.0 kB 16 hits

G808 MHz 32.0 kB
S0 WHE . 16 hits
TEF MHZ . 16 hits
Caontraller TES T MAZ . 16 bits
FOE0 MHz . 16 hits
TORE MAZ . 16 hits

=

Through earlier profiling and analyzing, we found out that integer multiplication is the
most significant operations in the original specification. Therefore, a fixed-point DSP
would be desirable for this design.

Under the DSP category, a number of commercially available DSPs are displayed. These
DSP components are maintained as part of the component library and may be imported
into the design upon requirement. Since the Vocoder design project was supported by
Motorola, our first choice is DSP56600 from Motorola.

Left click the "Motorola_DSP56600" row to select it. Then click OK button to confirm
the selection.

60

Chapter 3. System Level Design

3.2.1.9. Try pure software implementation (cont’d)

= vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacoderSpec.sir] [EEIE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
| FE Allocation
Design Mame | Twpe Frogram Data Instruction
— H, 2.0 kB 64.0 kB 24 h Add...
e
Copy I
h_sampl
Remove | ctrl
dix_mad
Parameters...l flag_1
flag_2
Tables... | h_frame
ctrl_val
| 12ke
FOCESS
nnnnnn £
=
Models I
Caompil
A canmp
b A
A |]
Help | Ok I Cancel
H 4
[Ready A

Now the PE Selection window goes away and the PE Allocation table has one row
that corresponds to our selected component, which has a type of "Motorola_DSP56600".
This new component was named as "PE0Q" by default. To make it more descriptive for
later reference, it is desirable to rename it.

To rename it, just left click in the Name column of the row. The cursor will be blinking
to indicated that the text field is ready for editing.

61

Chapter 3. System Level Design

3.2.1.10. Try pure software implementation (cont’d)

§| vocodersce - S50C Environment - [Coder - VocoderSpec - YocoderSpec.sir] ||Q|E|Z
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
55| M= [] PE Allocation
Frogram Instruction
2.0 kB 64.0 kB 24 b add...
ode
Copy I
h_sampl
Remove | ctrl
dix_mad
Parameters...l flag_1
flag_2
Tables... | h_frame
ctrl_val
| 12k2
rocess
nnnnnn £
=
Models I
X | compil
n p
i 5
-] | =)
Help | I Ok Cancel |
H 4
[Ready A

We will simply name the component as "DSP" since it is the only component used in
the design at this instance. Proceed by typing "DSP" in the text field and press return to
complete the editing. Then press the OK to finish component allocation.

62

Chapter 3. System Level Design

3.2.1.11. Try pure software implementation (cont’d)

= | vocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsic] [EEIE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
EXSIES EEEEEEIE
E[Mame |Type |F'E I A M
ame
A & vain I
B & Coder
DIE_OCess Fre_Frocess 62 dts_mode
B 3 coger TEAE Coder 12k Lo serial
MW seqt _ Cogier_12KE_Seq? | speech_sampl
B luv_anaivsis LP_Analisis
0 tedbe_ctr
B open_loop Cparr_Loog local db< mod
- subiames Subfames [~ @local_tbmn
| ror it Supiames_ it [@pm
| o poay T SubiFames_Body T — @reset_flag_1
b B civsad foop Crosed Loge — @ reset_flag_2
|- o pogys Subiraines Boap s - & speech_frame
O & cogetook_cr Codehaok_CN - osyn
{!fwﬁb ’ Ny || F oteate_ctr_val
B codebos b0, |
W bt _cn_code Build O Code gwdte 12k
b B update Lingdate —mpos _PIOEEss /
L o end Sebiaimes_ S b Nl e]
todels | Imports | Sources Hierarchy | Behaviors | Channels | Raw I

ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Computing statistics for operations

Computing statistics for traffic

Comput ing statistics for storage

Annotating statistics to SIE file
End: Behavior profiling

[Ready

4

As mentioned earlier, we will map the whole design to the selected processor. This is
done by assign the top level behavior "Coder" to "DSP". Left click in the PE column in
the row for the "Coder" behavior. A drop box containing allocated components comes

up. Left click on "DSP" to map behavior "Coder" to "DSP".

It should be noted that any kind of mapping is allowed. However, since we are inves-
tigating a purely software implementation, everything in the design gets mapped to the

VIDSPH.

63

Chapter 3. System Level Design

3.2.1.12. Try pure software implementation (cont’d)

EI=ES
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
GRS EEEEEEIE
E[Mame |Type |F'E I A M
ame
A & vain I
E & Coder
B pre_process Fre_Frocess 62 dts_mode
B B coder T2kE Coder TERE L serial
MW seqt _ Cogier_T2KE_Seq? | speech_sampl
B luv_anaivsis LP_Analisis
0 tedbe_ctr
B open_loop Cparr_Loog local db< mod
- subiames Subfizmes [~ @local_tbmn
| ror it Sutiames_ it [@pm
| o poay T SubiFames_Body T — @reset_flag_1
b B civsad foop Crpsad Logg — @ reset_flag_2
|- o pogys Subiraines Bodp s - & speech_frame
O & cogetook_cr Codehaok_CN - osyn
!”Oﬁb . | | | o teote_ctr_val
B codeboo Tt |
W bt _cn_code Build O Code gwdte 12k
b B update Lingate —mpos _PIOEEss /
L o end Sebiraines_ S b Nl e]
[Models] [imports | Sources ||| Hierarchy [“Benaviors || channels | Raw I

ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Computing statistics for operations

Computing statistics for traffic

Comput ing statistics for storage

Annotating statistics to SIE file
End: Behavior profiling

|I;:eady A

As we can see now, the descendant behaviors are all highlighted in red to indicated that
they are mapped to the "DSP" component.

64

3.2.2. Estimate performance

Chapter 3. System Level Design

= | vocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsic] [EEIE
[F] Eile Edit View Project Synthesis ‘Validation | Windows Help =|=] x|
NeE [[y [@Hl‘) G I 3¢ B » Enable Instrumentation § ¢ I .l
Caompile I
E[Mame - Type |F'E I 3l [
Desigh i Simulate
f g Open Terminal - & Coder
Kill simulation Fre_frocess 7 dt<_made
;. L Coger TERE -+ serial
iew Log...
== Cerer_ ?'Ek?_Seq? ¢ speech_sampl
Frofile L Anaiesis Lo fedt_ctrl
Do Loog .
Analyze SbiEmes — @ local_dt<_mod
Evaluate Sutiames_ it [~ @pm
Metrics.. Sutibames_Boay T — @ resetflag1
n . Cigsed Loop - @reset_flag_2
Show Estimates Subfames_Body e — @ speech_frame
Estimate Codehoot_CHN - @ syn
My
Analyze RTL " - = @ t=dt<_ctr_val
Cadenoo L& coder_12k2
. Stap e Buite O Coge & ; -
il Lipatate 2 L
| M o end Sebiraines_ S b Nl e]
todels | Imports | Sources Hierarchy | Behaviors | Channels | Raw I
__ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: Computing statistics for operations A
Computing statistics for traffic
Comput ing statistics for storage
Annotating statistics to SIE file
End: Behavior profiling
Evaluate A

The next step is to analyze the performance of this architecture. Recall that we have a
timing constraint to meet. We must therefore check if a purely software implementation
would still suffice. If not, we will try some other architecture. Now we can estimate the
performance of this pure software mapping by selecting Validation—Evaluate from
the menu bar.

65

Chapter 3. System Level Design

3.2.2.1. Estimate performance (cont’d)

c EI=ES
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
N @ & vae [XbB K EEE| 3| 0
= =/ -]
_ i MName r Name Type M (_:ode _ Caomputation | Da
Desiy A & vain [instructions] | [cycles] [ch
B L [&Coder 1 3719 240975783
B |- dtx_maode i_receiver
i o - serial i_sender
'! s speech_samples i_receiver
f;‘ - it _ctrl i_sender
e - ¢local_dt<_mode bool
L — @ prm short int [37]
L — ¢ reset_flag_1 hool
= - g reset_flag_2 hool
- @speech_frame shortint [160]
= - @syn short int [160]
- @ tedt_ctrl_val shart int
& coder_12k2 Coder_12k2 163 3611 1457865
Bl —Sépust_process FPost_Process 163 B3 Jedez
r @ovin vmmmon Flem Flomomon ey ac P
1] = 1 | =)
hodels | Imports I Sources Hierarchy [: | 1 Raw | DsP I
__ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i Deriving raw statistice from SIR file R
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling
[Ready A

As we can see in the logging window, a re-targeted profiling is being performed. Notice
in the log information that raw statistic generated during profiling are used here. The raw
statistics are take as an input to the analysis tool that generates statistics for the current
architecture. Since, we know the parameters of the DSP, the analysis tool can provide a
more accurate measure of actual timing. When that is done, the profiled data is displayed
in the design window with the "DSP" tab. Notice that this tab has appeared at the bottom
of the design data. The total computation time is shown in terms of number of DSP clock
cycles.

66

3.2.2.2. Estimate performance (cont’d)

Chapter 3. System Level Design

= | vocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsic] [EEIE
[] File Edit ¥iew Project Synthesis Vglidationlﬂindows Help =|=] x|
|l) (o] I b Q = Enabhle Instrumentation e I .l
x Compile :
|| Hame - Tune M Code Computation | D=
M Erg, Simulate yp [instructions] | [cycles] [ch
[j—l Cpen Terminal - 1 379 240978763
Eill simulation 5 pe i_teceiver
Yiews Log.. ?_send.er
| samples i_receiver
Brafile l i_sender
Analyze it<_mode hoaol
Evaluate short int [37]
Metrics.. R_1 boal
: fpog_2 bool
Sl ETEES frame shortint [160]
Estimate short int [160]
analyze RTL t_tval short int
12k2 Coder_12k2 163 3611 1457865
@ Stop ocess Post_Process 163 fd 3e4z
[T TR @avie vicmnn Fm Moo did ac e
- = =1 =
hodels | Imports I Sources Hierarchy |: Raw | DsP I
__ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: Deriving raw statistics from SIR file A
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling
Show estimated values A

The number of computation cycles is a relevant metric for observation. However, it must
be converted to an absolute measure of time so that we may directly verify if this archi-
tecture meets the demands. To find out the real execution time in terms of seconds, we
turn on the option for estimation by selecting Validation— Show Estimates from the

menu bar.

67

Chapter 3. System Level Design

3.2.2.3. Estimate performance (cont’d)

Environment - [Coder -

[=I[Bi[x]

[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
EXIES EEEEEEIE

E[Mame 4 [J Mame IType IN ICode |C0mputatiun |Data IHez

[o ain & Coder 1 11.2 kB 40163131 us 19312 B

i |- db<_mode i_receiver
E e - serial i_sender
- = ‘C; e speech_samples i_receiver
= 87 tatt_ctrl i_sender

= I @local_dt<_mode hool 2B

- - @prm shart int [57] 114 B

u — @reset_flag_1 hool 2B

F - @reset_flag_2 hoaol B

2 - @speech_frame short int [160] 320B

[- gsyn short int [160] 320 B

EISl | b pixdtecti_val shartint 2B

—Sicuder_‘IZKZ Coder_12kZ 163 103 kB 242978 us 16270 B

—Sipust_process Post_Process 1683 0.2 kB 54.0us 1910B

El L& pre_process Pre_Process 1684 01 kB 2864 us 3V0E
-] - =] | -

Models [Impors | Sources | | Hierarchy [LL: Raw | DSP |

Erdl:

ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Deriving raw statistics from SIR file
Computing weighted statistics
Annotating weighted statistics to SIR file

retargetable profiling

[Ready

4

As seen in the design window, the computation time is in unit of "us"

. As we can see in

the row of behavior "Coder", the estimated execution time (~ 4.00 seconds) exceeds the
timing constraint of 3.26 seconds.

68

3.2.2.4. Estimate performance (cont’d)

Chapter 3. System Level Design

= | vocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsic] [EEIE
[] File Edit View | Project Synthesis ‘Validation Windows Help =|=] x|
D @ wwe KBb Qf Be 0
Hierarchy... 3|0
P Bme | Mame |Type IN ICode IComputation |Data |Hez
Design = Yo P@Man & Coder 1 11.2 kB 40163131 us 19312 B
Graphs ~| B |- dt<_mode i_receiver
Trace... - serial i_sender
Quality Metrics.. ¢ speech_samples i_receiver
— P bt _ctr i_sender
8= Show Testhench | o local_db_mode kool ZE
t3: Show Children - @prm short int [57] 114 B
Customize .. o - @reset_flag_1 bool 2B
- — @reset_flag_2 bool B
B | - @speech_frame short int [160] 3208
[— @syn short int [160] 320B
= | etxdbe_cir_val shortint ZB
—Siicoder_‘IZKZ Coder_12kZ 163 1035 kB 242378 us 16270 B
—Sipost_prucess Post_Process 163 0.2 kB 54.0us 1910EB
/ —Sipre_process Fre_Process 164 0.1 kB 2864 Uz 370 B
S o | | = =,] -
hodels | Imports I Sources Hierarchy [: | 1 Raw | DsP |
b Compile Simulate Analyze Refine Synthesize Shell
= p b
: Deriving raw statistics from S5IR file S
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling
Yiew design quality metrics A

We can also view the design quality metrics such as the execution time by selecting
View—Quality Metrics from the menu bar.

69

Chapter 3. System Level Design

3.2.2.5. Estimate performance (cont’d)

= FIEIE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
|D;[nﬁ[@|=n@[%\.[<&lu HIEEIE]
[Mame Mame |Type I M I Code IComputation | Data | He:
Desi - A Main & Coder 1 11.2 kB 40163131 us 19312 B

i_receiver
i_sender

Utilization
1000 % 4025 11 KB(00%) 19kB {00 %)

TGRS # 44088 TTRE TIRE

M mmmmmMmmMmmm

kod

* R - | Gl FREsN

Deriving raw statistics from SIR file

Computing weighted statistics

Annotating weighted statistics to SIR file
End: retargetable profiling

[Ready

&E_IE

A Design Quality Metrics table pops up, showing that the estimated execution time
to be 4.02 seconds, which exceeds the timing constraint of 3.26 seconds. Therefore,
the pure software solution with a single "Motorola_DSP56600" does not work. We,
therefore, need to experiment with other architectures. To proceed, click OK to close the
Design Quality Metrics table.

70

Chapter 3. System Level Design

3.2.3. Try software/hardware implementation

From what we observed while studying the vocoder specification, the design is mostly
sequential. There is not much parallelism to exploit. What we need to reduce the execu-
tion time is a much faster component than the DSP we used. Some of the critical time
consuming tasks may be mapped to a fast hardware. In this iteration, we will try to add
one hardware component along with the DSP to implement the design. As we found out
earlier, one of the computationally intensive and critical part in the Vocoder is the Code-
book behavior. We hope to speed it up by mapping it to a custom hardware component
and execute the remaining behaviors on the DSP.

71

Chapter 3. System Level Design

3.2.3.1. Try software/hardware implementation (cont’d)

= | vocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsic] [EEIE
[] Eile Edit ¥iew Project Synthesis I Walidation Windows Help =|=] x|
| 0= [| [é“‘) &llocate PEs... |@) I .l
= Gf Show Mariahles -
. . IType IN ICode |C0mputat|0n |Data IHez
Descrip Architecture Plugins - 1 112 kB 4016313.1 us 19312 B
B8 Architecture Refinement... _mode i_receiver
Schedule behaviars... rial i_sender
Scheduling Plugins . eech_samples ?_recewer
t<_ctrl i_sender
oio: Scheduling Refinement... bal dt< mode bool 2B
Allocate Busses.. ug shart int [57] 114 B
% Show Channels set_flag_1 hool 2B
L : set_flag_2 bool 2B
Communication UGN .0 fame shortint [160] 320 B
a|g Communication Refinement.. tn shart int [160] 320B
RIL Freprocessing... te_ctrl_wal short int B
Al te ATL Unit der_12ke Coder_12ke 163 108 kB 2429760 us 16270 B
neale RIL Znits... si_process PastProcess 163 0.2 kB S40us 1910E
Schedule & Bind RTL... e_process Pre_Process 1684 0.1 kB ZEE4 Uz FT0E
RTL Plugins = T -
Models [Impors || Sources B RTL Refinement.. D3P |
C Code Generation...]
X compile | Simulate | 4na Ra C o el |
Y — Impart Decisions... 2y
Derivir le
Comput.: @ Siop
AnnotatIME Welghted sratlstics o olR file
End: retargetable profiling
Frocessing element allocation A

As we did earlier, while selecting the processor, go to Synthesis—Allocate PEs...

the menu bar.

72

on

Chapter 3. System Level Design

3.2.3.2. Try software/hardware implementation (cont’d)

= vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacoderSpec.sir] [EEIE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
| FE Allocation
Mame IType Clock Frogram Data Instruction £ I all
DspP Motorola_DSPSEE00 &80 AfHz 320 kB 64.0 kB 24 b I Add... pate B
Copy I
Remove | 2B
114 B
2B
Parameters...l B
320 B
Tables... | 320 B
zB
Z70B
0B
J70B
-
Models I
__ﬂ Caompil
55 a
A |]
Help | Ok I Cancel
H 4
[Ready A

This time, the PE Allocation table pops up. As we can see, the previously allocated
"DSP" component is displayed. To insert the hardware component, press Add... button
to go to component database.

73

Chapter 3. System Level Design

3.2.3.3. Try software/hardware implementation (cont’d)

PE Selection

Instruction Data

D3P 240.0 133 hits 32 hit:
Processor y] % 100.0

kemary
Custom Hardwa

Cantraller

[Ready ..

In the Custom Hardware category, two general types of hardware components are
displayed. Here we will use the standard hardware design with a datapath and a control
unit. Select the "HW_Standard" and press OK to confirm the selection.

74

Chapter 3. System Level Design

3.2.3.4. Try software/hardware implementation (cont’d)

= vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacoderSpec.sir] [EEIE
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
| FE Allocation
Mame IType Clock Frogram Data Instruction :‘:?2 BI all
DEP rotorola_DSPSEEOD 608 MAz 2.0 kB 64.0 kB 24 b add...
[FE0 NN - _standard 74 {Hz TE0KB 3EOKE z
Copy I
Remove | 2B
114 B
2B
Parameters...l B
Jz0 B
Tables... | 320 B
zB
Z70B
0B
J70B
-
Models I
X | compil
= p
b A
A |]
Help | Ok I Cancel
H 4
[Ready A

Now the "HW_Standard" component is added to the PE Allocation table. In the same
way we did for the "DSP" component, we simply rename it to "HW" to distinguish it.
Notice that for the hardware component, some metrics are flexible. For instance, the
clock period may be changed. However, we stay with the current speed of 100 Mhz for
demo purpose.

75

Chapter 3. System Level Design

3.2.3.5. Try software/hardware implementation (cont’d)

= | vocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsic] [EEIE
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
55| D = [| FE Allx an
Mame IType Clock Frogram Data Instruction :‘:?2 BI all
DsP rotorola_DSPSEEOD 608 MAz 2.0 kB 64.0 kB 24 b add... |
dard 7 7 £ £ Zd b
Copy I
Remove | 2B
114 B
2B
Parameters...l B
Jz0 B
Tables... | 320 B
zB
Z70B
0B
J70B
-
Models I
__ﬂ Caompil
b A
A |]
Help | I Ok Cancel |
4

[Ready

After we renamed it, press OK button to complete

76

component allocation.

Chapter 3. System Level Design

3.2.3.6. Try software/hardware implementation (cont’d)

E ‘wocodersce - S0C Environment - [Codebook - VocoderSpec - YocoderSpec. sir =4
= a B X
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
=R
|Type |F'E I 31l vame
Desi
ESI . - coder Coger D5F & Codebook
B B- B ore_process Fria_Frocess - T0
= B coder 1242 Coder 1242 P ana
|- seq7 Coder TERE Seq? o code
b+ B ip_anaisis LP_Araivsis | g
-8 apen_loar e _Loop | o gain_code
- subiames Sebirames | gain_pit
o Lodi Subfames_ it S -
|- o Bogy ¥ Subiames_Boay T B
B & aivsed_ioop Cizsed Lacp P resz
| o poaye Subfames BodyE —cn
W & codebook_cir Cogehook_Chf oy
Bl Fotye
I grodeb
- ghlh
— Gresih
Cogebook_Seqs £
M i o code St N Crdla A) = —
Madels [Imports || Sources Hierarchy | Behaviors | Channels | Raw | DsP |
__ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: Deriving raw statistics from SIR file A
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling
[Ready A

Remember we have already specified the top level behavior and mapped all behaviors to

"DSP" in the first iteration. That information is still there and we do not have to specify it
again. We only need to map behavior "Codebook" to the "HW" component, as suggested

earlier.

Browse the hierarchy tree to locate behavior "Codebook". Click on "Codebook" in the
PE column. Click on "HW" in the drop box to map "Codebook" to "HW". This would
map the entire subtree of behaviors under "Codebook" to custom hardware.

77

Chapter 3. System Level Design

3.2.3.7. Try software/hardware implementation (cont’d)

EI=ES
Eile Edit Miew Project Synthesis Validation Windows Help =|=|x
Eile Edit Xi Eroject Synthesis ‘“alidati Wind Hel
EXSIES EEEEEEIE
i riam'e |Type |F'E I al —
' & coder Coder D5F e —
B- B ore_process Fria_Frocess & Codebook
B B coger 1AE Coder TZkE -7 To
L seq 7 Coder 12k2_ Seqt - ana
- B jo_anaisis {P_Analysis o code
B3 apen_ivop Clperr_Loop o exc
[& subiames Subames - gain_code
o Lodi Subfames_ it L gain_pit
|- o Bogy ¥ Subiames_Boay T | o711 -
b & civsed ioop Cigsed_Loop & ras?
L o pody2 Subtames_Bodys [res
W & cogabook_on Codepaok_CH o xn
ey
Loy
Cosebook_seg T - o rodeh
B coge FHAG Code TOFAT 39bis - @hib
i+ Il seq2 Codebook_Seqs T
M Gl o ande Sl O Coce -1
[Modess] | imports | Sources ||| Hierarchy [[Benaviors | Channels | Raw [DsP
__ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: Deriving raw statistics from SIR file
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling
[Ready

After the mapping, we will see the subtree rooted at "Codebook" is highlighted in blue

in contrast to the rest behaviors in red that are mapped to "DSP".

78

3.2.4. Estimate performance

Chapter 3. System Level Design

= | vocoder.sce - 50C Environment - [Codehook - VocoderSpec - YocoderSpec sir'] [EEIE
[] File Edit ¥iew Project Synthesis Vglidationlﬂindows Help =|=] x|
NeE [[y [@Hl‘) G I 3¢ B » Enable Instrumentation § ¢ I .l
Compile
E[Mame Type |F'E I al M
Design = Simulate ame
Ligh}) Coder DEF —
] Open Terminal Fre Prmcess & Codebook
Kill simulation Coder_ 122 -2 T0
Wil Coder_12k2_Seq - ana
{P_Analysis - code
Prafile e Loog o exc
Analyze Sthirames -+ gain_code
Subiraines e gain_pit
Evaluate Subiames_ BodyT _(931 _p
Metrics... Cimsed Loy A res?
= Show Estimates Subiames_BodyE o
Codepaok_CH [~ n
Estimate fiop oy
Analyze BTL e vz
Cosebook_seg T - o rodeh
@ Stop 48 Code 1040 F5bits L @hib
| | e+ T zeg Codebook_Seqs T £
M Gl o ande Sl O Coce -1 =
Models [[imports | Sources | | Hierarchy [Behawiors | Channels | Raw [DsP
__ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: Deriving raw statistics from SIR file A
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling
Evaluate A

It may be recalled that we abandoned the pure software implementation because it failed
on meeting the timing constraint. It is now time for us to verify if the timing is met by
using the combined software/hardware design. To evaluate this software and hardware
implementation, go to Validation—;Evaluate on the menu bar.

79

Chapter 3. System Level Design

3.2.4.1. Estimate performance (cont’d)

Environment - [Coder -

[] File Edit View Project Synthesis ‘Validation Windows

Help x|~| %]

[=I[Bi[x]

'|oo[§<\[<k||| SIEEIE)
rJ Mame |Type _I Code |C0mputat|0n ID
&Cuder d472 B 2B7IT0Z.2 us 1¢
e dt«_mode i_receiver
- B ooger 7, ¢ serial i_sender
—,'seq? - speech_samples i_receiver
- & a3 - tedibs_ctrl i_sender
b1 g - @ local_dt<_mode bool
[}@“’;g L & prm short int [57]
:'ﬁ - @reset_flag_1 bool
B — @reset_flag_2 bool
- I~ @speech_frame shortint [160]
ikl - @syn short int [180]
J I & txot<_ctrl_wval short int
—Siicoder_‘IZKZ Coder_12kZ 163 G148 B 16097.7 us 17
—Sipost_prucess Post_Process 163 189 B 54.0us 7
/ —Sipre_process Fre_Process 164 135 B 2664 us
U =) -] | =)
tModels W Hierarchy | Elehahlé Raw | DSP [Hw |
ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
Y a

Deriving raw statistics from SIR file

Computing weighted statistics

Annotating weighted statistics to SIR file
End: retargetable profiling

[Ready

4

As we can see in the logging window, a profiling re-targeted at the DSP and HW archi-
tecture is being performed. When it finishes, the profiled data is presented in the design
window. In order to find out the execution time of the Coder, select Coder behavior in
the hierarchy tree. By clicking on the DSP tab of the view-pane, information of the DSP
part of "Coder" behavior is displayed. For example, the execution time of the software

part on DSP is around 2.68 seconds.

80

Chapter 3. System Level Design

3.2.4.2. Estimate performance (cont’d)

EI=ES
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
TFE|8s 0
& rJ Mame |Type |N_| Code | Computation I o
Desig B & Coder 45kE 54366 ms ¢
B % - dtx_moue i_receiver
- B ooger 7, ¢ serial i_sender
—,'seq? - speech_samples i_receiver
- & a3 - tedibs_ctrl i_sender
b1 g - @ local_dt<_mode bool
[}@“’;g L & prm short int [57]
:'ﬁ - @reset_flag_1 bool
B — @reset_flag_2 bool
- I~ @speech_frame shortint [160]
ikl - @syn shaort int [160]
J I & txot<_ctrl_wval short int
—Siicoder_12k2 Coder_12ke 45 kB 334 ms £
—Sipost_prucess Post_Process
/ —Sipre_process Fre_Process
] = | I -
Models | Imparts I S0urces Hierarchy | BEha;lé Raw | DSP | Hw |
__ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: Deriving raw statistics from SIR file A
Computing weighted statistics
Annotating weighted statistics to SIR file

End: retargetable profiling

|I;:eady A

To find out the information on hardware side, click the HW tab. The view-pane shows
that the execution of hardware part, behavior "Codebook", takes 0.54 seconds. Since
"Codebook" was executed in sequential composition with the rest of the design, the
latency of the design is the sum of DSP and HW execution time, which is 3.22 (2.68 +
0.54) seconds. Recall that the timing requirement is to be less than 3.26 seconds for the
given speech data. Therefore, the current architecture and mapping are acceptable.

81

Chapter 3. System Level Design

3.2.4.3. Estimate performance (cont’d)

= | vocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsic] [EEIE
[] File Edit View | Project Synthesis ‘Validation Windows Help =|=] x|
Source.. % EEEEEEIE
Hierarchy... i
o Bme 2 vame |Type |N |C0de |C0mputati0n ID
BEsien Connectivity... s
g ek & Coder 45kB 54366 ms ¢
] Graphs ~ g,. B oz o |- dix_mode i_receiver
Trace... O B cocar 7. - serial i_sender
Quality Metrics... |- seq7 ¢ speech_samples i_receiver
— - & a3 - tedibs_ctrl i_sender
@smw TESHERER b1 g - @ local_dt<_mode bool
b Shaw Children [}@“’;g - shott int [57]
Customize... - — o reset_flag_1 bool
B — @reset_flag_2 bool
- I~ @speech_frame shortint [160]
m@o || - esyn shart int [160]
J I & txot<_ctrl_wval short int
—Siicoder_12k2 Coder_12ke 45 kB 334 ms £
—Sipost_prucess Post_Process
/ —Sipre_process Fre_Process
U -] I —
Models | Imparts I S0urces Hierarchy | Beha. | || Raw | Dsp | Hw |
__ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i Deriving raw statistice from SIR file R
Computing weighted statistics
Annotating weighted statistics to SIR file

End: retargetable profiling

Yiew design quality metrics A

Like we did earlier, we can also view the execution time in the Design Quality Metrics
table. To do so, select View—Quality Metrics from the menu bar.

82

Chapter 3. System Level Design

3.2.4.4. Estimate performance (cont’d)

-oder.sce - S0C Environment - g@g
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|

= HIEEIE]

f Mame |Type |N_| Code |C0mputati0n ID
4.5 kB 543.68 ms £

i_receiver
i_sender

Utilization Program Data
BB s B.5KB(0.0%) 14 kB (0.0 %)
054 s 45kB(0.0%) 10kB(0.0%)

JEE s TG RE 24 k&

Mo
X conpie | simuate | Anslyze [Refne | syntnesize | shel |
Deriving raw statistics from SIR file
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling
[Ready A

As shown in the figure, the Design Quality Metrics table including a number of design
quality metrics is displayed. It confirms that the total execution time is 3.22 seconds,
same as what we figured out earlier. After reviewing the quality metrics, click on OK to
close the table.

83

Chapter 3. System Level Design

3.2.5. Generate architecture model

Comput.: @ Siop

End: retargetable profiling

AnnotatIMg WeIgiten starlselics o oIk file

§| vocodersce - S0C Environment - [Coder - WocoderSpec - VocoderSpec sir’] ||Q|E|Z
[Eile Edit View Project Synthesis I Validation Windows Help =|=| x|
. #llocate PEs... N .|
3 Show ¥ariables
«J o : me |Type | & | Code | Computation I D
Descif Architecture Pluging = der T r—
88 Architecture Refinement... & dt<_mode i_recaiver
Schedule behaviars... gserial i_sender
)) speech_samples i_receiver
Scheduling FPlugins
ELING T “ e tabe_ctr i_sender
oio: Scheduling Refinement... o local_dt<_mode boal
&llocate Busses... @prm shart int [57]
% Show Channels @ reset_flag_1 bool
L : @reset_flag_e bool
CrmnlleEion P - L @ speech_frame short int [160]
2|2 Communication Refinement.. | 5 syn short int [160]
RIL Preprocessing.. & teodt<_ctrl_wval short int
Allocate RTL Unit Siicoderj zke Coder_12k2 45 kB J.34ms £
neate A S;Bpost_prucess FPost_Process
Schedule & Bind RTL.. &pre_process Pre_Process
RTL Plugins - T =
Models | Imports | Sources [ERE ETL Refinement... W | Dsp | HW I
C Caode Generatian...]
X compile | Simulate | 4na Ra C o el |
: — Impart Decisions... T
Derivir le

Architecture Refinement

4

Now we can refine the specification model into an architecture model, which will exactly
reflect the this architecture and mapping decisions. This can be done either manually or
automatically. As we mentioned earlier, an architecture refinement tool is integrated
in SCE. To invoke the tool, go to Synthesis—Architecture Refinement.... The tool
changes the model to reflect the partition we created and also introduces synchronization
between the parallely executing components. Note that we have not decided to map
variables explicitly to components. For demo purposes, we will leave this decision to be
made automatically by the refinement tool. However, it needs to be mentioned that the
designer may choose to map variables in the design as deemed suitable.

84

3.2.5.1. Generate architecture model (cont’d)

Chapter 3.

System Level Design

Models | Imports I Sources

% 010 QIEIZ
[0 Eile Help =|~| %]
N B8 &8 |0 e X EEEEEEIE
: i
E[Mame 2 vame |Type | M | Code | Computation I o
il & & Coder 45k 54368 ms ¢
et dt«_mode i_receiver
& sarial i_sender
& speech_samples i_receiver
& pcibs_ctrl i_sender
ecture Refinement (I L int [57]
Tasks
= Behavior refinement
It int [160]
T Insert avy. delays t int [160]
= Wariahle refinement It int
er_1zkz 4.5 kB 334 ms &
. Process
I Start | Cancel | | Process
] | A | =

Hierarchy | ElehaEJA” Raw | DSP | HW |

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

Freparing refinement...

|

A dialog box pops up for selecting specific refinement tasks of architecture refinement.
By default, all tasks will be performed in one go. Now press the Start button to start the
refinement. It must be noted that the user has an option to do the architecture refinements
one step at a time. For instance, a designer may want to stop at behavior refinement if
he is not primarily concerned about observing the memory requirements or the schedule
on each component. Nevertheless, in our demo we perform all steps to generate the final

architecture model.

85

Chapter 3. System Level Design

3.2.5.2. Generate architecture model (cont’d)

[=I[Bi[x]

[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|

[Marme

Coder & Main

AF manitor Monitar @ local_dt
A stimulus Stimulus O dt<_mad
seral_hi
Ihspeech_
v Edt=_ctr

& coder
& monitor
& stimulus

B8vocoderSpec.arch sir

= I = 1 |

Models | Imports | Sources Hierarchy | Behaviars | Channels | (R Etblg’

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

&
*x End of Varizkble Refinement =%
[Ready A

As displayed in the logging window, the architecture refinement is being performed.
After the refinement, the newly generated architecture model "VocoderSpec.arch.sir" is
displayed to the design window. It is also added to the current project window, under the
specification model "VocoderSpec.sir" to indicate that it was derived from "Vocoder-
Spec.sir". Please note that, while the architecture refinement only took a few seconds to
generate, a whole new model has been created.

86

Chapter 3. System Level Design

3.2.6. Browse architecture model

In this section we will look at the architecture model to see some of its characteristics.

= | wocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpec.arch sir [read-only]] |Q|E|E
[] Eile Edit ¥iew | Project Synthesis WValidation Windows Help =|=| x|
Source... b [| BE tg:Hf@) I .|
Hierarchy... | I | 1
pme Type FE ||
c tivity... Mame
Connectivity @ hain
Graphs = & Coder
Trace. . Motorola_DSPS66GE - dix_mode
- _ & MW HW Standar HW | e serial
Quality Metrics... 'mpnitor Mpnitur | spesch_sar
2|z Show Testhench A stimulus Stimulus L o5 bectt_ctr
ta:z Show Children par_cc_ T0_
: — Fimar_cc__ch_
Customize... | bar cc ch
-bar_cc__coc
-bar_cc__coc
-bar_cc__exc
—oar_co_gail
—ar_co__gail
imar_cc__hl_
~l I -] = H,:
Madels | Imports | Sources Hierarchy | Behaviors | Channels | Raw I DsP |: |]
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i i
% End of VYarishle Ref inement =%
Views graphical hierarchy A

Since the top level behavior is "Coder", the test bench behaviors are not changed during
architecture refinement. Therefore let’s select "Coder" by clicking in the corresponding
row in the design window. We would like to see how the design looks when it is mapped
to the selected architecture. To view the hierarchy of the new "Coder" behavior, go to
View—Hierarchy....

87

Chapter 3. System Level Design

3.2.6.1. Browse architecture model (cont’d)

SIS

[] File Edit View Project Synthesis ‘Validation Windows

Help x|~| %]

I~

N B8 &8 |0 e X EEEEEEIE
| I

|Type IPE |'J Name

[& Coder

Maotoroia DSPSEEGT D5F |- dtx_mode

HW_Standamt AW - serial

Mpnitor ¢ speech_sar

Stimulus - bretbx_ctrl
opar_cc_TO_

Window Miew —Dar_cc_cs_

L var_cc__ch_
lpar_cc__coc

Ivlo

-Ibar_cc_ coc
—bar_Cc__ exc
Har_cc__gail
—par_cc__gail
{rar_cc__hl_

=
v [[ose |

N

% Compile | Sinuste | Analyze | Refne | Syntnesics | Stei |

*x End of Varizkble Refinement

[Ready

A window pops up, showing all sub-behaviors of the "Coder" behavior. As we can see,
this new top level behavior Coder in the architecture model is composed of two new
behaviors, "DSP" and "HW", which were constructed and inserted during architecture
refinement. These behaviors at the top level indicate the presence of two components se-
lected in the architecture. Note that they are also composed in parallel, which represents
the actual semantics of the architecture model.

88

Chapter 3. System Level Design

3.2.6.2. Browse architecture model (cont’d)

§| vocodersce - 50C Environment - [Coder - WocoderSpec - VocodersSpec.arch.sir [read-only]] ||Q|E|Z
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
Ne B @ & oo X A EIEEIE
i [
H[Marme |T$"F39 IPE | 7w
- ame
Design A Main I
ior & Coder
98%ocader3pec.arch sir Molorois_DSFSEEAT -8 iitx_rmadle
B & A R Standany AW -5 serial
'mpnitor Mpnitur | speech_sar
_ A stimulus Stimulus L bectt_ctr
§| Coder - YocoderSpec - SpecC Hiera“glﬂlf | ar_cc_ Ti_

Window Miew | —iDar_cc__ch_

C it Famar_cc__ch_|
Connectivity T | ovar_ce__coc
Zoom jn Cirl++ -ar_cc_ coc
Zoom out Cirl+- m FCar_co_ esc
Add level Chilea parcc_gal

—par_cc__gail
Bemove level Cirl+R L var cc_hl_
N e]

-] i

“F s
N bviors | Channels | Raw | DSP |: | :

Compile | Simulate | Analyze | Refine | Synthesize | Shell |

iy

*x End of Varizkble Refinement =%

|
[Ready A

We would now like to see how the "DSP" and "HW" behaviors are communicating.
This will verify if the refinement process was correctly executed. Go to
View—Connectivity to see the connectivity between the "DSP" and the "HW"
components.

89

Chapter 3. System Level Design

3.2.6.3. Browse architecture model (cont’d)

L 1) window wiew

=S
Help x|~| %]

ar_oo__T0__DSP__HW
ar_cc__ch_ana__DSF__HwW
ar_ci__ch_ana__HW_DSP
ar_cc__code_DSFP__Hw
wp_ct__code HW__DSP
ar_co__enc_i_DSP__HwW

br_cc__gain_code HW.__DSP

ar_to__gain_pit_DSP__Hw'

ar_cc__hi_DSP__HW

ar_co__res2_ DSP__HW

- ar_cr__sn__DSF__HW

Ivlo ar_te__vi__DSF__HW

ar_oc__v2__DSP__HW

_ﬂ ar_e_y2__HW_DSP

IPE |'J Mame

& Coder
S50 DEF |- at_rode
HW ¢ serial

- speech_sar
8 tecit_ctrl
iar_cc_ T0_
—imar_cc_ ch_
imar_cc__ch_
-Ibar_cc__coc
-Ibar_cc_ coc
—bar_Cc__ exc
Har_cc__gail
—par_cc__gail
{rar_cc__hl_

N

v [[ose |

[Read

4

Enlarge the new window and scroll down to view the connectivity of the two com-
ponents. We can see that "DSP" and "HW" components are connected through global
variable channels, which were inserted during the architecture refinement. This is dif-
ferent from the original specification model, where only global variables were used for

communication.

After checking the new architecture model, we can close the pop up window and go
back to the design window by selecting Window—Close from the menu bar.

90

Chapter 3. System Level Design

3.2.6.4. Rename architecture model

C Environment - [Coder - WocaoderSpec ir [read-anly]] [=[a][x]
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
N B8 &8 |0 e X EEEEEEIE
X i
: [Mame |T$"F39 IPE |'J Mame
Design I N Main —
) Vocogerspec.sir 2 ar & Coder
. Mool OSPS5O0 -6 dtx_maode
-8 AW HW Standard HW | serial
'mpnitor Mpnitur |6 speech_sar
A stimulus Stimulus Lo becibe_ctrl
iar_cc_ T0_

—imar_cc_ ch_
imar_cc__ch_
-Ibar_cc__coc
-Ibar_cc_ coc
—bar_Cc__ exc
Har_cc__gail
—par_cc__gail
{rar_cc__hl_

=] I =~

=W i
Models | Imparts I Sources Hierarchy | Behaviars | Channels | Raw | DSP |: | /

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

iy

*x End of Varizkble Refinement =%

7
[Ready A

Like what we did for the specification model, we also change the name of the new model
to be "VocoderArch.sir" in the project window. The renaming is just for the purpose of
maintaining a nomenclature schema and to correctly identify the individual models.

91

Chapter 3. System Level Design

3.2.7. Simulate architecture model (optional)

= | vocoder.sce - 50C Environment - [Coder - VocoderArch - VocoderArch sir [EEIE
[] File Edit View Project Synthesis Vglidationlﬂindows Help =|=| x|
| D @[=] ﬁ [é“l) G I 3¢ [t = Enabhle Instrumentation o I .l
Caompile I
H[Marme - |T$"F39 IPE |'J Mame
Design I Simulate
- 2] Viocoaerspes. sir Open Terminal - & Coder
T sir Kill simulation =~ Motoroia DSPSE600 DSP |- dt=_mode
- R Standany Mt I i
Yiews Log.. Morﬁtur & serial
/ ‘ -+ speech_sar
4 Erofile stimulus Lo bectbe_ctr
Analyze iar_cc_ T0_
Evaluate —apar_co_ch_
Metrics.. imar_cc__ch_
-bar_cc__coc
= Show Estimates | oar cc coo
Estimate -bar_cc__exc
Analyze RTL —Cbar_cc__gail
-bar_cc__gail
@ Stop laopar co_ b1 |
= — <N
Madels [Imports || Sources Hierarchy | Behaviors | Channels | Raw | DSP |:| p
__ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |
: X =ir_rename -i Jhome/sspecc/demosVocoderSpec,arch.sir -0 shomesspecc/denoNocoderArch, sir VocoderSpec Vocod
erfrch
Compile A

This section shows the simulation of the generated architecture model. If the
reader is not interested, she or he can skip this section and go directly to
Section 3.3 Software Scheduling and RTOS Model Insertion (page 95).

So far we have graphically visualized the automatically generated architecture. We
have seen that in terms of its structural composition, the model meets the semantics
of an architecture level model in our SoC methodology. However, we also need to
confirm that the model has not lost any of its functionality in the refinement process. In
other words the new model must be functionally equivalent to the specification. We
will validate the architecture model through simulation. But first we need to compile
the model into an executable. To compile the architecture model to executable, select
Validation—Compile from the menu bar.

92

Chapter 3. System Level Design

3.2.7.1. Simulate architecture model (optional) (cont’d)

= | vocoder.sce - 50C Environment - [Coder - VocoderArch - VocoderArch i [EEIE
[] File Edit ¥iew Project Synthesis Vglidationlﬂindows Help =|=] x|
NeE [[y [S| |5 a I 3¢ B » Enable Instrumentation § ¢ I .l
7 Compile |_|_ IPE | i
: ype I
Design I | Simulate il
- {3 Viocogerdpee.sir Open Terminal & Cadder
- chsir Kill simulation = Maotoroia DSPSEEGT D5F |2 dt<_mode
= HIW Standard HlW | o srial
Yiews Log.. Morﬁtur
/ ‘ -+ speech_sar
4 Erofile stimulus Lo bectbe_ctr
Analyze iar_cc_ T0_
Evaluate —apar_co_ch_
Metrics A ee_ch
= |-amar_cc__coc
= Show Estimates | oar cc coo
Estimate var_co__exc
Analyze BTL —par_co__gail
- bar_co__gail
@ Stop laopar co_ b1
~l | [~ -
Models | Imparts I Sources Hierarchy | Behaviars | Channels | Raw | DSP |: | /

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

Input: “Vocoderfrch,cc" &

Output: "VocoderArch,o"
Linking, ..

Input: “"VocoderArch,o"

Output : "VocoderArch"

Done. JI
A

Simulate

The messages in the logging window show that the architecture model is compiled
successfully without any syntax error. Now in order to verify that it is functionally
equivalent to the specification model, we will simulate the compiled architecture
model on the same set of speech data used in the specification validation by selecting
Validation— Simulate from the menu bar.

93

Chapter 3. System Level Design

3.2.7.2. Simulate architecture model (optional) (cont’d)

=|vocoderarch ||Q|E|E |Q|E|Z

frame=147 encoding delay = 16,35 ns Help x| =] %]

frame=143 encoding delay = 16,35 ms

frame=149 encoding delay = 16,35 ns

frame=150 encoding delay = 16,35 ns i

frame=151 encoding delay = 16,35 ns I PE | |

Frame=152 encoding delay = 16,35 ms Marme

frame=153 encoding delay = 16,35 ns D ——

frame=154 encoding delay = 16,35 ms _ &CDUEI’

frame=159 encoding delay = 16,35 ms FSERGT Frd | dtx_mode

frame=156 encoding delay = 16,35 ms AW e i,

frame=157 encoding delay = 16,35 ns [~ senal

frame=158 encoding delay = 16,35 ns -—(ﬁjspeech_sar

frame=153 encoding delay = 16,35 ms |

frame=160 encoding delay = 16,35 ns < elbe_ctl

frame=161 encoding delay = 16,35 ns ar_cc__T0_

frame=162 encoding delay = 16,35 ns -imar_cc_ ch_

frame=163 encoding delay = 16,35 ns | opar cc ch

done, 162 frames encoded —har_co__Ccok
FCDar cc_ coc

Files srcdspeechfiles/nodtx_good.bit and nodtx,bit are identical -

Simulation exited with status O [-Car_cC__exc

Press return to continue .., —ar_co__gail
- mar_cc__gail
{rar_cc__hl_

-1 = = B

= =
Madels [Imports || Sources Hierarchy | Behaviors | Channels | Raw | DSP |:| p

ﬂ Caompile | Simulate | Analyze | Refine | Synthesize | Shell |

% xterm -title VocoderArch -e Jbindsh o | AVocoderArch sro/speechfiles/spoh_unx, inp nodbx,bit nodbx ss dif
f -z sroispeechf iles/nodtx_good,hit nodtx,bit: echo "Simulation exited with status $7" :echo "Press return
to continue ,,." rread confirm

[Ready A

The simulation run is displayed in a new terminal window. As we can see, the architec-
ture model was simulated successfully for all 163 frames speech data. The result bit file
is also compared with the expected golden output given with the Vocoder standard. We
have thus verified that the generated architecture model is functionally correct. In addi-
tion, the simulation of the architecture model shows that the processing time for each
frame is 16.35 ms, which was not available when simulating the specification model.

It must be noted as before that the testing process requires fairly intensive execution, but
for the demo purposes we will omit multiple simulations and just show the concept. This
concludes the step of architecture exploration.

94

Chapter 3. System Level Design

3.3. Software Scheduling and RTOS Model Insertion

The next step in the system level design process is the serialization of behavior execution
on the processing elements. Processing elements (PEs) have a single thread of control
only. Therefore, behaviors mapped to the same PE can only execute sequentially and
have to be scheduled. Software scheduling and RTOS model insertion is the design step
to schedule the behaviors inside each PE.

Depending on the nature of the PE and the data inter-dependencies, behaviors are sched-
uled statically or dynamically. In a static scheduling approach, behaviors are executed in
a fixed and predetermined order, possibly flattening parts of the behavioral hierarchy. In
a dynamic scheduling approach on the other hand, the order of execution is determined
dynamically during runtime. Behaviors are arranged into potentially concurrent tasks.
Inside each task, behaviors are executed sequentially. A RTOS model is inserted into the
design. The RTOS model maintains a pool of task behaviors and dynamically selects
a task to execute according to its scheduling algorithm. In this chapter we see how we
make scheduling decisions using SCE.

95

Chapter 3. System Level Design

3.3.1. Serialize behaviors

Allocate Busses...
5 Show Channels
Communication Plugins -

| Communication Refinement...

RIL Preprocessing...

Allocate RTL Units...

Schedule & Bind RTL...

RTL Plugins 73
I RTL Refinement...

Models | Impors | Sources

—amar_cc_ TO_ DSP_
—imar_ cc_ ch_ana_ [
—@mar_cc__ch_ana__k
—@mar_cc__code_ D3l
—@mar cc_ code_ HW
—par_cc__exc_i_ DS
I ar_co__gain_code,
I ar_coc__gain_pit__[
—amrar_cc__hl_ DSP_

Y S -1

= =

= |vocoder.sce - S0C Enviranment - [Coder - YocoderArch - Yocoderdrch si [EEIE
g8 Eile Edit ¥iew Project §ynthesis| Walidation Windows Help =|=] x|
N/ E8d] §|;;|.¢) &llocate PEs... B e .|
- & Show Yariahles
. . |Type IPE | | Mame
Design IDes Architecture Pluging -
- 2] Viocoaerspes. sir 88 Architecture Refinement... & Coder
Scheduls behayi Motorsia DEFSEEGT D5F > dt<_mode
chedule hehaviors. . W Staatart o o soria
Scheduling Plugins ~ | Manitar L ¢ speech_samples
=@ Scheduling Refinement... Stimulus Lo tdte_ctr

Bhhels I

B5 C Code Generation...

Raw | DSP | HW

X compile | Simulate | Ana

Import Decisions...

el |

@ stop

Static and dynamic behavior scheduling

|

To start behavior scheduling, select Synthesis— Schedule behaviors from the menu

bar.

96

Chapter 3. System Level Design

3.3.1.1. Schedule software

= vocoder.sce - S0C Enviranment - [Cader - Vacoderarch - VocoderArch sif ||Q|E|Z
B8 Eile Edit Miew Project Synthesis Yalidation Windows Help =|=| x|
N B8 &8 |0 e X EEEEEEIE
... X =
Diesign ling
12 Vocogerspee.g b
- “Ar DSF | ik I Jt<_mode
— Dynamic Scheduling erial
Marme peech_samples
® & Motorola_DSP 56600 dbe ot
B B pre_process =
B coder 12k2 N r_ec_T0_D3P_
b+ B post_process (i r_cc__ch_ana_ [
r_cc__ch_ana_ F
. r_cc__code_ D3l
~ Round-rohin ¥ cc__code_ HW
rocc__exc_i_ D3
~ Priotity based f_cc__gain_code,
t_cc__gain_pit_ [
rcc__hl__ DSP_
>
hodels | Imports DSP | HW
1 T o> | ——
_ﬂ Compile | Simu
. Help | ITI Cancel |
)
[Ready A

A Scheduling window will pop up. This window includes scheduling options for two
PEs (DSP and HW). We begin by selecting the scheduling algorithm for the software.
We can do either static scheduling or dynamic scheduling for the software. In case of
dynamic scheduling, a RTOS model corresponding to the selected scheduling strategy
is imported from the library and instantiated in the PE. The RTOS model provides an
abstraction of the key features that define a dynamic scheduling behavior independent
of any specific RTOS implementation. SCE provides two RTOS models with different
dynamic scheduling algorithms: round-robin and priority based.

97

Chapter 3. System Level Design

3.3.1.2. Schedule software (cont’d)

= | vocoder.sce - 50C Environment - [Coder - VocoderArch - VocoderArch i [EEIE
B8 File Edit ¥iew Project Synthesis Validation Windows Help =|=] x|
N B8 &8 |0 e X EEEEEEIE
- [= o i M
Design = | Scheduling ||Z
12 Vocogerspee.g b
vr Lcoders D3P | Hw | Jt<_mode
.) il
&~ Dynamic Scheduling ena
'Nmi:ﬁe peech_samples
Maotarala_DSPS6E0D b cirl
b+ B pre_process =
m- B coder_12kZ r_cc__T0__D3P_
L seq “~ None r_cc__ch_ana_ [
- & lp_analysis r_cc__ch_ana__H
. r_cc__code_ D3l
~ Round-rohin r_co__code_ HW
r_co__exc_i_ DS
- & ind sarialize Tree - r_cc__gain_code
& az_lsp ————— ~ Priority based —Cc__gain_code.
'az_lsp_ Elatten r_co__gain_pit__[
A copyl Flatten Tree r_cc_h‘ITDiF;_r
@wad_lp— | e
> Bestore L
Models | Imports Mseqz =
B M i _sne Restore Tree 4 DSE_|_Hw
] e p— =) =
_ﬂ Compile | Simu
Help | Ok | Cancel |
2|
[Ready A

Behavior scheduling is done by converting all concurrent SpecC "par" or "pipe" state-
ments into sequential statements. This conversion is achieved by performing the "seri-
alize" operations on the intended behaviors. For example, assume that behavior "A" is a
"par" composition of behavior "B" and "C". With a "serialize" operation, behavior "A"
will be changed to a sequential execution of "B" and "C" by default. Another kind of
operations, "flatten" are often performed during behavior scheduling to change the be-
havior hierarchy. Continuing with our example, if behavior "B" itself is composed of "D"
and "E" in parallel, a "flatten" operation on "B" removes "B" from "A" while promoting
its sub-behaviors, "D" and "E" one level up. As the result, behavior "A" becomes a "par"
composition of "D", "E" and "C". Note that the hierarchy relation among behaviors is
most conveniently represented as a tree, operations "serialize tree" and "flatten tree" are
also provided by SCE to serialize or flatten behaviors of a subtree recursively.

In our design, for example, to serialize the sub-behaviors of behavior "seql", in the
design hierarchy tree, select behavior "seql". Right click to bring up a menu window
and select Serialize Tree from the menu.

98

Chapter 3. System Level Design

3.3.1.3. Schedule software (cont’d)

| wocodersce - S0C Environment - [Coder - Vocoderarch - Yocodersrch sir]

EEx

g8 Eile Edit

View Project

Synthesis

Yalidation Windows

Help x|~| %]

Dz i@ &

Design

Models | Impors

uling

DSP | Hw

EXSIES BSEEE
] IFw

SIEEIC]

Mame

=

FF % Motorola_DSPS6600
b+ B pre_process

- B coder_12kz
|4 seqi

B+ B Ip_analysis

A init
- Fiseql
B find_az_1

A az_lsp_1
W az_lsp_2
Fcopy
B vad_lp
I seqz
Mo sneech und

Mone

~ Round-rohin

~ Priotity based

—Dynamic Scheduling

_ﬂ Compile | Simu

Help |

Cancel |

2

Bt
Jt=_made
erial
peech_samples
dix_cirl
r_cc_ TO_ DSP_
rcc_ ch_ana_ [
r_cc__ch_ana_ F
r_cc__code_ D3l
r_cc_ code_ HW
r_cec__exc_i_ DS
t_co__gain_code)
t_ce__gain_pit__[
rcc__hl__ DSP_

(PO S oY >

=)

DEP | HW

[Ready

|

Now that the two parallel child behaviors of behavior "seql": behavior "find_az_1" and
behavior "find_az_2" are converted into two sequential behaviors. We can see that be-
havior "find_az_1" is executed before behavior "find_az_2". This execution order is cre-
ated by the tool. The designer can modify the execution order.

99

Chapter 3. System Level Design

3.3.1.4. Schedule software (cont’d)

= vocoder.sce - S0C Enviranment - [Cader - Vacoderarch - VocoderArch sif ||Q|E|Z
B8 Eile Edit Miew Project Synthesis Yalidation Windows Help =|=| x|
- o XEBE X EEE]S | 0
Desigh cheduling
12 Vocogerspee.g b
Ax DaF I A I Jt<_made
)) ial
&~ Dynamic Scheduling ena
Hlaime peech_samples
5% Motarola_DSPREE00 i cin
b+ B pre_process -
m- 8 coder_12k2 rcc_T0__DSP_
L seq “~ None r_cc__ch_ana_ [
- & lp_analysis r_cc__ch_ana__H
A init : r_cec__code_ DS
M- Eiseql ~ Round-robin ¥ cc__code_ HW
B B find_az_1 r_cc_ex_c_l_ljs
Faz_lsp_1 + Priority based f_EC__galn_code,
¥) az_lsp_z r_cc__gain_pit__[
Foopyl r_cc__h1__DSP_
@ vad_lp — "“'"/"
todels | Imparts 1 seqz
B M nin_sneech und £ DiER | [t
] T I EE—
_ﬂ Compile | Simu
: Help | Ok | Cancel |
)
[Ready A

Select behavior "find_az_2". Left click and move behavior "find_az_2" before behav-
ior "find_az_1". Now behavior "find_az_2" is executed before "find_az_1". In general,
the designer can specify any "par" or "pipe" statements to be scheduled and manually
specify the execution order of any parallel behaviors in the same level. The remaining
parallel behaviors can either be dynamically scheduled by the RTOS model or statically
serialized by the tool.

Since we want the tool to schedule all the behaviors automatically, we restore the execu-
tion order created by the tool. Select behavior "find_az_1". Left click and move behavior
"find_az_1" before behavior "find_az_2".

100

3.3.1.5. Schedule software (cont’d)

Chapter 3. System Level Design

B coder_12k2
B post_process

Serialize Tree
Elatten
Flatten Tree

Restora

Restore Tree

Models | Impors

= | vocoder.sce - 50C Environment - [Coder - VocoderArch - VocoderArch i [EEIE
B8 Eile Edit Miew Project Synthesis Yalidation Windows Help =|=| x|
N B8 &8 |0 e X EEEEEEIE
: A £ e o L]
Design | Scheduling ||Z
by
Jt<_made
—Dynamic Scheduling erial
RENIE peech_samples
Serialize alt_ctrl
r_cc_ TO_ DSP_

“~ None r_cc__ch_ana_ [
r_cc__ch_ana_ F
r_cc__code_ D3l
r_cc_ code_ HW
r_cec__exc_i_ DS
t_co__gain_code)
t_ce__gain_pit__[
rcc__hl__ DSP_

o
=)

HY

~ Round-rohin

~ Priotity based

R

DsP

_ﬂ Compile | Simu

Help |

Cancel |

2

[Ready

|

For our example, since there are not many parallel behaviors in DSP, we statically sched-
ule the behaviors in DSP. In the dynamic scheduling box, click and select None.

Also, we will leave the decision of behavior execution order to be made automatically
by the tool. In the design hierarchy tree, select behavior "Motorola_DSP56600". Right

click and select Serialize Tree.

101

Chapter 3. System Level Design

3.3.1.6. Schedule software (cont’d)

= |vocoder.sce - S0C Enviranment - [Coder - YocoderArch - Yocoderdrch si [EEIE
B8 Eile Edit Miew Project Synthesis Yalidation Windows Help =|=| x|
N B8 &8 |0 e X EEEEEEIE
= X
Design uling
br
Jt<_made
— Dynamic Scheduling erial
Name] peech_samples
dt«_cirl
pre_process r cc_ TO__DSP
- B coder 12k2 _cc__TO__DaR_
L st “~ None r_cc__ch_ana_ [
r- & Ip_analysis r_cc__ch_ana__k
|4 init _ r_cc__code_ DSl
B Fiseql < RNl r_cc__code_ HW
4 az_lsp_1 r oo esc_i DS
::§E_|S$_2 ~ Priotity based f_cc__gain_code,
e uaEylp r_cc_gain_pit_I
- Fiseqz oe— Do
&Fint_lpcz T
Madels [Imports = @ g_plst_and_intlpc ; DSP_| Hw
L nn cnoorh e
] =) —
__ﬂ Compile | Simu
. Help | OK. | Cancel |
)
[Ready A

As shown in the figure, all the child behaviors of behavior "Motorola_DSP56600" are
serialized. Behaviors that are modified as a result of serialization are marked with a "*"
symbol next to them.

102

Chapter 3. System Level Design

3.3.1.7. Serialize behaviors in HW

= |vocoder.sce - S0C Enviranment - [Coder - YocoderArch - Yocoderdrch si [EEIE
B8 Eile Edit Miew Project Synthesis Yalidation Windows Help =|=| x|
N B8 &8 |0 e X EEEEEEIE
| [[E v]
Design = | scheduling =
12 Vocogerspee.g b
- Ar: DR I Hi | Jt<_maode
— Dynamic Scheduling erial
Naime ; T3 peech_samples
: ard
iy dt=_ctrl
Serialize =
ar_wr_codehook — r co. TO. DSP.
Serialize Tree A MNone ' oo choana [
FElatten r_cc__ch_ana_ F
Flatten Tree R gy r_cc__code_ D3l
& R r_ce__code_ HW
Restore -
r_ce__exc_i_ DS
Restare Tree i
= ~ Printity based f_cc__gain_code,
t_ce__gain_pit__[
rcc__hl__ DSP_
>
hodels | Imports DSP | HW
] T P —/

_ﬂ Compile | Simu

ﬂl OK. | Cancel |

[Ready 4

The next step is to serialize behaviors in HW. Since custom hardware can only be stati-
cally scheduled, the dynamic scheduling box is disabled for HW. Click and select HW in
the Scheduling window. In the design hierarchy tree, select behavior "HW_Standard".
Right click and select Serialize Tree.

103

Chapter 3. System Level Design

3.3.1.8. Serialize behaviors in HW (cont’d)

|vocodersce - SoC Environment - [Coder - YocoderArch - VocoderArch sit] [EEIE
B8 Eile Edit Miew Project Synthesis Yalidation Windows Help =|=| x|

N B8 &8 |0 e X EEEEEEIE
:] IFw —

Design

Bt

Jt=_made

erial

peech_samples
dix_cirl

r_cc_ TO_ DSP_

4 Mone r_cc__ch_ana_ [

r_cc__ch_ana_ F

r_cc__code_ D3l

r_cc_ code_ HW

r_cec__exc_i_ DS

=

—Dynamic Scheduling

B Féar_init_codebook

| 4Far ch_ TO__DSP__Hw

- ar_ch__ch_ana_ DSF__HwW
M ar_ch__code_ DSP_ HW
M ar_ch__esc_i_ DSP_ Hw
—AF ar_ch__gain_pit_ DSP__HW
i ar_ch__h1__ DSP__HwW

~ Round-robin

o e e T i

—AFar_ch_res2_ DSP__HW + Priority based r_cc__gain_code,
A ar_ch__»n_ DSP__HW t_cc__gain_pit__[
- ar_ch_y1_ DSP__Hw r_cc__h1__D3P_
L ar_ch__yZ_ DSF__Hw o emen no/r
| o+ B codebook
hodel
e T F Fésenl / D3P | HW
] T _
_ﬂ Compile | Simu
:: ﬂl oK | Cancel |
)
[Ready p

As shown in the figure, all the child behaviors of behavior "HW_Standard" are serialized.
Click OK button to confirm the scheduling decision.

104

Chapter 3. System Level Design

3.3.2. Generate serialized model

= |vocoder.sce - S0C Enviranment - [Coder - YocoderArch - Yocoderarch sic] [EEIE
B8 File Edit “iew Project §ynthesis| Yalidation Windows Help =|=] x|
Dz Bd| 3| [0 AlocatePEs. Be|0
- G} Show Yariables I
! § |Type IPE | i MName
Desigh IDes Architecture Plugins -
- 2] Viocoaerspes. sir 88 Architecture Refinement... 7 & Coder
- Schedule behayi Motorsia DEFSEEGT D5F - dt<_mode
chedule hehaviors... MW Stz P |6 sorial
Scheduling Plugins ~ | Manitar o speech_samples
=@ Scheduling Refinement... Stimulus Lo tdte_ctr
&llocate Busses... —@rar_cc__T0__DSP_
—imar_ cc_ ch_ana_ [
5 Show Channels | par cc ch ana b
Communication Flugins - —iamar_cc__code__ DSl
22 Communication Refinement... —@rar_cc__code_ HW
- @par_cc_exc_i_ DS
RIL Preprocessing... | oar_ce_gain_code
Allocate RTL Units.. i ar_ce_gain_pit__I
Schedule & Bind RTL... —amrar_cc__hl_ DSP_
RTL Plugins = = P
Models | Imports | Sources [ERE ETL Refinement... Bnnels | Raw | DSP | HW
; B5 C Code Generation... —
__ﬂ Compile | Simulate | Ana el |
i Import Decisions...
@ Stop
Scheduling Refinement A

Once the scheduling decisions have been made, we can refine the architecture model to
reflect the changes. A software scheduling and RTOS model insertion tool is integrated
in SCE. The tool will generate the model to reflect the scheduling algorithm we selected.
In case of dynamic scheduling, a RTOS model is inserted into the design and behaviors
are converted into tasks with assigned priorities. To invoke the tool, go to Synthesis
menu and select Scheduling Refinement.

105

Chapter 3. System Level Design

3.3.2.1. Refine after serialization

= | vocoder.sce - 50C Environment - [Coder - VocoderArch - VocoderArch i [EEIE

B8 File Edit ¥iew Project Synthesis Validation Windows Help =|=] x|
N B8 &8 |0 e X EEEEEEIE

o T

Mame |Type IPE | =
; | Mame
Desigh |Desc||- & Main
m-13) VscoserSpec.siv : & Coder
. Motoroia DSPSE600 5P e dt<_mode
-8 AW HW Stardard W - serial

Manitar - speech_samples

eduling Refinment Pt _ctr

—amar_cc_ TO_ DSP_

Top level: | Coder _lI —imar_ cc_ ch_ana_ [
—@mar_cc__ch_ana__k

Tasks —@mar_cc__code_ D3l
© Static scheduling @har_cc_ code_ HW
I RTOS refinement —frar_ce__exc_i_ DS
I ar_co__gain_code,

I ar_coc__gain_pit__[
—amrar_cc__hl_ DSP_

Start Cancel P |
I _ Cancel |

= =

Models | Imports I Sources Hierarctr——oemermos = = Raw | DSP | HW

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

Freparing refinement... A

A dialog box pops up for selecting specific refinement tasks. By default, all tasks will be
performed in one go. Press the Start button to start the refinement.

It must be noted that the user has an option to do the refinement tasks one step at a time.
For instance, a designer may select only static scheduling if he or she is not concerned
about observing the dynamic scheduling behavior on the component.

106

Chapter 3. System Level Design

3.3.2.2. Refine after serialization (cont’d)

(I3l
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
Nz HE 8 oo XbE| I EFE]B 2|0
X !
- [T | Mame
Design 1
1) Vocogerspec.sir Coger & Main
d AF monitor Manitar @local_dt
20y coderdrch.sche AF stimulus Stimulus T dbs_mod
seral_hi
Ihspeech_
v Edt=_ctr
& coder
& monitor
& stimulus
F | == | =1 Nl =]
hodels | Imparts | Sources Hierarchy | Behaviors | Channels | Frany I IZ: |]
__ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |
2 il
w% End of RTOS Refinement %
Writing output SIR file "/home/specc/demo/NVocoderfrch,sched,sir", ., done.
RTOS refinement successfully completed, 7"
[Ready A

The logging window shows the refinement process. After the refinement, the newly gen-
erated serialized model "VocoderArch.sched.sir" is displayed to the design window. It
is also added to the current project window, under the architecture model "Vocoder-
Arch.sir" to indicate that it was derived from "VocoderArch.sir".

107

Chapter 3. System Level Design

3.3.2.3. Refine after serialization (cont’d)

[] File Edit View Project Synthesis ‘Validation Windows

[=I[Bi[x]

Help x|~| %]

SIEEIC]

i

2| Vocodersper.si
33 ocoderarch sir
 [vocoderarce

|

Codar
hdonitor
Stimulus

Mame

&tain
@ local_dt
I di<_mod
seral_hi
Ihspeech_
v Edt=_ctr

& coder
& monitor
& stimulus

S =

Models | Imports | Sources

Hierarchy | Behaviors | Channels |

Tow [

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

£

End of RTOS Refinement %

Writing output SIR file "/home/specc/demo/NVocoderfrch,sched,sir", ., done.
RTOS refinement successfully completed,

3

7|

[Ready

4

As we did for previous models, we change the name of the serialized architecture model
to "VocoderSched.sir" in the project window.

108

Chapter 3. System Level Design

3.3.3. Simulate serialized model (optional)

= | vocoder.sce - 50C Environment - [Main - VocoderSched - Yocodersched sir] [EEIE
[File Edit View Project Synthesis Validation | Windows Help =|=| x|

| D @[=] ﬁ [é“l) G I 3¢ [t = Enabhle Instrumentation o I .l

Compile = [J
=] .
simuiae ——— |

Design
- 2 Viocoaerspes. sir Open Terminal - Codar &tain
w88 Vocoderamh siv il simulation I Monitar o local_dt
T Ty =—— Stimulus Tt mod
Yiews Log.. I
seral_hi
(2l Ihspeech_
Analyze v Edt=_ctr
Evaluate & coder
Metrics.. & monitor
— & stimulus
Show Estimates
Estimate
Snalyze RTL
@ Stop
T -] I =10 -

Models | Imports | Sources Hierarchy | Behaviars | Channels | (R Etblg’

—

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

¥ =ir_rename -i Jhome/sspecc/demno f‘.l'oc!c;lerﬂrch Leched.zir -o shomedspecc/demnoAocoderSched . sir VocoderArch Yoo
oderSched

Compile

|

This section shows the simulation of the generated model. If the reader
is not interested, she or he can skip this section and go directly to
Section 3.4 Communication Synthesis (page 112).

Serialization refinement is now complete with the generation of a new model. However,
we also need to confirm that the model has not lost any of its functionality in the re-
finement process. In other words the new model must be functionally equivalent to the
architecture model.

We will validate the serialized architecture model through simulation. But first we need
to compile the model into an executable. To compile the serialized architecture model to
executable, go to Validation menu and select Compile.

109

Chapter 3. System Level Design

3.3.3.1. Simulate serialized model (optional) (cont’d)

= | vocoder sce - S0C Environment - [Main - YocoderSched - YocoderSched sif] [EEIE
2% File Edit View Project Synthesis Vglidationlﬂindows Help =|=] x|
| D @[=] ﬁ [=) |‘) G I 3¢ [t = Enabhle Instrumentation o I .l
. x Compile i
Mame Type FE =)
Design I | Simulate —] | Mame
Q L-’gcaa’er@gec_sﬁr Open Terminal - Caer & hain
w88 Vocoderamh siv Kill simulation I Monitar o local_dt
. - Stimulus bt mod
Yiews Log.. - 1
seral_hi
Brafile Tvspeech_
Analyze v Edt=_ctr
Evaluate Bscoder
Metrice... &mpmtor
& stimulus
Show Estimates
Estimate
Snalyze RTL
@ stop
- | = ‘-IJ el
Models [“imports | Sources | || Hierarchy [Behaviors | Channels | (R Etbld
__ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |
: Input: “VocoderSched,cc" Al
Output: "VocoderSched.,.o"
Linking, ..
Input: “"VocoderSched.o"
Output : "VocoderSched"
Done ., JI
Simulate A

The messages in the logging window shows that the refined model is compiled success-
fully without any errors. Now in order to verify that it is functionally equivalent to the
architecture model, we will simulate the compiled model on the same set of speech data
used in the specification validation. Go to Validation menu and select Simulate.

110

Chapter 3. System Level Design

3.3.3.2. Simulate serialized model (optional) (cont’d)

= | vocoder.sce - 50C Environment - [Main - VocoderSched - Yocodersched i [EEIE
) .))) . Help w|w %]
frame=147 encoding delay = 19,77 ms

| [frame=148 encoding delay = 19,77 ms I

—| [frame=143 encoding delay = 19.77 ms Tupe ! Mame

D frame=150 encoding delay = 19,77 ms
frame=151 encoding delay = 19,77 ms ;

E frame=152 encoding delay = 19,77 ms Coa’gr 8;Mam
frame=153 encoding delay = 19,77 ms Manitar @ local_dt
frame=154 encoding delay = 19,77 ms Stimulug O dt<_mad
frame=155 encoding delay = 19,77 ms I
frame=156 encoding delay = 19,77 ms Thserial_b
frame=157 encoding delay = 19,77 ms Ihspeech_
frame=1h3 encoding delay = 19,77 me Cotedte o
frame=159 encoding delay = 19,77 ms -
frame=160 encoding delay = 19,77 ms &Cnder
frame=161 encoding delay = 19,77 ms &munitor
frame=162 encoding delay = 19,77 ms &stimulus
frame=163 encoding delay = 19,77 ms
done, 163 frames encoded
Files srcszpeschfilesdnodty_good,bit and nodtx,bit are identical

imulation exited with status 0
rezz return to continue ...

i ————— =T I =|| =0 =

Models | Imports | Sources | Hierarchy | Behaviars | Channels | (R Etblg’

__ﬂ Caompile | Simulate | Analyze | Refine | Synthesize | Shell |

: % xterm -title VocoderSched -2 Abindsh -c | AocoderSched src/speechfiles/spoch_unx, inp nodibx.bit nodtx zs d

iff -z sroc/speechfiles/nodtx_good,bit nodbx,bit: echo "Simulation exited with status $#7" :echo "Press retur
n to continue L.,." fread confirm
[Ready A

The simulation run is displayed in a new terminal window. As we can see, the serialized
architecture model was simulated successfully for all 163 frames of speech data. The
result bit file is also compared with the expected golden output given with the Vocoder
standard. We have thus verified that the generated refined model is functionally correct.
Note that the execution time for each frame now becomes 19.77 ms. Recall that the ex-
ecution time was 16.35 ms for each frame before the software scheduling is performed.
The increase of execution time is reasonable since the concurrency in the previous model
is removed by the software scheduling.

111

Chapter 3. System Level Design

3.4. Communication Synthesis

Communication synthesis is the second part of the system level synthesis process. It re-
fines the abstract communication between components in the architecture model. Specif-
ically, the communication with variable channels is refined into an actual implementa-
tion over wires of the system bus. The steps involved in this process are as follows.

We begin with allocation of system buses and selection of bus protocols. A set of system
buses is selected out of the bus library and the connectivity of the components with
system buses is defined. In other words, we determine a bus architecture for our design.

This is followed by grouping of abstract variable channels. The communication between
system components has to be implemented with busses instead of variable channels.
Thus these channels are grouped and assigned to the chosen system busses. Once this
is done, the automatic refinement tool produces the required bus drivers for each com-
ponent. It also divides variables into slices whose size is the same as width of the data
bus. Therefore that each slice can be sent or received using the bus protocol. The entire
variable is sent or received using multiple transfers of these slices.

112

3.4.1. Select bus protocols

Chapter 3. System Level Design

= | vocoder.sce - 50C Environment - [Coder - VocoderSched - YocoderSched sir] [EEIE
[] File Edit ¥iew Project §ynthesis| Walidation Windows Help =|=] x|
Nz - &llocate PEs... = .|
Show Yariables [
© | Type [Fe [Bus | |],,
Desigh Architecture Pluging - ame
- 2 Viocoaerspes. sir B8 Architecture Refinement... 2 & Coder
®-33 vocoderarch sir " Motorpls DEPSEE00 D5F - aite_rm
- Schedule behaviors... y -
vocod - : HW_Standa HIW |- serial
Scheduling Plugins - Mpnitnr o speec
=@ Scheduling Refinement... stimulus L e bt
&llocate Busses... par_co
mar_cc
5 Show Channels | opar oo
Communication Plugins - —{mar_cc
3|g Communication Refinement... - Crar_ce
- —amar_cc
RIL Preprocessing... | oar co
Allocate RTL Units... | ovar oo
Schedule & Bind RTL... —d{ar_cc /
] | T RTL Plugins = S
hodels | Imports | Sources [RTL Refinement... annels | Raw I:E5|¢’
C Code Generation...]
X | compile | Simulate | Ana% = el |
Y Impart Decisions...
¥ xterm -title Vocodert e Sched src/speechf iles/spch_unx, inp nodbx . bit nodtx 28 d
iff -z src/speechfiles. . Stap ho "Simulation exited with status $7?" :echo "Press retur
n to continue L ,.," FredoCoOreIrm
Simulation exited, exit status: O
Eus allocation A

As explained earlier, we begin by selecting a suitable bus for our system. Note that in

the presence of only two components, one bus would suffice. However, in general the
user may select multiple buses if the need arises. Bus allocation is done by selecting
Synthesis— Allocate Busses from the menu bar.

113

Chapter 3. System Level Design

3.4.1.1. Select bus protocols (cont’d)

| PEBaeRse = soC ERvRonment= [Behevior Dsp - vocoserarch - vocoderarensi] [/oIx]
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
I IEEYES EaEEEEIE

Eus Allocation

Mame |Type |Masters | Cost | Description
[

Remave

Tahles...

Iode

x

End: Profiling and retargetable profiling

|I;:eady A

A Bus Allocation window pops up showing the bus allocation table. Since there are no
busses selected at the time, this table is empty. We now click on Add to add bus(es) from
the protocol database.

114

Chapter 3. System Level Design

3.4.1.2. Select bus protocols (cont’d)

[=I[Bi[]

Speed [Mbit's] | Address [hits] | Data [bits] | Cost | Description

SFandard . IBM PowerPC
Simple 5 24 0 Motarala DSP

Motorola FowerPC
MIFS interface

[Ready 7

A Bus Selection window pops up showing the contents of the protocol database. The
column on the left shows the three categories of protocols. During component selection
for architecture exploration, we had a classification of components. Likewise, the clas-
sification here shows us the available types of busses. On selecting a particular category
with left click, the busses under that category are displayed. For our demo purposes, we
select the Processor bus "Motorola_ DSP56600_PortA" and click OK.

Note that the architecture chosen for the design has an impact on the selection of busses.
More often that not, the primary component in the design dictates the bus selection
process. In this case, we have a DSP with an associated bus. It makes sense for the
designer to select that bus to avoid going through the overhead of generating a custom
bus adapter.

115

Chapter 3. System Level Design

3.4.1.3. Select bus protocols (cont’d)

= e
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
N B8 &8 |0 e X B EEEEEIE
Desig T
MName | Type Caost | Description

Ul |BusD Motorola_DSPS6E00_Porta 1.0 totorola DEPSEEOD external memory interfac
Remave
Tahles...
Iode
e
End: Profiling and retargetable profiling
[Ready A

The selection is now displayed in the bus allocation table as shown in the screen shot.
A default name of "BusQ" is given to identify this system bus. In order to include this
bus in the design, we need to specify which component is going to be the master on
the bus. This is done by Left click under Masters column. Since this bus is for the
Motorola 56600 processor that we have chosen, the master is the processor. Recall that
the name given to the processor component was "DSP." We thus enter the name "DSP"
under Masters column and press RETURN.

116

Chapter 3. System Level Design

3.4.1.4. Select bus protocols (cont’d)

[=I[Bi[x]

[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|

IR IEIEYES EaEEEEIE

Eus Allocation

Desig
Descriptian
BN s Motarola_DSPAEGE00_FPorts DSP 1.0 hotorala DEPAEE0D external memary interfac

Help

Add...

Remave

Tahles...

Iode

End: Profiling and retargetable profiling

|I;:eady A

The bus selection is now complete and we can finish off with the allocation phase by left
clicking on OK.

117

Chapter 3. System Level Design

3.4.2. Map channels to buses

5 [=I[Bl[]
[] Eile Edit Wiew Project Synthesis Validation Windows Help =|=| x|
NI IEIEEES EiaEEEEE
x| I
. i Mame |Type |PE IElus | & Eme Type
Design 1
B 2] ViocoserSpec. sit Codar & Coder
#-22vocoderars Molorzia DSPSEGEE DSFP - dtx_mode i_receivel
@ f_"'W HW__&‘&W}’&W Hil - serial i_sender
AF monitor - Maonitar - speech_samples i_receivel
AF stimulus Stimulus Lo tuctte_ctr i_sender
HIpar_cc_ TO__DSP__HW _CH_shaoi
HIpar_cc__ch_ana_ DSP__HW _CH_shal
—Irar_cc_ ch_ana_ HW_ DSP _CH_sho
—Irar_cc_ code_ DSP_ HW _CH_shoi
—@mar_cc_ code_ HW_ D3P _CH_shoi
—Imar cc_ exc_i_ DSP__HW _CH_shoi
rar_cc__gain_code_ HW__ D3P _CH_shol
FIpar_cc__gain_pit__DSF__HW _CH_shal
FIvar_cc__hl__DSP__HW _CH_shoi /
= T = S — b
Maodels Impnr:l 1 Hierarchy | Behaviars | Channels | Raw | D3P | HW
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: # xterm -title NocoderSched -e Ahindsh -c |, AocoderSched src/speechfiles/spch_unx, inp nodbx.bit nodbx 22 d
iff -= srocdspeechfiles/hodtx_good.bit nodbx,bit: echo "Simulation exited with status $7" fecho "Press retur
n to continue ..." :read confirm
Simulation exited. exit status: O
[Ready A

Once the bus allocation has been done, we need to group the channels of the architecture
model and assign them to the system buses. Recall that in the architecture model, we had
communication between components with abstract variable channels. We now have to

assign those variable channels to the system bus.

Expand the design hierarchy window and scroll to the right to find a new column entry

Bus.

118

3.4.2.1. Map channels to buses (cont’d)

Chapter 3. System Level Design

= | vocoder.sce - 50C Environment - [Coder - VocoderSched - YocoderSched sir] [EEIE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
;@|D@[nﬁ[@||oo[§<\[%lﬂ SR
b [
Mame Type FE |Bus |
Design Main | = | I | hlaime e
) Vocoderspec.si g Coder = || |8 coder
EEVDCDdErPJC Moforsia DEPSEEGRT D5F - dt<_mode i_tecaivel
W B & AU HW Standarnd AW/ w - serial i_sender
'mpnitor Mpnitor ¢ speech_samples i_receivel
A stimulus Stimulus Lo beele_ctr i_sender
—Imar_cc_ TO_ DSP_ HW _CH_shoi
—iar cc_ ch_ana_ DSP__HW _CH_shai
—@mar_cc__ch_ana_ HW_ D3P _CH_shol
—Imar_cc__code_ DSP__ HW _CH_shoi
—Imar cc_ code_ HW_ DSP _CH_shaoi
Ipar_cc_ exc_i_ DIP_ HW _ZH_shal
—@ar_cc__gain_code_ HW__DSP _CH_shal
—Tar_cc__gain_pit_ DSP__HW _CH_shol
—Irar_cc_ hl_ DSP_ HW _CH_shoi /
SO— S — P
Models | |mp0r;|d Hierarchy | Behaviors | Channals | Raw | DSP | HW

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

rread confirm

% xterm -title VocoderSched -2 Abindsh -c | AocoderSched src/speechfiles/spoch_unx, inp nodibx.bit nodtx zs d
iff -z src/speschfiles/nodtx_good,bit nodbx,bit: echo "Simulation exited with status $7?"
n to continue L, .,"
Simulation exited, exit status: 0

recho

"Press retur

[Ready

|

Like component mapping, bus mapping may be done by assigning variable channels to
buses. However, to speed things, we may assign the top level component to our system
bus. Since we have only one system bus, all the channels will be mapped to it. This is
done by left clicking in the row for the "Coder" behavior under the bus column. Select
the default "Bus0" and press RETURN.

119

Chapter 3. System Level Design

3.4.3. Generate communication model

= | vocoder.sce - 50C Environment - [Coder - YocoderSched - YocoderSched sit] [EEIE
[] File Edit ¥iew Project §ynthesis| Walidation Windows Help =|=] x|
10 D«[== [@|s|.¢) &llocate PEs... =X I .|
& Show Yariahles 3 I
. . wpe IPE |Elus I - hame
Desigh Architecture Pluging -
- 2 Viocoaerspes. sir 99 Architecture Refinement... & Coder
8-93 ocoderarchsit ; iodoroin_OSPSE600 DSP -8 etx_madle
: Schedule behaviors... g —
;I VocoderSched sit - : W Standan AW ¢ serial
Scheduling Plugins - pnltnr L7 speech_samples
=% Scheduling Refinement., [1Mul4s Lo pete_ctr

Allocate Busses...
5 Show Channels
Communication Plugins -

|8 Communication Refinement...

RIL Preprocessing...
Allocate RTL Units...
Schedule & Bind RTL...

= RTL Plugins 73

iar_cc_ TO_ _DSP_ HW
imar_cc_ ch_ana_ DSP_
iar_cc__ch_ana_ HW__
-iar_cc__code_ DSP__H
-irar_cc_ code_ HW_ D
Fpar_cc__exc_i_ DEP__F
Fpar_cc__gain_code_ HY
Fpar_cc__gain_pit_ DSP_
Fdar_cc_ h1_ DSP_ HW

e e wnen ;em
=

Models | Imparts I Sources @ RTL Refinement...

I Channels I

Raw | DSP | HW

B5 C Code Generation...

__ﬂ Compile | Simulate | &na

el |

Import Decisions...

Cleaning wp wariable ch
@ stop

Writing SIR file " honerSpeccroemo, vorone T oohed, oot

Communication refinement successfully performed.

mesir" ...

|

Communication refinement

4

Now that we have completed bus allocation and mapping, we may proceed with commu-

nication refinement. Like architecture refinement, this process automatically generates

a new model that reflects our desired bus architecture. To invoke the communication
refinement tool, select Synthesis— Communication Refinement from the menu bar.

120

Chapter 3. System Level Design

3.4.3.1. Generate communication model (cont’d)

% >Oder.sc b QIEIZ
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
IES EEEEEEIE
[
X Mame |Type IF'E |Elus I B
- [Marme
Design N Main
) Vocogerspec.sir € & Coder
-8 vacoderArch.sir Motorois_DSPSEE00 DSP e dits_made
TRy HW Stardant HW L serial
'mpnitor Mpnitor e speech_samples
'stﬂulus Stimulus L beet_ctr
%“ ommunication Refinement ||Z l-cvar_cc TO DSP__HW

—imar_cc_ ch_ana_ DSP_
—@mar_cc__ch_ana_ HW__
—amar_cc__code_ DSP__H
= Protocol insertion @mar cc_ code_ HW_ DS
—Ipar_cc__exc_i_ DSP__F
I ar_co__gain_code_ HW
I ar_cc__gain_pit_ DSP_
I stat | cancel —Crar_co__h1__DSP__HW

P e
F = 2] =
[Models] | imports | Sources Hierarchy | Behaviors | Channels | Raw | DSP | Hw

|

Tasks

= Channel refinement

= Inlining

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

Freparing refinement... A

A new window pops up giving the user the option to perform various stages of the
refinement. The user may choose to partially refine the model without actually inserting
the bus, and only selecting the channel refinement phase. This way, he can play around
with different channel partitions. Likewise, the user might want to play around with
different bus protocols while avoiding "Inlining" them into components. This way he
can plug and play with different protocols before generating the final inlined model.
By default all the stages are performed to produce the final communication refinement.
Since we have only one bus, and hence a default mapping, we opt for all three stages
and left click on Start to proceed.

121

Chapter 3. System Level Design

3.4.3.2. Generate communication model (cont’d)

e S=1ES
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
N @ & vae [XbB K EEE| 3| 0
e X i
. I Mame |Type IPE |Bus B Marme
Design ¥ tain
13 VscoserSpes.sir 1 coder Coder Bush || |8 Main
AF manitar Monitar @ local_dt
AF stimulus Stimulus Thdbs_mod
Il totorola_DSPSEE00_BF hserial_hi
Ihspeech_
v Edt=_ctr
& coder
& monitor
& stimulus
~l I - 1] -
todels | Imports | Sources | Hierarchy | Behaviors | Channels | Raw I E~ | 5
__ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |
: Cleaning wp wariable channels from the design .. Al
Writing SIR file "/honedspecc/denoVocoderSched,.comm,2ir". ., .
Communication refinement successfully performed.

|
7,

[Ready

During communication refinement, note the various tasks being performed by the tool
in the logging window. The tool reads in channel partitions, groups them together, im-
ports selected busses and their protocols, implements variable channel communication
on busses and finally inlines the bus drivers into respective components. Once communi-
cation refinement has finished, a new model is added in the project manager window. It
is named "VocoderSched.comm.sir". Also note that we have a new design management
window on the right side in the GUIL.

122

Chapter 3. System Level Design

3.4.3.3. Generate communication model (cont’d)

= | vocoder.sce - 50C Environment - [Main - VocoderSched - YocoderSched.comm.sir [read-only]] [EEIE
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
N B8 &8 |0 e X EEEEEEIE
. - j
N
Design ame
) Vocogerspec.sir Codar & Main
#-33vacoderarch sir Manitor @local_dt
M2 ocoderSched.sir Stimulus O dits_mod
. P Il tMotorola_DSPSEEI0_EF Dhserial bi
QOpen @speech_
Delete Deal Chixdt_ctr
coder
Open lnput &
e Bt & monitor
EEEEEE & stimulus
Bename...
Change Description...
Siatistics...
~ | S| =
todels | Imparts | SouUrCces | Hierarchy | Behaviars | Channels | Raw I E: | "
__ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |
: Cleaning wp wariable channels from the design .. Al
Writing SIR file "/honedspecc/denoVocoderSched,.comm,2ir". ., .
Communication refinement successfully performed.
[Ready A

We now need to give our newly created communication model a reasonable name. To do
this, right click on "VocoderArch.comm.sir" in the project manager window and select
Rename from the pop-up menu. Now rename the model to "VocoderComm.sir".

123

Chapter 3. System Level Design

3.4.4. Browse communication model

= | vocoder.sce - 50C Environment - [Coder - VocoderSched - YocoderSched comm sir [read-only]] [EEIE
[] File Edit View | Project Synthesis ‘Validation Windows Help =|=] x|
|| Souce. ¥ EEEEEEIE
| Hierarchy.. I i
e _EE Name [Type [PE TBus |l iame
Design Connectivity... & hiain
- 3 Vocoger, Gtaphs = & Coder
m-33%oce Trace.. - Manitor e dte_mod
ey 5 . stimulus Stimulus - serial
COIWET DATERTIE. Il Motarola_DSPSEEO0_BF | speech.
E Show Testhench P teddte_ctr
te:= Show Children o Busi_A4
T curtmze | — @Bus0_D
ustomize... L o Buso_M
— ¢ Busl_nFk
= ¢ Busl_nt
@ Intr_Busz
—&0sP
L EaHw
~l | al | =
todels | Imports | Sources | Hierarchy | Behaviors | Channels | Raw I E~ | 5

—

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

Cleaning wp wariable channels from the design .. Al
Writing SIR file "/honedspecc/denoVocoderSched,.comm,2ir". ., .

Communication refinement successfully performed.

Yiew graphical hierarchy

|
7,

Like we did after architecture refinement, we browse through the communication model
generated by the refinement tool. We have to first check whether it is semantically and
structurally representing a model as described in our SoC methodology. To observe the
model transformations produced by communication refinement, we need a graphical
view of the model. This is done by left clicking to choose the "Coder" behavior in the
design hierarchy window and selecting View—Hierarchy from the menu bar.

124

Chapter 3. System Level Design

3.4.4.1. Browse communication model (cont’d)

ierd[=[] - - 2 FJ@_IIZ
Window Miewl ion Windows Help =[x %
[Caonnectivity & ||E|E t::|§§|ﬁ) I .l

T

Zaom In Clrles [Type [FE [Bus |,
Zoom out Crl+-

Mame

& Cader

Add level hr onitor o dts_mode
Remowve lewvel Cirl+R us Stimulus ¢ serial
| DSPSEE00_BF

P

¢ speech_sample:
7 tatte_ctrl

— @Busi_a

I ¢ Busi_D

= & Busl_MC3

- & BusO_nRD

= & Busl_n¥R

I @ Intr_BusO_Hw
—&Dsp

L& Hw

| = I e 1 |

X Cconpile | Sinulats | Analyze | Refine | Syntnesize | shel |

¥ =ir_rename -i Jhome/sspeccSdemosVocoderArch,comm,sir -0 shomesspecc/denoNocoderConn, sir VocoderArch Yocod
erComnn

[Ready A

A new window pops up showing the model with DSP and HW components. We have
to observe the bus controllers generated during refinement and the added details to the
model. Hence, we select View——Add level from the menu bar to view the model with
greater detail.

125

Chapter 3. System Level Design

3.4.4.2. Browse communication model (cont’d)

EI=ES
Help =|~| %]
—| Window iew | i
_D Connectivity T Mame Type
2 Zoom in | |G cover
Zoom out |- dtx_mode in boal
Add level Clrl+ - new_frame in event
R leval Cirl+R ¢ serial aut unsic
EEDE IS T o serialhits_ready out even
- speech_samples in hit[12:
—Oob-cdix_ctrl out unsic
- & Busi_A bit[15:0]
- & Busi_D bit[23:0]
- & Busl_MCE event
- @ Busi_nRD hool
- @ Busl_nWHR kool
I @lntr_Busl_HW event
—&osp Behaviol
- =N b
~ —]
b
Wring IR e 7home/sabdiidemoy 0Coderarch comm sir .. Done.
Cammunication refinement successfully perfarmed.
[Ready A

In the next level of detail, we can now see the interrupt handler "sO_HW_handler" be-
havior added in the master to serve interrupts from the HW slave. To view the actual
wire connections of the system bus, enlarge window and select View—:>Connectivity
from the menu bar.

126

Chapter 3. System Level Design

3.4.4.3. Browse communication model (cont’d)

[=I[Bi[x]

>3 x|
=S

Window View

mlol

]|

Writing SIR file "fhomessabdi/demosyocoderarch.comm.sir'.. Done.
Cammunication refinement successfully perfarmed.

|I;:eady A

The wire level detail of the connection between components can now be seen in the
window. Note that the system bus wires are distinguished by green boxes. Hence we see
that the bus is introduced in the design and the individual components are connected
with the bus instead of the abstract variable channels. On observing the hierarchical
view further, we can see the drivers in each components. These drivers take the original
variables and implement the high-level send/receive methods using the bus protocol.

We have thus seen that the structure of communication model follows the semantics of
the model explained in our methodology. We may complete the browsing session by
selecting Window—Close from the menu bar.

127

Chapter 3. System Level Design

3.4.5. Simulate communication model (optional)

§| vocodersce - S0C Environment - [Coder - YocoderComrm - VocoderCamm.sir'] ||Q|E|Z
[File Edit View Project Synthesis Validation | Windows Help =|=| x|
NeE [[y [@Hl‘) G I 3¢ B = Enable Instrumentation § ¢ I .l
- x] Compile T
Type FE |Bus | |
Design I Simulate | I | | Mame
- 2 Viocoaerspes. sir Open Terminal & Coder
#-33vacoderarch sir Kill simulation [;pnitlur _g dbe_tmod
: Imulus -+ serial
Wiew Log..
= BF |- speech_
(B 8 el _ctr
Analyze — g Bus0_a
Evaluate ~ @Bus0_D
Ietrics... - @Busi_M
. — @ Bus0_nk
Show Estimates | & BusO_n
Estimate - @Intr_Bus
Analyze RTL _87D5P
L &Hw
@ stop
~l I — | =
todels | Imports | Sources | Hierarchy | Behaviors | Channels | Raw I E~ | 5

—

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

¥ =ir_rename -i Jhome/sspeccSdemosVocoderSched ,comm,sir -o Ahomedspecc/denoNocoderConm, 2ir VocoderSched Voo
oderComnm

Compile

|

This section shows the simulation of the generated communication model. If
the reader is not interested, she or he can skip this section and go directly to
Section 3.5 Summary (page 131).

As a direct analogy to the validation of the architecture model, we have a step for val-
idating the communication model. The newly generated model has already been ver-
ified to adhere to our notion of a typical communication model. We must now verify
that the communication model generated after the refinement process is functionally
correct or not. Toward this end, the model is first compiled. This is done by selecting
Validation—Compile from the menu bar.

128

Chapter 3. System Level Design

3.4.5.1. Simulate communication model (optional) (cont’d)

= | vocoder.sce - 50C Environment - [Coder - VocoderComm - VocoderComm.sir [EEIE
[] File Edit View Project Synthesis Vglidationlﬂindows Help =|=| x|
NeE [[y [S| |5 a I 3¢ B » Enable Instrumentation § ¢ I .l
T : Compile T
o | Type [Fe [Bus | |],,
Design Simulate il
Q VocoderSpe siv Cpen Terminal &CDUEI’
o83 Vocoderarch.sir Kill simulation - Monitar 8 dte_rmod
FFESvocoderSched sir i L. L Stimulus - serial
. |- speech_
Prafile - bedt_ctr
Analyze — @Busl_a
Evaluate — @Busd_D
Metrics... @ Bus_M
— ¢ Busl_nFk
Show Estimates L & Bus_n
Estimate I @lIntr_Bus
Analyze BTL _87D8P
L EaHw
@ stop
=~ I - -1 -
Models | Imports | Sources | Hierarchy | Behaviors | Channels | Rawy I - |]
__ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |
: Input: “VocoderComm,cc" Al
Output: "VocoderComm,o"
Linking, ..
Input: “"VocoderComm,o"
Output i "VocoderComm"

Simulate

Done. JI
A

The model should compile without errors and this may be observed in the logging win-
dow. Once the model has successfully compiled, we must proceed to simulate it. This is
done by selecting Validation—;Simulate from the menu bar.

129

Chapter 3. System Level Design

3.4.5.2. Simulate communication model (optional) (cont’d)

=|vocoderComm ||Q|E|E |Q|E|Z
frame=147 encoding delay = 19,89 ms Help x| =] %]
frame=143 encoding delay = 19,89 ms
frame=149 encoding delay = 19,89 ns
frame=150 encoding delay = 19,89 ns i
frame=151 encoding delay = 19,83 ms PE |Bus ||
Frame=152 encoding delay = 19,89 ms hame
frame=153 encoding delay = 19,89 ns -
frame=154 encoding delay = 19,89 ns Biial? &Maln
frame=155 encoding delay = 13,83 ms GEG Wrgg DEF @ local_dts_mode
frame=156 encoding delay = 19,89 ms - o
frame=157 encoding delay = 19,89 ns = AW Thdt<_mode
frame=158 encoding delay = 19,89 ns T serial_hits
frame=153 encoding delay = 19,89 ms
frame=160 encoding delay = 19,89 ms ©speech_sample
frame=161 encoding delay = 19,89 ms Chixdtx_ctrl
frame=162 encoding delay = 19,89 ns &coder
frame=163 encoding delay = 19,89 ns Simonitor
dohe, 163 frames encoded Sistimulus
Files srcdspeechfiles/nodtx_good.bit and nodtx,bit are identical
Simulation exited with status O
Press returth to continue .,

F | = F|]

Models | Imparts I Sources Hierarchy | Behaviars | Channels | Raw | DSP | HW

ﬂ Caompile | Simulate | Analyze | Refine | Synthesize | Shell |

% xterm -title VocoderComm -e Jbindsh -c |, AVocoderComm src/speechfiles/spoh_unx, inp nodbx,bit nodbx ss dif
f -z sroispeechf iles/nodtx_good,hit nodtx,bit: echo "Simulation exited with status $7" :echo "Press return
to continue ,,." rread confirm

[Ready A

An xterm now pops up showing the simulation in progress. Note that simulation is con-
siderably slower for the communication model than for the architecture and communi-
cation model. This is because of the greater detail and structure added during the refine-
ment process. Also, it may be noted that the execution time for encoding each frame
goes up to 19.89 ms from 19.77 ms, which we had for the model before communication
synthesis. This is because communication synthesis replaced the abstract untimed trans-
actions with detailed, timed bus protocols, which introduces non-zero communication
delay. However, the execution time is still well within the 20 ms constraint for encoding
each frame.

With the completion of correct model simulation, we are done with the phase of com-
munication synthesis. Our new model now has two components connected by a system
bus. The model is now ready for implementation synthesis.

130

Chapter 3. System Level Design

3.5. Summary

In this chapter, we covered the system level design phase of our methodology. With the
rise in level of abstraction in system specification, it is no longer feasible to start designs
at cycle accurate level. Instead, the specification should be gradually refined to derive a
cycle accurate model. We saw three major steps in the system level design and synthesis
process.

Architecture refinement took in the system specification model as input. Based on the
profile of the specification, we chose the appropriate components to implement the de-
sired system. We also delved into design space exploration by seeking a purely software
solution. When the software solution turned out to be infeasible, we added a HW com-
ponent to meet the real-time constraint of the design. We also demonstrated the power of
automatic refinement to quickly come up with models and evaluate them, thereby greatly
enhancing design space exploration. In the future, we will look at how to automate the
decision making process, so that the tool can propose an optimal system architecture
based on system constraints and available components.

Architecture refinement was followed by software scheduling and the RTOS insertion
step. Although, for this demo, we did not need to insert any RTOS, it is a feature avail-
able in SCE. It allows for inclusion of useful task scheduling algorithms for dynamic
scheduling. We also provide for static scheduling of tasks on both HW and SW.

The final major step of system level design is communication synthesis. We showed how
the designer can use the database of a variety of bus models to construct a communica-
tion architecture for the design. Once the communication architecture is complete, the
designers can assign abstract data transfers to a communication route in the architecture.
Using automatic refinement in SCE, we showed how the designer could quickly produce
a bus functional communication model and see if it fits the system requirements. This
bus functional model serves as an input to the tasks of custom HW generation and SW
code generation, which are described in the next two chapter. In the future, we would
like to enhance the capabilities of our tool to perform automatic communication syn-
thesis, whereby the tool can generate a good communication architecture and still meet
system specification constraints.

131

Chapter 3. System Level Design

132

Chapter 4. Custom Hardware Design

4.1. Overview

Figure 4-1. Custom hardware generation using SCE

Specification

Analysis untimed

System level
Design

Architecture
Exploration

SW Scheduling/ timed

RTOS
v

Communication
Synthesis

Custom HW SW code cycle
generation generation accurate

In this chapter, we look at custom HW generation step as highlighted in Figure 4-1. The
bus functional model derived from the system level design phase must now be used to
generate custom hardware for HW components. In this phase of RTL synthesis, our goal
is to generate an RTL model that can be fed into industry standard synthesis tools. In this
chapter, we will deal exclusively with behaviors mapped to HW components and show
how a cycle accurate model is derived from a bus functional one.

First, super finite state machine with data (SFSMD) will be generated from the commu-
nication model. Each super state in SFSMD corresponds to a basic block in communica-
tion model and will have only data flow information. The control flow information will
be described among super states of the behavior. Super states in SFSMD will be split
into multiple states during RTL synthesis.

133

Chapter 4. Custom Hardware Design

Second, the RTL units for the custom hardware are allocated. To get some informa-
tion like number of operations, number of variables and number of data transfers in the
SFSMD for the RTL allocation, the designer has to run RTL analysis tool.

Third, scheduling and binding is done by designer or by tools. The scheduling and bind-
ing information will be inserted into the SFSMD model.

Finally, the SFSMD model with scheduling and binding information is refined into a
cycle-accurate FSMD model by RTL refinement tool. The refinement tool will also ger-
erate a cycle accurate model in hardware description languages like Verilog and Handel-
C. The cycle accurate model in Verilog HDL can be used as input to commercial logic
synthesis tools like Synopsys Design Compiler. We also generate the cycle-accurate
model in Handel-C which can be fed into Celoxica Design Kit.

134

Chapter 4. Custom Hardware Design

4.2. RTL Preprocessing

In our design methodology, RTL design is modeled by Finite State Machine with Data
(FSMD) which finite state machine model with assignment statements added to each
states. The FSMD can completely specify the behavior of an arbitrary RTL design.

In this tutorial, we use an intermediate representation, super finite state machine with
data (SFSMD), where each state may take more than one cycle to execute. The SF-
SMD will be automatically refined into cycle-accurate FSMD after RTL scheduling and
binding.

135

Chapter 4. Custom Hardware Design

4.2.1. View behavioral input model

§|ﬁcoaer.sce - S0C Environment - [Build_Code - YocoderComm - YocoderComm. it =TS
iz File Edit Miew | Project Synthesis Walidation Windows Help =] x|
D@ _swee. K EiEEEEIE
] Hierarchy. ..]
— c it pme |Type |F'E |Elus Al MiEiE
Design _ =OnEEVRe Fgvain
B 13 Viocoger, Graphs | m W coger Coder Busd & Build_Code
28 Uocs Trace.. D5P Motoria DSFSE6.. D5F & cod
gy _ 5 AW HIW_Standard_ weap HIW & codvec
i Qluality Metrics... B W HW_ Standard HI &
[2]= Show Testoench B ar wr codebook AR_WR_Codebook S ind
- N BF B ar it codebook AR INIT_Codebook .
E Show Children M- B cosepook Codebook sign
Customize... B B seg7? Cogebook_Seq T &y
- o B code 1040 Code THAG S5bis
Cor b n
Set Sige
Car 7
Seariy T ~
Buitd_Code
“ap
Bl B 3292 Codebosh_Seql /
R == = | =
todels | Impars | Sources Hierarchy | Behaviors | Channels | :I HYf I: |
.’‘1 Compile | Simulate | Analyze | Refine | Synthesize | Shell |
View source 4

Before we show how to generate SFSMD, we take a look at how input model of custom
hardware design. Select the behavior "Build_Code" by left clicking on it. We can take a
look at the behavioral input model by selecting View—;Source from the menu bar.

136

Chapter 4. Custom Hardware Design

4.2.1.1. View behavioral input model (cont’d)

‘vocodersce - 50C Environment - [Build_Code - YocoderCamm - VacaoderComm i

[=I[=l

File Edit Search Yiew

LR behavwr Build_Code (in Wordl6 codvec[M],
i b Hin Wordl6 sign[L_SUBFRI,
fout Word1E cod[L_SUBFRI,
tim Word1E h[L_SUBFR],
fout Word1s w[L_SUBFRI,
fout Word16 indx[101)
B
void main(void)
g i
Int 1, k;

Int p0, pl1, p2, p3, p4, p3, p6, p?, pd, p3;
Word32 s;

for (i =0; i € L_CODE; 1++)
=] i
3

for (1 =0; i < NE_TRACK; i++)
SN g g

od indices[i] = -1;
H

codeli] = 0;

Hc for (k = 0; k < NE_PULSE; k++)
=) H
: St read pulse position *7
i = codwecl[k];
At read sign i
i = signlil;

| 1+ €3 CCCad F—

Word16 j, track, index, _sign[NB_PULSE], code[L_SUBFRI, indices[10]1;

=18

Al

l

£

4_:1

=]

lLine: 21 Col: 14

[Ready

The SpecC Editor window pops up showing the source

"Build_Code".

code for behavior

137

Chapter 4. Custom Hardware Design

4.2.1.2. View behavioral input model (cont’d)

=] 508 - ranment - [Build_Code - YocoderComm - YocaderComm.sii] =TS
e di i nthesi alidati i
File Edit Search Yiew
- for (k = 0; k € NE_PULSE; k++) 5
Desi g g l
LI St oread pulse position */ hde
E i = codveclkl;
/* read sign *
i = sianlil; ec
index = mult (i, 6554); S Index = pos/S 174
£ track = pos¥S
track = sub (i, extract_1 (L_shr (L_mult (index, 5), 1))):
if (3 > 0)
= i
codeli] = add (codeli], 4098);
_signlk] = 2192,
H
else
=
code[i] = sub (code[i], 4096);
_signlk] = -&8192; L
i~ i index = add (index, 8); Ll
hod H JA
::1 < if (indices[track] < 0)
! =] H [
indices[track] = indesx;
else
S| i
H H e e | e | S L1% o % % /
|.F::ead' Line: 56 Col: 10/ ==

|

Scrolling down the window, we can see that the behavior code has loops and conditional
branch constructs. Therefore, our RTL synthesis tool has to handle these constructs.
Close the SpecC Editor window by selecting File—Close from its menu bar.

138

4.2.2. Generate SFSMD model

Chapter 4. Custom Hardware Design

|vocoaer.sce - S0C Environment - [Code_10i40_35hits - VocoderComm - YacoderCamm,sir]

Design
- 12 ViscogierSpec sir
B9 Vocogerdrmi.siv
B335 VipcomerSered sir
L2812 vseodertoms.

SR -

hodels I Inpors | Sources

iz File Edit MWiew Project §ynthesis|\fglidati0n Windows

Allocate PEs...
¢ Show Variahles
Architecture Plugins -

99 Architecture Refinement...

Schedule behaviors...
Scheduling Plugins -

oo Scheduling Refinement...

Allocate Busses...
fg Show Chapnels
Communication Plugins -

2|2 Communication Refinement...

RTL Preprocessing...

Allocate RTL Units...
Schedule & Bind RTL...

RTL Plugins -
RTL Refinetment...

X compile | Simulate | Ana

B5 © code Generation...

Import Decisions...

@ Stop

RTL preprocessing

IL=IES
Help >|~| %]
8@ 0
|Type IPE |EIL ol e
Coder But & Code_10
Mptorois DEPSGELE Wrag D5F a8 en
HW_Standany weap Al o cod
HW_Staedand s e
Lok AR WA Codebook L prm
| codebook AR INIT_Cogabock & P
o Cogebook e
7 Codetaok_5eq 1 oy
- @rodey
Sor fr K Lo X - @dn
et sign Sar Sige - @unz
car i Cor_fr - @inds
searcl TH4G Search TH4E L @ipos
buid code Bulid Code L opos_r
qr ap - B
7 Codebook_Seq? @fr /
I - | | -
Bnnels I :I HY |: |
ell |
4

Now, we will show how to generate super finite state machine with data (SFSMD).
To demonstrate the features of the our custom hardware synthesis tool, we will use
a particular behavior called "Code_10140_35bits". Browse the hierarchy in the design
hierarchy window and select behavior "Code_10i40_35bits". We will be demonstrating
RTL design exploration with this behavior in the rest of the chapter.

In the SCE, the step of generating the SEFSMD from the behavioral input model is called
RTL preprocessing, which is necessary for RTL synthesis. RTL preprocessing can be

invoked by selecting Synthesis— RTL Preprocessing from the menu bar.

139

Chapter 4. Custom Hardware Design

4.2.2.1. Generate SFSMD model (cont’d)

=|vacodersce - S0C Enviranment - [Code_10i40_35hits - VocaderCamm - VacoderComm.sif =TS
22 File Edit View Project Synthesis Validation Windows Help =] x|
N 08 8 o6 xbi| & EFES <] 0
X !
. i Mame |Type IPE |EIL B MiEiE
Design & 1ain
- {3 Vpcogerspec.sir W coger Coder B & Code_10
BY scogerdrt sir E;[}DSP Motorsls_ DSPSEERE_Wrap O5F o7 on
(V-5 Vocoderetied sir i’; WHW ﬁ ﬁ_ gé"?gag_ g g ﬁ - cod
L 212 Liorndiartamm £ A AR 7 h
sla VocoderComn. B ar wr_codebook AR WA Codebook | d«’prm
B or i codebook AR _INIT_ Codebook x
| RTL Preprocessing e y
- d
Behavior: | Cade_10id0_aShits (HW) G Codey
- gudn
Clock period: - @dnz
I Keep original behavior — B g!ndx
- @ipos
I Start | Cancel | [~ @pos_r
- @rr
- / I V|
A /I I 1 [= n.IJ -
hodels | Imports | Sources | Hierarchy | Behaviors | Channels | :I H |: |
-’‘1 Compile | Simulate | Analyze | Refing | Synthesize | Shell |
Freparing preprocessing... 4

An RTL Preprocessing dialog box pops up for selecting the behavior and its clock
period. Select "Code_10i40_35bits" as the behavior to be preprocessed and leave the
default clock period of the behavior as 10 ns. Note that the clock period here is used
only for generating a simulatable FSMD construct in SpecC. It does not mean that each
state in the SFSMD model will eventually take 10 ns to execute.

In the dialog box, the option Keep original behavior means that the original behav-
ior definitions for "Code_10i40_35bits" and its sub-behaviors will be preserved in the
model. Their instances, however, will be replaced by the generated SFSMD behavior
instances in the hierarchy.

Now click Start to begin preprocessing.

140

Chapter 4. Custom Hardware Design

4.2.2.2. Generate SFSMD model (cont’d)

§|ﬁcoaer.sce - S0C Environment - [Main - YocoderCommn - YocoderComm fsmd1 siv [read-only]) =TS
W File Edit Wiew Project Synthesis Validation Windows Help =] x|
N 1@ & e % K EEEIE]
I i]
’ i Mame
Design
- {3 Vpcogerspec.sir & tain
028 Viocogerdroi sir @ local_dt
-5 5 VpcomierSohed sir v dt_mod
BH2|2 Vocodertomn i o serial_hi
rCotm, = hspeech_
QOpen
SPEEBO0_BF b berib_CH
Delete Del & coder
Open Input 40 & monitor
i & stimulus
Becreate
Bename...
Change Description...
Statistics...
[
- | = =0 I = ER =
hodels | Imports | Sources | Hierarchy | Eehaviors | Channels | Raw I I:: | 1
-’‘1 Compile | Simulate | Analyze | Refing | Synthesize | Shell |
*% pehaviorichannel); Set_Sign_FSHD K
Writing SIE file "/honesspecc/demoMNMocoderConm,ferdl,sir", ..
Tore,
[Ready A

Note that RTL preprocessing step generates new SFSMDs for 6 sub-behaviors in the
behavior "Code_10i140_35bits", as seen on the logging window. Also note that a new
model "VocoderComm.fsmd.sir" is added in the project manager window. This new
model contains SEFSMD behaviors mapped to HW component, which can be seen in

the design hierarchy tree.

Again, we must give our new model a suitable name. We can do this by right clicking on
"VocoderComm.fsmd.sir" and selecting Rename from the pop up menu. Rename the

model to "VocoderFsmd.sir".

141

Chapter 4. Custom Hardware Design

4.2.3. Browse SFSMD model

=|vacoder.sce - S0C Enviranment - [Build_Code_FSMD - VocaderFsmd - VocoderF smd i) =TS
W File Edit Wiew Project §ynthesis| Validation Windows Help =] x|
;5| N B’*[= [§||° &llocate PEs... |@) [.l
- Gf Show Variahles I
f f |Type Al Mame
Desigh &rchitecture Plugins -
- 12 ViscogierSpec sir 89 architecture Refinement... Coder & Build_Code,
Qg i
0o B8 Vocogerdreinsir Schedule behaviars... Motiomia_D5720600 1 & cod
WSS VocoderSchedtsir L W SEandan wrsp & codvec
Iil—%l% Voeodart o, cheduling Plugins - HW_Stadand & h
PP it Scheduling Refinement... 3”—"1’1(—6_0#‘9&00’* ARWHA Codebook o incx
LB s it codebook AR_IMIT_ Cogehosk i
Allocate Busses... L B codehook Codabaok (pmgn
[}
{8 Show Channels - B osegr Codebook_Seq? Y
o+ B cose 104G Coge THEG 55his
Communication Pluging - ¥ F Cor B & FSME —
2|8 Communication Refinement... MW set_sign Set Sigrn FSME
— : W cor & Cor fr FSMD
RTL Preprocessing... M search 1HAG Search 1048 FSMO
&llocate RTL Units... v FY : Sty Lode FSMD
; g &g FEAD
Schedule & Bind RTL... B B seqe Codebook_Seqe /
= T RTL Plugins = T = | =
hodels I Impors | Sources [BE BTL Refinement... iors | Channels | :I H |: |
= : B5 © code Generation... —
._1 Compile | Simulate | Ana ell I
- | it Decisions...
4 =ir_renamne -i Shomeds mport DeciEions zir -o Jhomesspecc /demoNocoderFend,=ir VocoderComm Voco
derFznd @ Stop
RTL scheduling and variable & operator binding 4

Select the behavior "Build_Code_FSMD" from the hierarchy by left clicking on it. The
generated SFSMD leaf behaviors may be viewed by selecting Synthesis— Schedule
& Bind RTL from the menu bar.

142

Chapter 4. Custom Hardware Design

4.2.3.1. Browse SFSMD model (cont’d)

§|m. - S0C Environment - [Build_Code_FSMD - VocoderFsmd - YocodetFsmd.sit’]

[=I[=l

Design
- £3] Ve

o3

=1

Models I

X compil

4 o=ir
derFs

IF:TL Scheduling & Binding

State 2

Oso

L_59_0

o1

L5921

@sz

053 L 53_2

Cucle

Os4 L3533

@55 L_59.4

Os6 L5395

@s7 L 59 &

L 59_7

.
.
a
-
A
.
|
|

@s11
Q=12
@513
@514
@515
@516
@517
@518
@519
@sz0
@sa1

@sz2
Mmsra £

Help |

e s e e e L e L

Destinat.ion

Operat.ion ISource 1 |Source 2 |

i
J
index
_tmp_5
_tmp_d
_tmp_3
track

status

codvec[k]
sign[il
(i. 65541
tindex. S
(_tmp_ 5, 1}
_tmp_d)
(i, _tmp_3)
> i 0

m Lt

L_mult

L_shr
extract_1

=ub
if _status_

goto S10:

elsze

goto S11;

Ok | I Cancel

3

x|~ x]

=]

uild_Code|
cod
codvec
h
ind=
sign
¥

bmm Woco

[Ready

Z

The RTL Scheduling & Binding window pops up showing all the states in the behavior
"Build_Code_FSMD". It also shows all statements for the selected state in the right-
most column. We can go inside each state by clicking on the corresponding circle in the
left-most column. In this screen shot, state S9 is selected. We can see all assignments
with operations and state transitions derived from "if" statements.

Left click on Cancel to close RTL Scheduling & Binding window.

143

Chapter 4. Custom Hardware Design

4.2.4. View SFSMD model (optional)

Customize...

r

- B coge_ 1048

C

o+ B seql

=|vocodersce - S0C Environment - [Build_Code_| - VocoderFsmd - YocoderF smd st =I[=][2¢
S0C E t- [Build_Code_FSMD - VocoderFsmd - YocoderF smd
W File Edit ¥iew | Project Synthesis Validation MWindows Help |~ x|
D@ _ Sewee. ¢ K iEEEEEIE
B 5 Hierarchy... s N |_|_ i
E— - || ame ype "
Design Cannectivity... & ain ame
E@ Vocoger, Graphs = - Wl comar Coder & Build_Code,
®33voco| Trace.. 25:: ” ﬁﬁogfa_dpf;%&?&_w gcod
ooz |)) L] L SRS WD codvec
- g Qluality Metrics... B2 AW HW_Standan #h
2/= Show Testoench B ar Wi cogebook AR WA Codebook S ind
= - BF B ar it codebook AR INIT Codebook .
E Show Children B B cogebook Codebook sign
B- B seg? &y

Coaebooh_Seql
Coge THEG 55his
Cor i 5 FEMD

Sat Sigr FEAD
Cor i FEMO

Search 4R FEMD

=

& FSMOD
Coaedooh_Seql

1

Models | Imports | Sources |

| —

Hierarchy | Eehaviors | Channels |

T [

.’‘1 Compile | Simulate | Analyze | Refine | synthesize | Shell |
X zir_rename -i Jhomesspecc/demnosVocoderComm, femdl,=ir -0 Jhomesspecc /demo NocoderFend ,=ir VocoderComm Voco
derFsnd

Yiew source

|

We browsed through the newly created model in the RTL Scheduling & Binding
window. In addition, we can also view the source code of the model. Note
that if reader is not interested, she or he can skip this section to go directly
Section 4.2.5 Simulate SFSMD model (optional) (page 147).

Select behavior "Build_Code_FSMD" by left clicking on it. We now take a look at the
source code to see if the RTL preprocessing tool has correctly generated the SEFSMD
model. Do this by selecting View—;Source from the menu bar.

144

Chapter 4. Custom Hardware Design

4.2.4.1. View SFSMD model (optional) (cont’d)

[Re

ol ||

‘vocodersce - 50C Environment - [Build_Code_FSMD - VocoderFsmd - YocoderF smd.sir’] =izl

i-3 . Editor
File Edit Search Miew

pehavior Build_code_FSMD(
in short int codvecl101,
in short int signl40]1,
out short int codl[401,
in short int h[401,
out short int y[40],
out short int indx[10])

void main(void)

short int _sign[101;
unsigned bit[0:0] _status_;
short int _tmp_11;

short int _tmp_12;

int _tmp_14;

short int _tmp_15;

int _tmp_17;

int _tmp_18;

short int _tmp_19;

int _tmp_2;

= short int _tmp_20;

short int _tmp_21;
int _tmp_23;

int _tmp_25;

short int _tmp_26;
short int _tmp_29;
int _tmp_29;

short int _tmp_3;
short int _tmp_30;
int _tmp_31;

int _tmp_33;

qu]r_t int tmn 34
=~

L

£

-

[Line: 4408 Col: 1 A

The SpecC Editor window pops up showing the source code for behavior
"Build_Code_FSMD".

145

Chapter 4. Custom Hardware Design

4.2.4.2. View SFSMD model (optional) (cont’d)

|Mr.sce - S0C Environment - [Build_Code_FSMD - VocoderFsmd - YocodetFsmd.sit’]

IESI=IES

| YocoderFsmd.si - SpecC Editor

File Edit Search Miew

int =;
short int track;

ol]

Femd(10u)
H

H

52:

B H

L_S2_0: _status_ =1 « 40;
if (_status_)

H

goto 53;

else
= £

4

goto 54;
3
3
53
= H
L_53_0: code[i] = 0}
L5301 i+
goto 52;
3

54

L

£

[

-

[Line: 4418 Cal: 25 A

o

ady

The behavioral input model is changed to the SFSMD model with clock period 10 ns.
Scroll down the window to find loops and conditional branch constructs in the behavioral
input model are changed to state transitions. Still, each state has a lot of assignments and

operations, which have to be scheduled and bound.

Close the SpecC Editor window by selecting File—Close from the menu bar.

146

4.2.5. Simulate SFSMD model (optional)

Chapter 4. Custom Hardware Design

@ stop
-

& syl

§| yocodersce - S0C Environment - [Build_Cade_FShD - VocoderFsmd - VocoderF s 5] HQ@D_(
W8 File Edit “iew Project Synthesis ‘“alidation | Windows Help =] x|
40 E,"'[= [%Hl) cu [3¢ B ~ Enable Instrumentation ¢y [.l
3 Compile |T j
¥pe
Design Simulate Name
Ii‘!—@ VocoderSpes sir Cpen Terminal - Coder &Build_Code_
028 Viocogerdroi sir Kill simulatian S Mgtermia_DSPSEEEE W o cod
B33 VpcogierSehed sir View Log HW. Standser wrap & codvec
ojo ; i AW Stardany
2|2 Vocogerco - & h
L OC —— Prafile " Coreheo AR WA Codetioof S indx
— anal i codebook AR INIT_Codebook i
analyze paafonk Codabook sign
Evaluate : seq? Cogeback_5eqT &y
Wetrics... e Tl gt TR 35bits
n : W eor b % Cor b % FSMD
Show Estimates Sef_Sign FSMO
Estimate Cor i FEMO
Searclr 104G FSMOD
Analyze BTL Butid 5 v
Q5 FSMD

Coaedooh_Seql

1 |

Models | Imports | Sources |

| —

Hierarchy | Eehaviors | Channels |

T [

.’‘1 Compile | Simulate | Analyze | Refine | Synthesize | Shell |

derFsnd

X zir_rename -i Jhomesspecc/demnosVocoderComm, femdl,=ir -0 Jhomesspecc /demo NocoderFend ,=ir VocoderComm Voco

Compile

|

For demo purposes, we will skip the SEFSMD generation of those other behaviors as-
signed to HW component. Even this partially refined model is actually simulatable. To
show this, first compile the model by selecting Validation—Compile from the menu

bar.

If reader is not interested, she or he can skip this section to go directly
Section 4.2.6 Analyze SFSMD model (page 150).

147

Chapter 4. Custom Hardware Design

4.2.5.1. Simulate SFSMD model (optional) (cont’d)

=|vacoder.sce - S0C Enviranment - [Build_Code_FSMD - VocaderFsmd - VocoderF smd.sir =TS
W File Edit View Project Synthesis Vglidationlﬂindnws Help =] x|
10 Bq.[== [EYE Y [3¢ B ~ Enable Instrumentation & ¢y [.l
s Compile 1
H [Type Sl M
Design Simulate ame
- @ Vocoderspec sir Cpen Terminal - Coder & Build_Code,
B30 Uocogerdrs sir Kill simulatian S Matorsis_DSPSEERT W & cod
B35 ViscogierSoted siv Moy ﬁ ﬁ_gé‘f?g&g_mp & codvec
oo) =04...]
a|a VocoderTmme siv — & h
Ij—l— "~ Profile - codehook AR WHR_Cogebook A indx
anal - it godebook AR INIT Codebook i
analyze paafonk Codabook sign
Evaluate : seq? Cogeback_5eqT &y
Metrics. . coge 4T Coge THEG 55his |
: W eor b % Cor b % FSMD
Show Estimates ; Sef_Sign FSMEO
Estimate Cor iy FSMO
Search 164G FSMD
Analyze BTL &)
. Stop &g FEAD
T & syl Codetook_Seqd /
A I == I = | =
hodels | Imports | Sources | Hierarchy | Behaviors | Channels | :I H |: |
.’‘1 Compile | Simulate | Analyze | Refine | synthesize | Shell |
: Input: “VocoderFsmd,cc" K
Output; "VocoderFsmd,o"
Linking,,.
Input: “VocoderFsmd.o"
Output.; "VocoderFsmd"
Tare, J
Simulate 4

Note that the SFSMD model compiles correctly into executable "VocoderFSMD" as
seen in the logging window. We now proceed to simulate the model by selecting
Validation—Simulate from the menu bar.

148

Chapter 4. Custom Hardware Design

4.2.5.2. Simulate SFSMD model (optional) (cont’d)

vacoder sce - SoC Environment - [Build_Code_FSMD - VocoderFsmd - YocoderF s sif =TS

Helo x|/ x|
frame=147 encoding delay = 17,05 ms

| [frame=148 encoding delay = 17,05 ms i I

— frame=149 encoding delay = 17,09 me Type B MiEiE

N frame=150 encoding delay = 17,05 ms
frame=151 encoding delay = 17,05 ms -

E frame=152 encoding delay = 17,05 ms Coder &BUIId_CDdB_
frame=153 encoding delay = 17,08 ms Motormlia_DSPIEEEE_W & cod
frame=154 encoding delay = 17,05 ms HW_Standand weap & codver
Erame=igg encog@ng ge%au = 1;.3% s HIW_Standant e

rame=: encoding delay = 17,05 ms
frame=157 encoding delay = 17,09 ms AR_WE_Coaehook G i
frame=1h3 encoding delay = 17,09 me AR_IMIT_Codelbook dpsign
frame=159 encoding delay = 17,09 ms Codabaok
Erame?éf encoﬂ@ng ge%au = E‘gg s Cogebook_Seq? 6”5"
T ame= encoding delay = 17,05 ms ; ;
frame=162 encoding delay = 17,05 ms gdeg fﬁiiﬂ"‘s_nigﬁ‘xfs -
frame=163 encoding delay = 17,06 ms .Se;_S?X_ Juiif
S

done, 163 frames encoded Cor it FSMD

Search THAG FSMD
Files srcszpeschfilesdnodty_good,bit and nodtx,bit are identical s :
imulation exited with status 0
rezz return to continue ... G o FSMD

Coaedooh_Seql /

A T =M= I = = =

hodels | Imports | Sources | Hierarchy | Behaviors | Channels | :I H |: |

I

{ Compile | Simulate | Analyze | Refine | Synthesize | Shell |

X wterm -title VocoderfFsmd -2 fhindsh -o AocoderFeamd srodspeechfiles/spoh_unx, inp nodbx,bit nodbx ze dif
f -= src/speschf iles/nodbtx_good,hit nodtx.bit: echo "Simulation exited with status 7" :echo "Press return
to continue ..." rread conficm

[Ready A

The simulation window pops up showing the progress and successful completion of sim-
ulation. We are thus ensured that the SFSMD generation step has taken place correctly.
Also note that we can perform the SFSMD generation on any behavior of our choice.
This indicates that the user has complete freedom of delving into one behavior at a time
and testing it thoroughly. Since the other behaviors are at higher level of abstraction, the
simulation speed is much faster than the situation when the entire model is synthesized.
This is a big advantage with our methodology and it enables partial simulation of the de-
sign. The designer does not have to refine the entire design to simulate just one behavior
in RTL.

In this simulation, we see the delay per frame in the SEFSMD model decreases to 17.05 ns
from 19.89 ns compared to the communication model. Because each state in the SFSMD
model is artificially assigned a 10 ns clock period even though it has a lot of assignments
and operations to be split into multiple states by scheduling and binding.

149

Chapter 4. Custom Hardware Design

4.2.6. Analyze SFSMD model

Models | Imports | Sources |

=|\wvocoder.sce - S0C Enviranment - [Cade_10i40_3Shits - VacoderFsmd - VocoderFsmd sif =S
W File Edit Wiew Project Synthesis Validation I Windows Help =|=] x|
|D = I (= ﬁ [§||0 e [S |: = Enahle Instrumentation ez} [.l
3 Compile T
- Type ol
Design Simulate | M2
@.@ Vocoderspes. i Open Terminal = Coder &Cude_‘l 0
OF32 Vncoaerari sir Kill simulation I Motorala_ DEPIGEET_W - en
(253 VocomerSched sir s g g w_gaﬁgag_mp o cod
ajm) Lo !
38 Vocogerco - - h
L e re—— Frofile - caebook AR WA Codebook | pm
Vocoderk aral - init coaebook AR_INIT_ Codebook s
analyze berebook Codebook e
Evaluate Cogaian 7 ey
Metrics... Codie 18 Gits - @code
_ Cor % FSMO —oedn]
Show Estimates A et sign St Sign_ FSMO - @dn2
Estimate W cor & Cor iy FSMO - @ indx
M searctr THAG Search 1048 FSMO L @ ipos
Analyze RTL Wby code Buiid Code FSMD | oo 1
@ stop Far &g FSMD L
— =8 seq? Codebook_Seq? o Iy
] I I N0 B I = -] -

Hierarchy | Behaviors | Channels |

’—"1 Caompile | Simulate | Analyze | Refine | Synthesize | Shell |

to continue ..."

£ wterm -title VocoderFemnd -2 /bindsh -o ,AocoderFsnd sroc/speechf ilessspeh_unx, inp nodbx,bit nodbx ze dif
f -= srocdspeechf iles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7?" :echo "Press return
rread confirm

Collect RTL statistics

|

Once the SFSMD model is generated, we need to allocate RTL components. For al-
location, we need to get some statistical information on design. The statistical infor-

mation contains the number of operations for functional unit allocation, the number of

live variables for storage unit allocation and the number of data transfers for bus allo-
cation and the number of operations in critical path in each state. These kind of useful
information can be obtained by performing RTL analysis. First we select the behav-
ior "Code_10i40_35bits", of which we want to get the statistical information. The RTL

analysis is performed by selecting Validation—Analyze RTL from the menu bar.

150

Chapter 4. Custom Hardware Design

4.2.6.1. Analyze SFSMD model (cont’d)

Enviranment - 2 10i i Q@E
W File Edit Wiew Project Synthesis Walidation Windows Help =|=] x|
N 1@ &8 ve x K| FEE] B @ 0
; ﬂ[I |Type -\'[J Mame .
Design - 4 Main
m- {3 VocogerSpec.sir o W coger Coder &»Code_10
B30 Yocoger A sir o5P Motorsia_DEPSE6ET W Lo cn
U555 Vocoerseted sir i ;_"; WHW g w_gaﬁgag_mp - cod
aja .]
L Lfocoo‘em.sxr B ar wr codebook AR WA Codetosk _g hrm
UEHFEn b B ar it cotebook AR INIT Codebook (pp
M- B codebook Codebook e
B B seq7 Codetook_Seql 'y
i) Cod its I ¢ codey
Cor # % FSMD L @ n
Sef_Sign_ FSMO - ednz [T
Cor & F5MD L o ine
Search_ 16145 FSME L oipos
Buity Cotie FSMD
ap FSMD - @ PosT
B Codebook_Seqé AllTre™ |
] I (=T I = = =
hodels | Imports | Saurces | Hierarchy | Behaviors | Channels | :I Hw! I;'A
’—_"1 Compile | Simulate | Analyze I Refine | Synthesize | Shell |
*%%% calculabing power o
#% behavior: Search_10id0_FSMD
#xxx cgloulating critical path delay
#x#% caloulating power
#% pehavior: Set_Sign_FSMD
#=x%x% cgloulating critical path delay |
==xx caloulating pouer /
[Ready A

RTL analysis tool goes over all sub-behaviors in the behavior "Code_10i40_35bits", and
generates their statistical information for the allocation.

151

Chapter 4. Custom Hardware Design

4.2.6.2. Analyze SFSMD model (cont’d)

|wocodersce - SoC Environment - [Build_Code_FSMD - YocoderFsmd - WocoderF smd 5ir] =S
W File Edit “iew Froject gynthesisl Walidation Windows Help =|=] x|
;5| 0O E’;I = [§||0 Allocate PEs... |f@) [.l
= ¢fy Show Mariahles I
: : |Type Al Marme
Desigh Architecture Plugins g
®- 2 VocogierSpec. sir 88 Architecture Refinement. . Coder &»Build_Code,
oo ; Matornis DSPIEEEET W
BB Usconerarh sir SerEiLe D Motoroia_ DSt ’ & cod
N3 VncoderSched sir Scheduling Pl ! Standard_wrap & codvec
2|2 ViocogerComm. Eheauling Flugins u P ;”g‘f—ﬁfﬁgfb " ' h
Y oo Scheduling Refinement... W _EOaetog 1M LOaeto0 o indx
LB ar it codepook AR_IWIT Codebook e
Allocate Busses... | B codebook Codefook) =lan
[]
8 Show Channels o Beegr Codebook_Seq7 ¥
o+ B code TG4R Codle TGAG 55bits
Communication Pluging - W oo box Car oy FED —
912 Communication Refinement... A set_sign Sl Sign_FSMO
— : A cor i Car fr FSMO
RTL Preprocessing... M searctr THAG Search 1048 FSMO
&llocate RTL Units... v FY 3 ¢ Code FSMD
; g8 &g FEAD
Schedule & Bind RTL.. B B seqs Codebook_Seqe /
1 T RTL Flugins - T B = =
hModels I Imports | SOurces [RTL Refinement... iors I Channels I :I H¥ I-:l]
- By C Code Generation... |
X | compile | Simulate | Ana ell |
| [¥#== calculating power Impart Decisions... £
#% behavior: Search_10:
#xxx caloulating critic . Stop
#x#% caloulating power
#% pehavior: Set_Sign_FSMD
#=x%x% cgloulating critical path delay |
==xx caloulating pouer /
RTL scheduling and variable & operatar hinding 4

In order to look at RTL analysis result for the behavior "Build_Code_FSMD", select
Synthesis—Schedule & Bind RTL from the menu bar.

152

Chapter 4. Custom Hardware Design

4.2.6.3. Analyze SFSMD model (cont’d)

[=I[Bix
hARIE]
State | Cperations | Yariahles |Transfers | Celay | Pawrer I A r Cucle Destinat
@s0 i | 3 0 000ns 0O0W Lsso [0 [< i -

Lesign @51 iy | 4 2 000ns 000w Lead o [2 ET [| E—
mEvecd| @32 |l | 4 3l 10o0nsl 100w s L —— {4 |juie_Code
=321 ([@s3 |l | 4 sl 100ns] 100w ==E 0__{ cod

| [@s4 ol 4 2 aoons ooow | |([LSEE [G PP K codvec
@ss || 11l 4 3l 1oonsl 100w Lsod 4 [5 -toeo h
Skl | : 4] 70 ns]] 200w Ls9s |4 [; 3 -tee_ |Pinox
@57 ol 4 2 o00ns 0.00W Looe | [2 trac [P SO0
@33 | 11 4 sl 1oo0ns] 100w = — e P
sl D o || H P Y -
@310 d B 12 100ns] 00w |7
[SEN | 1 | 17 [l 1.00ns] 00w
@s1z] i el 1000 100w
@313 ol 4 3 000ns 0.00W
@4l | 12 R ns s00w
@s1s 1 4 | g lk0on: zoow
) o5l | i] ey | 6l 100ns] 100w =
Models @s17] 11 4 12l 100ns] 100w i
—[SRl | Bl B 15 R ns| 400w —,-5|4_
A [Compil @s19] N | 4 12 100ns] 100w
=== (G | | 4 6l 1.00ns] 100w -
s betl| [@321] | 4 | 2 100ns] 100w
sexx d| | @szz [E . BEE B 5z B .00 ns| TE00w
e d| @zl 1 Y | A Annns 1anow A R =
% heH
wxwn (] Help | OK | Cancel |
=xma
4 £
[Ready A

The RTL Scheduling & Binding window pops up showing the statistical information
for the selected behavior. From left to right in the left panel of the RTL Scheduling &
Binding window, it shows number of operations (Operations column) in each state,
number of variables (Variables), number of data transfers (Transfers), number of oper-
ations in critical path (Delay), and power dissipation (Power).

153

Chapter 4. Custom Hardware Design

4.2.6.4. Analyze SFSMD model (cont’d)

=|\wocoder.sce - S0C Enviranment - [Build_Code_FSMD - VocoderFsmd - VocaderFsmd sir] [E=ES
RTL Scheduling x|xl x|
State | Cperations |\fariables |Transfers |Delay |P0wer I A Cucle Destinat
@s0) | 3 0 000ns 0O0W Lsso [0 [< i 5
Design @s1 iy | 4 Z 000ns 000W P R | D
mEvecd| @32 |l | 4 3l 10o0nsl 100w =3 j 0—_{: Trae |fuild_Codel
gell [@s3 1 | 4 sl 100ns] 100w LS9 0__{ cod
Q54 ol 4 2 aoons ooow | |([LSEE [G PP K codvec
@ss || 11l 4 3l 1oonsl 100w Lsod 4 [5 -toeo h
Skl | : 4] 70 ns]] 200w Ls9s |4 [; 3 -tee_ |Pinox
@57 ol 4 2 o00ns 0.00W Looe | [2 trac [P SO0
@33 | 11 4 sl 1oo0ns] 100w = — e P
0o SN BELNNEL B Lsa7 o 9 -
@510 |muIt,L_FIt,L_shr,e;ract_l,sub,>= 1.00nsg1.00 W g
@111 THE W T 1.00ns] | 300w
@s1z] i el 1000 100w
@313 ol 4 3 000ns 0.00W
@4l | 12 R ns s00w
@s1s 1 4 | g lk0on: zoow
) o5l | i] ey | 6l 100ns] 100w =
Models | @s17] 11 4 12l 100ns] 100w M;'A
SRl | Bl B 15 R ns| 400w =
A [Compil @s19] N | 4 12 100ns] 100w
=== (G | | 4 6l 1.00ns] 100w -
s betl| [@321] | 4 | 2 100ns] 100w
sexx d| | @szz [E . BEE B 5z B .00 ns| TE00w
e d| @zl 1 Y | A Annns 1anow A R =
% heH
wxwn (] Help | OK | Cancel |
=xma
t 7|
[Ready A

Moving the mouse over the bars in the graph gives us detailed information on each
category. For instance, if we put the mouse over the Operations column in each state,
the operations which are executed in the state will be shown like mult, L_mult, L_shr,
extract_l, sub and > in state S9.

154

Chapter 4. Custom Hardware Design

4.2.6.5. Analyze SFSMD model (cont’d)

=|\wocoder.sce - S0C Enviranment - [Build_Code_FSMD - VocoderFsmd - VocaderFsmd sir] [E=ES
RTL Scheduling x|xl x|
State | Cperations |\fariables |Transfers |Delay |P0wer I A Cucle Destinat
@s0) | 3 0 000ns 0O0W Lsso [0 [< i 5
Design @s1 iy | 4 Z 000ns 000W P R | D
mEvecd| @32 |l | 4 3l 10o0nsl 100w =3 j 0—_{: Trae |fuild_Codel
gell [@s3 1 | 4 sl 100ns] 100w LS9 0__{ cod
Q54 ol 4 2 aoons ooow | |([LSEE [G PP K codvec
@ss || 11l 4 3l 1oonsl 100w Lsod 4 [5 -toeo h
Skl | : 4] 70 ns]] 200w Ls9s |4 [; 3 -tee_ |Pinox
@57 ol 4 2 o00ns 0.00W Looe | [2 trac [P SO0
@33 | 11 4 sl 1oo0ns] 100w = — e P
CEmem B8 W B o Lsa7 o 9 -
@s10 1Dns 100w =
[SEN | 3 ; Dons|] 300w
@s1z] i el 1000 100w
@313 ol 4 3 000ns 0.00W
@4l | 12 R ns s00w
@s1s 1 4 | g lk0on: zoow
) o5l | i] ey | 6l 100ns] 100w =
Models | @s17] 11 4 12l 100ns] 100w M;'A
SRl | Bl B 15 R ns| 400w =
A [Compil @s19] N | 4 12 100ns] 100w
=== (G | | 4 6l 1.00ns] 100w -
s betl| [@321] | 4 | 2 100ns] 100w
sexx d| | @szz [E . BEE B 5z B .00 ns| TE00w
e d| @zl 1 Y | A Annns 1anow A R =
% heH
wxwn (] Help | OK | Cancel |
=xma
t 7|
[Ready A

If we move the mouse over the Variables column in each state, the variables which are
live at the end of the state will be shown like code, i, index, indices, k, and track in state

S9.

155

Chapter 4. Custom Hardware Design

4.2.6.6. Analyze SFSMD model (cont’d)

[=I[Bix
hARIE]
State | Cperations | Yariahles |Transfers | Celay | Power I R [J Cycle Destinat
@s0 0 3 0 000ns 0O0W Lsso [0 [< i -

Lesign @51 iy | 4 2 000ns 000w Lead o [2 ET [| E—
mEvecd| @32 |l | 4 3l 10o0nsl 100w s L —— {4 |juie_Code
=321 ([@s3 |l | 4 sl 100ns] 100w ==E 0__{ cod

| [@s4 ol 4 2 aoons ooow | |([LSEE [G PP K codvec
@ss || 11l 4 3l 1oonsl 100w Lsod 4 [5 -toeo h
Skl | : 4] 70 ns]] 200w Ls9s |4 [; 3 -tee_ |Pinox
@57 ol 4 2 o00ns 0.00W Looe | [2 trac [P SO0
@33 | 11 4 sl 1oo0ns] 100w = — e P
so BN BN R Lsa7 o 9 -
@310 d B ok 15, wite 3) "5 100 W [
[SEN | 1 | b ns] 3.00 W
@s1z] i el 1000 100w
@313 ol 4 3 000ns 0.00W
@4l | 12 R ns s00w
@s1s 1 4 | g lk0on: zoow
) o5l | i] ey | 6l 100ns] 100w =
Models @s17] 'R 4 1zl 100ns] 100w L
Voes | os1: [l N 15 D0 ns|4.00 w —,-5|4_
A [Compil @s19] N | 4 12 100ns] 100w
| | @520 | 4 6l 1.00ns] 100w -
s betl| [@321] | 4 | 2 100ns] 100w
sexx d| |52z [0 5z [l .00 ns| HEEE W
e d| @zl 1 Y | A Annns 1anow A R =
% heH
wxwn (] Help | OK | Cancel |
*xEx
2l /
[Ready A

If we move the mouse over the Transfers column in each state, the data transfers hap-
pens at the state will be shown. In state S9, the number of read transfers is 15 and the
number of write transfers, 8.

Left click on Cancel to close the RTL Scheduling & Binding.

156

Chapter 4. Custom Hardware Design

4.3. RTL Allocation

RTL allocation is one of important steps for custom hardware design. It is to select
number of RTL components for the design, while meeting various constraints. For RTL
allocation, we need to get a statistical information on the design.

The statistical information contains the number of operations for functional unit allo-
cation, the number of live variables for storage unit allocation and the number of data
transfers for bus allocation and the number of operations in the critical path in each state.
These kinds of information can be obtained by performing RTL analysis.

157

Chapter 4. Custom Hardware Design

4.3.1. Allocate functional units

RTL Preprocessing...
Allocate RTL Units...

Schedule & Bind RTL..

RTL Flugins -

1 |
Models I Imports | Sources B BTL Refinement...

L LN
B B segd

§| wocoder.sce - SoC Enviranment - [Build_Caode_F5MD - YocoderFsmd - YocoderF sm.5ir) |Q@|)_<
B8 File Edit Miew Project Synthesis | Walidation Windows Help xlx| x|
= &llocate PEs... |f@ @ [.l
] Show Variables
@ B |Type il I
Design Architecture Plugins - Elits
®- 2 VocogierSpec. sir 88 Architecture Refinement. . Coder &»Build_Code,
=] =] i
-B5 Vocogerareissir Schedule behaviars... Moloria_D5ra0eeq 1 &’ cod
B35 ipeogerSohed.sir = cheduling Plugi AW Standard_weap & codvec
BF2)2 Vocodercormi. Eheduling Flugins - HIW_Standant &
PP o2 Seheduling Refinement. ar_w_;og’ebooﬁ AR WA Codetoock o indx
- I B ar il _codebook AR INIT_Cogeboss i
Allocate Busses... | B codebook Codefook) =lan
[}
{74 Show Channels B8 seg? Cogepook_SeqT ¥
o+ B code TG4R Codle TGAG 55bits
Communication Fluging - Heoor b 5 Cor # & FSME
912 Communication Refinement... A set_sign Ser_Sign_fFSMO
— M cor i Cor 1 FSMD

Search_ 104G _FSMD

£

G RSO
Coaeooh_Seqs

| —

iors I Channels I

X | compile | Simulate | Ana

By C Code Generation...

all |

www® Caloulating pouer Import Decisions... il
#% behavior: Search_10:
* - Sto

#ea% cgloulating critic . op

#x#% caloulating power

#% pehavior: Set_Sign_FSMD

#=x%x% cgloulating critical path delay |

==xx caloulating pouer /
RTL unit allocation 4

After we produce a valid SFSMD model during preprocessing step, the next step is to
allocate RTL components for HW part of the system. The allocation will be guided by
RTL statistical information. To perform the allocation, select Synthesis—>Allocate
RTL Units from the menu bar.

158

Chapter 4. Custom Hardware Design

4.3.1.1. Allocate functional units (cont’d)

[=[[Ei[x]

W File Edit Miew Project Synthesis Walidation Windows Help =|=] x|
e
Design
LT, Mame % | Type uild_Code
cod
codvec
h
i
s
Y
]
hModels
X
;E ExE
#% heh
FEEE
rExE
#% heh
wwwE
#aEE S
[Ready /

An RTL allocation window pops up just like for components and busses. left click on
Add to see the include units from the database into the design.

159

Chapter 4. Custom Hardware Design

4.3.1.2. Allocate functional units (cont’d)

[=[[Ei[x]

Precision

Functional Uni i 32 hits

Register File B 32

Bus 32 hits
Memory 32 hits
Register 32 hits
32 hits
32 hits

A RTL Unit Selection window pops up for RTL unit selection. There are various cate-
gories for the RTL components listed on the left-most column. Left click on "Functional
Unit" to see the functional units and their parameters in the right-most column. In this
tutorial, we will select 3 functional units: "L_unit" and "op_unit" for saturated arith-
metic operations and "alu" for the other operations. To select an alu, left click on "alu"
and click on OK to add it to RTL Unit Selection window.

160

Chapter 4. Custom Hardware Design

4.3.1.3. Allocate functional units (cont’d)

[=[[Ei[x]

W File Edit Wiew Project Synthesis Walidation Windows Help =|=] x|
D&
e
Design
B) Viocd Mame % | Type uild_Code,
@20 cod
codvec
h
i
g
Y
i —_—
hodels iy I |
= Help | | (018 I Cancel | '
: £ wtern Z1 22 dif
f -= o return
Lo con
Simuls
[Ready A

A new property box for the alu component pops up and shows the configurable parame-

ters. In case of alu, bit width is the configurable parameter. Left click on OK to use the
default value of 32 bits.

161

Chapter 4. Custom Hardware Design

4.3.1.4. Allocate functional units (cont’d)

= I
W File Edit Wiew Project Synthesis Walidation Windows Help =|=] x|
| D = I = RTL Com ponent Allocation
Design "
E-Vocc Precision Datatype uild_Code,
@.gg alu_3z2 ae hits 0 hits int 1 words cod
codvec
h
i
g
Y
]
hModels Iﬂ
X compil
[cnd
Mary
Writin
Ouit]
Parang
Dore ,
[Ready A

The allocated alu component will be shown in the RTL Component Allocation window.
Left click on Name column of the allocated alu to rename it to ALUT.

We may repeat the last procedure to allocate more RTL components from the database.

162

Chapter 4. Custom Hardware Design

4.3.1.5. Allocate functional units (cont’d)

[=I[BIX]
W File Edit Wiew Project Synthesis Walidation Windows Help =|=] x|
iy Er;.l RTL Component Allocation
Design "
& 3 Vocd Width Pracision uild_Code,
@.gg alu_32 32 hits 0 hits cod
L_unit_32 32 hits 0 hits codvec
op_unit_32 3E hits 0 hits h
i
s
Y
]
hModels Iﬂ
X compil
[ond
Mary
Writin
Ouit]
Parang
Dore ,
[Ready A

In this way, we can allocate an "L_unit" and an "op_unit" and rename them to ALU2
and ALU3 respectively.

All desirable functional units for hardware implementation have now been selected.
However, we also need storage units like register files and memory. Left click on Add.

163

Chapter 4. Custom Hardware Design

4.3.2. Allocate storage units

[=[[Bi[x]

J 32 hits B waords 1]

int 1

=
=

!
)

Left click on "Register File" to see the various register files and their properties. Left
click on "RF" to select register file and click on OK to add it to RTL Unit Selection
window.

164

Chapter 4. Custom Hardware Design

4.3.2.1. Allocate storage units (cont’d)

[=I[BI[x]
W File Edit View Project Synthesis Validation Windows Help =|=] x|
O&]
e
Design I
£ Vo uild_Code,
L K ters . cod
g - address width: E bits codvec
- Bitwicith: a2 hits h
Size: 16 wards ind=
son
Y
=~
Madels Ii
X compil Help | | ok | cancel | '
Chel
Mary
MWritin
Oty
Params
Dore
|Ready)

A new property box for RF component pops up and shows the configurable parame-
ters. In case of RF, address width and size of register file as well as bit width are the
configurable parameters. Left click on "Address width" to change 4 bits to 5 bits.

165

Chapter 4. Custom Hardware Design

4.3.2.2. Allocate storage units (cont’d)

I~

Madels Ii

Miew Project Synthesis Walidation Windows

Address width:
Bitwidth:

Help |

5 hitg
32 hits

| (014 I Cancel |

Hel

(=[]
p x|l x|

Parameters...

me

uild_Code
cod
codvec
h
i
sigh
Y

Since the address width is changed to 5 bits, the allowed address space is 32 words. Left
click on size to change 16 words to 32 words.

Left click on OK to add RF to RTL allocation.

166

4.3.2.3. Allocate storage units (cont’d)

W8 File Edit Miewy Project Synthesis Validation Windows

Madels Ii

Design
|Jl-,_ Ve Type Wiith Pracision
@24 alu_3z 32 hits
B L_unit_32 32 hits
ap_unit_32 32 hits
] 32 hits
I~

Copy

Parameters...

Chapter 4. Custom Hardware Design

[=[B]x]

Help =|~| %]

me

uild_Code
cod
codvec
h
i
sigh
Y

)

The selected RF component will be shown in the RTL Component Allocation window.
Left click on Name column of the allocated RF to rename it to RF1.

167

Chapter 4. Custom Hardware Design

4.3.2.4. Allocate storage units (cont’d)

[=[[Eix]
W File Edit View Project Synthesis Validation Windows Help =|=] x|
e
Design
E_VQCC Type Wicith Frecision Size uild_Code,
352 alu_3z 32 bits 1 words cod
Ii!— L_unit_3z 32 bits 1 words codvec
ap_unit_32 ae b!ts 1 words h
RF_32_32_59 32 hits 32 waords inds
RF_32_32_5 32 bits 32 words sian
RF_32_32_5 32 hits 32 words 8
Y
=
Madels Ii
|Ready A

For the purpose of this design we will need 3 register files to perform RTL synthesis.
To add more register files in the allocation table, simply Left click on Copy by 2 times.
This is a useful way to replicate components for large sized allocations.

Now, we have allocated 3 register files. In the similar way, we can allocate a memory
component.

168

Chapter 4. Custom Hardware Design

4.3.2.5. Allocate storage units (cont’d)

(=[]
Help =|~| %]

W File Edit

Miew Project Synthesis Walidation Windows

e
Design
|Jﬂ_ Vioed Width | Precisiof Datatype] Size uild_Code|
e alu_sz 32 bits T wrards cod
Ii!— L_unit_3z 32 bits i 1 words codvec
op_unit_32 32 b?ts 1 words h
RF_32_32_% 32 hits 32 wards inds
RF_3z_32_5 3% hits i 32 words sian
RF_32_32_5 32 bits i 32 words 8
mem_32_256_8 3¢ hits 206 words ¥
I~

Madels Ii

In the "Memory" category, we select the "mem" type memory. Its size is 256 words, and
then its address width is 8 bits. Also its bit width is 32 bits.

We are now done with storage unit allocation and we have to allocate busses for data
transfers between storage units and functional units. Left click on Add to add more RTL
components.

169

Chapter 4. Custom Hardware Design

4.3.3. Allocate buses

Functional Uni
Register File

1.00 ns

Datatype -

|

Left click on "Bus" to see its properties in the left-most column. Left click on "bus" to
select the bus and press OK.

170

Chapter 4. Custom Hardware Design

4.3.3.1. Allocate buses (cont’d)

[=[[Ei[x]

W File Edit Wiew Project Synthesis Walidation Windows Help =|=] x|

- e
Disign
- £ Ve W uild_Code,
@20 a cod
t Bitwidth: Eudvec
g i
: san
i Y

Parameters...

hModels Iﬂ

X campil

Che
Mary
Wit in
Out)
Params
Dore ,

[Ready A

A new property box for bus component pops up and shows the configurable parameters.
In case of bus, bit width is the configurable parameter. Left click on OK to add bus to

RTL allocation.

171

Chapter 4. Custom Hardware Design

4.3.3.2. Allocate buses (cont’d)

W8 File Edit Miew Project Synthesis Walidation Windows

Frecision

Datatype

alu_3z
L_unit_3e
op_unit_32
mem_3&_256_10
RF_32_32_5
RF_32_3Z_5

hModels Iﬂ

X compil

Che

Mary
Wit in

Out)
Params
Dore ,

32 hits
32 hits
32 hits
32 hits
32 hits
32 hits
32 hits

32 hits

0 hits

int
int
int
int
int
int
int

Remave

W
Parameters...

[=[[Ei[x]
Help =|~| x|

me

uild_Code|
cod
codvec
h
i
sign
Y

[Ready

2

The selected bus component will be shown in the RTL Component Allocation window.
Left click on Name column of the allocated bus to rename it to BUSI.

172

Chapter 4. Custom Hardware Design

4.3.3.3. Allocate buses (cont’d)

W File Edit Wiew Project Synthesis Walidation Windows Help =|=] x|
e
Precision Datatype i uild_Code]
alu_3z 32 hits int . cod
L_unit_3e e bits int codvec
op_unit_32 3Z hits int h
mem_3¢_236_3 3E hits int indx
RF_32_32_5 3¢ bits int sign
RF_32_32_5 e bits int g
32 hits int ¥
3E hits 0 bits
1
hModels Iﬂ
X compil
: Chel
Mary
Writin
Ouit]
Parang
Dore ,
[Ready A

For the purpose of this design we will need 6 buses to perform RTL synthesis. To add
more buses in the allocation table, simply left click on Copy by 5 times. This is a useful
way to replicate components for large sized allocations.

173

Chapter 4. Custom Hardware Design

4.3.3.4. Allocate buses (cont’d)

(=3
W File Edit Wiew Project Synthesis Walidation Windows Help =|=] x|
1]
Design "
@_ Ve Type Width Precisian Datatype i uild_Code,
@.gg alu_3z 32 hits int cod
L_unit_3e e bits int codvec
op_unit_32 3Z hits int h
hus_3¢ 32 b!ts !m indx
hus_32 32 hits int sign
bus_az 32 bits int 8
bus_32 32 bits int ¥
3E hits int
'
tnem_3e_256_18 e bits
RF_37_32_5 a7 bits
RF_3Z_32_%4 3E hits
RF_32_32_5 3¢ bits
1
hModels Iﬂ
X compil
: Chel
Mary
Writin
Ouit]
Parang
Dore ,
[Ready A

We are now done with RTL component allocation. Left click on OK to save the alloca-
tion information in the model.

174

Chapter 4. Custom Hardware Design

4.3.3.5. Analyze allocated SFSMD model

=|'vocodersce - So0C Environment - [Code_10i40_35hits - VocodetFstd - YocoderFsmi.sir’] =S
File Edit ¥iew Project Synthesis Validation I Windows Help =|=] x|
N E’;‘I = [& oo [3¢ B - Enable Instrumentation | o [.l
— > Campile i
: |Type Al Mame 3
Desigh Simulate
@.@ Vocoderspes. i Open Terminal = Coder &Cude_‘l 0
OF32 Vncoaerari sir Kill simulation I Motorala_ DEPIGEET_W - en
W35 VocogerSohed sir s g g w_gaﬁgag_mp - cod
ajm) Lo !
3|8 VocogerComn. - - h
th 2 OC m il Profile - cogdebook AR WA Cogebook L& pm
VocaderFsmd.s aral - init coaebook AR_INIT_ Codebook s
analyze betobook Cotebook e
Evaluate seq7 Codebook_SegT &y
Metrics... - @code
— @dn
Show Estimates L oanz [T
Estimate 2 l L g indx
M searctr THAG Search 1048 FSMO L @ ipos
Analyze RTL Wby code Buiid Code FSMD | oo 1
@ stop Far &g FSMD L
— =8 seq? Codebook_Seq? / o Iy
] I (= I = = -
hodels | Imports | Saurces | Hierarchy | Behaviors | Channels | :I Hw! I] |

’:"1 Campile | Simulate | Analyze | Refine | Synthesize | Shell |

Checking paramsters,.. Done.)
Mangling name to "bus_32",,. Done,
Writing SIR file...
Output : "Ahome/specc/ ,sce/rtl /sbus_32 =ir"
Parameterized design successfully generated, J

Dore ,

Collect RTL statistics

|

Before scheduling and binding, we may check how RTL allocation will affect perfor-
mance, area, and power in the design. To do so, we can go over RTL analysis again. we
select the behavior "Code_10i40_35bits", for which we want to get the statistical infor-
mation. The RTL analysis is performed by selecting Validation—>Analyze RTL from
the menu bar.

175

Chapter 4. Custom Hardware Design

4.3.3.6. Analyze allocated SFSMD model (cont’d)

C Environment - [Cade_10i40_35hits 1 i 5 " Q@E
W File Edit Wiew Project Synthesis Walidation Windows Help =|=] x|
N g sllve xXbn X EE] 83 0
- ﬂ[Name |Type -‘-_[J Name 4
Design - 4 Main
m- {3 VocogerSpec.sir o W coger Coder &»Code_10
i-gg Virrcercder Aret Siv DEF MQ?O@f&_DSPSﬁﬁQ&_H —f,(r'j ch
S8 UeoerSehed sir Li ;_"; WHW g w_ g&'f?gag_ Wz o cod
ojo . AT
LEH Lfocoo‘em.sx B & wr_codebook AR_WR_Cogetosk _g hrm
DEFEnALE B B ar it cookbook AR IMIT Codetook (pp
B B codebook Cotebook e
B B seg7 Codebook_Seq? ey
i ; Code T I & codey
Cor # % FSMD L g dn
Sat_ Sign FSMD L gdnz [T
Cor f FSMD | g indx
Search_ 16140 FSIMD L oinos
Buid_Code FSMD L s ¢
a p FIMD Ofr -
C Cogelbook_Seqe / o Iy
| | sl 1 28 | = = =
Models | Impors | Saurces | Hierarchy | Behaviors | Channels | :I Hw! I;'A

_:1 Compile | Simulate | Analyze I Refine | Synthesize | Shell |

=xxx caloulating critical path delay Al
#x#% caloulating power

#% pehavior: Set_Sign_FSMD

#=x%x% cgloulating critical path delay
==xx caloulating pouer

|
Hriting SIR file "/home/specc/deno/VocoderFsnd,rtlStats,sir", ., 7|

[Ready A

RTL analysis tool will go over all sub-behaviors in behavior "Code_10i40_35bits", and
generate the more accurate statistical information with the help of allocation informa-
tion.

176

Chapter 4. Custom Hardware Design

4.3.3.7. Analyze allocated SFSMD model (cont’d)

= | wocoder.sce - 50C Environment - [Build_Code_FSMD - YocoderFsind - VocoderFsid.sir]

W8 FEile Edit Miew Project gynthesisl\@lidation Windows

;5| 0= I = [§||0 Allocate PEs...

= ofy Show Variahles

Design Architecture Plugins -
®- 2 VocogierSpec. sir 88 Architecture Refinement. .

BB Usconerarh sir
B35 oroderSohed sir
BF2)2 Vocodercormi.
T{E:

schedule behaviors...
Scheduling Plugins -

oios Scheduling Refinement...

Allocate Busses...
{5} Show Channels

Communication Pluging -

inia
Iaja
]

ammunication Refinement...

[=I[Bix
Help =|~| x|
I
|Type I MName
Coder &»Build_Code,
Motorols DSPSEEET W P cod
HW_ Siandar whag & codvec
HW_Standand S
G W codebook AR_WA_Codeboosk o indx
B ar i covebook AR_IMIT_Coaebook o
I B cogebosk Codebock san
B B seq7 Codebook_Seq T &y
o+ B code TG4R Codle TGAG 55bits
W eor b % Cor i % FSMD
A set sign Set Sige FSMD
W cor B Cor fr FSMO

RTL Preprocessing...
Allocate RTL Units...
Schedule & Bind RTL..

L LN
B B segd

1 T RTL Flugins -

Models I Imparts | Sources [EE RTL Refinement...

Search_ 104G _FSMD
Code_FS5MD

& FSMD

Coaeooh_Seqs

| =

iors I Channels I

By C Code Generation...

T 1oL

X | compile | Simulate | Ana
3 Import Decisions...

all |

=xxx caloulating critic
#xx% caloculating power @ Slop

#% pehavior: Set_Sign FomO
#=x%x% cgloulating critical path delay
==xx caloulating pouer

Writing SIR file

" ‘honesspece Ademo NocoderFand, ot 1Stats, =ir" ., .,

&

-
/

RTL scheduling and variable & operatar hinding

|

Now, we will look at RTL analysis result because we allocated RTL components for the
design by selecting Synthesis—Schedule & Bind RTL from the menu bar. Choose
the behavior "Build_Code_FSMD" from the hierarchy.

177

Chapter 4. Custom Hardware Design

4.3.3.8. Analyze allocated SFSMD model (cont’d)

‘vocodersce - S0C Environment - [Build_Code_FSMD - YocoderFsmd - VocoderF smd.sir [read-only]] (==
= . T
State Operatinnsl VariablesITransfers | Delay Poueer 4 rJ Cuycle Dest instion | Opers (|
@s0 0 3 0 0.00 ns 0.0 m¥ Lsgo [4 [= i = B
i |@s ol ¢ z| 2.00 ns 7.7 miW Leat |4 [=~ J = B
@sz | il i@ eit6ns 6.8 mi Emeal b A aex = wlbe
@33 | il sl &1Ens 32.5 mw == —
Q54 ol - z| 2.00 ns 77 mw L33 4 p 7 M B S
@s5 | il sl biens B.6 mw Lsod 4 [5 -twd =) L
(SEN | : | ¢ Tl 1z3zne 36.7 mw L5 |0 [A4 w3 (= edr
@s7 oy | 4 | 2.00 ns 7.7 mw L 596 | 0—_} P— - =
@ss | i sl siEns B.3 W —7 -
L5937 |4 [0 _status =
cl sl 2 R EE 1w / _
@s10 il 12l 1276ns] 1460 mw i
[SEN | Il s 7 tzvensl @01z mw | {
@51z il sl 31Ens 504 mi goto
@313 ol ¢ 3 2.00 ns 28.3 mw 3
@314l] | 12 21 46 ns 641 mw ole
@z15 Il s sl 1692 ns 98.8 mw c
H| [@316 d AT 351 mw soto | |=
@317 1 ¢ 12l 7iens D 1mamw ; =
|l l@es:0 Il - 15 .05 sl 1093 mw |4
| (@518 i 12l 7iensl | 1mEmw =
Al [@se0 il el Fi6ns 351 mw |
Al |@se I cll 61Bns B.5 mW
|| |@szz o | DA EEEREREE
Al |@ses 1 sl &i1Ens B.5 mW
|| |@s2¢ 1 R g ALTE 1zomw [; =
Help | Ok, | Cancel
0 J

The RTL Scheduling & Binding window pops up showing all the states in the behavior
"Build_Code_FSMD". In the left-most columns, we can see the estimated delay and

powers for each state. For example, state S9 will take 41.80 ns to execute and consume
180.0 mW.

178

Chapter 4. Custom Hardware Design

4.4. RTL Scheduling and Binding

The most important steps during RTL synthesis are scheduling and binding. Scheduling
is to decide the start time of operations in a design. Binding is to map operations to func-
tional units (function binding) and to map variables to storage units (storage binding),
and to map data transfers to buses (connection binding). Due to the interdependence
of scheduling and binding, the order of these steps may be interchanged to get better
design.

In our RTL design methodology, we provide manual scheduling and binding for the de-
signers to make decision for scheduling and binding. But manual scheduling and binding
takes too much time for the designers to do and is tedious and error-prone task. We will
provide automatic scheduling and binding tools by RTL plugins.

Note that if reader is not interested in how to do manual schedul-
ing and binding, she or he <can skip this section to go directly
Section 4.4.2 Schedule and bind automatically (page 192).

179

Chapter 4. Custom Hardware Design

4.4.1. Schedule and bind manually (optional)

=|\wocoder.sce - S0C Enviranment - [Build_Code_FSMD - VocoderFsmd - VocaderFsmd sir] =S
H| | state Oper Variat{ Transfq Celay | Power R _[J Cycle Destination | Operat.ion |Source 1 ISDu‘ —
Al |@s0 0 a 0 000ns DOmW Lsso |F [0 < i = codweclk]
@51 ol 4 2| zoons nomw| ([T Sa 1 o i 2 J = sizgn[i] -
@sz | 1l 4 s@eene oomw| | m 2 index | =| mult (1. essa |[°
@3 | 10 4| 5| eiensf zoomw == — { - : :
@s4 ol 4 2| zoons oomw||/|LS2EF B g e 2 Lol faneex- Sk
@ss | 10 4] sBetens ocomw||/[LS8d F 4 5 teed = Lshr {_tmp_5,
@ss | 20 2| 7Hz232ns] 200 mw Lztas |- 5_-‘-} _tmp_3 = | extract_1 _tmp_d
Og; 10 | : ; | 2102 ns Eg mm Lsoe |F | o sk = =k (1, _twp_
el B = B |l 23 Hz 1800 :W Lsaz [-statws (= ’ J
Oswi Tl sl 12 W27 ns 00D mw (= i —status_
@z11] 3| 50 17 Wz nsfdndinw {
@z1z] 1 5] s aens] zoomw goto 510:
@3 o] 4| 3| zoons zoomw 1
@z14] 3 s 2 s ns] 200 mw olee
@s15] 2 51 9 Boz sl Boomw c
@s16] 1l 4] el 716ns] 200 mw zoto 511: =
@17 1 4l 2l 76 ns[oo mw
S| |[@s1el 4 50 15 BElos ns| Boo mw 5 -
i [@s13] 1 40 12l 716 ns] Boomw '
@sz0] 1 4| &l 76ns] zoomw =
@z21] 1 4 2] 616ns 00mw 4
@szzz B | =16 ns[2000 mW
@sez| A sW e18ns 0.0 mwf/
-] | - | =
_ Help | ok | cancel -/'
R =0,

SCE allows for the designer to manually schedule and bind the operations. However,
this is a tedious task and can be done by automated tools. To perform automatic
scheduling and binding, the designer can skip the manual step and go directly to
Section 4.4.2 Schedule and bind automatically (page 192).

If RTL Scheduling & Binding window is not open yet, we have to open it again by
selecting Synthesis—Schedule & Bind RTL from the menu bar. Choose the behavior
"Build_Code_FSMD" from the hierarchy.

we will show how to specify control step for each statement in a state. In RTL Schedul-
ing and Binding window, we select "S9" to do manual scheduling and binding. In the
right side panel of the RTL Scheduling & Binding window, left click on the right side
of the label "L_S9_0". This activates the Cycle column for "L._S9_0". We can specify
the control step for it. In this way, we can specify control step for all statement in the
state S9.

Note that if reader is not interested in how to do manual schedul-

180

Chapter 4. Custom Hardware Design

ing and binding, she or he <can skip this section to go directly
Section 4.4.2 Schedule and bind automatically (page 192).

181

Chapter 4. Custom Hardware Design

4.4.1.1. Schedule and bind manually (optional) (cont’d)

=|\wocoder.sce - S0C Enviranment - [Build_Code_FSMD - VocoderFsmd - VocaderFsmd sir] =S
§|ﬁ Scheduling & Binding ||EN
o State Oper Variat{ Transfq Celay |P0wer '_[J Cycle Destination | Operat.ion |Source 1 ISDu‘ —
Al |@so0 0 E] 0 000ns 0.0 mw L=ao F o 4 i = codweclk]
@51 ol 4 2| zoons nomw| ([T Sa 1 o [2 J = sizgn[i] -
852 I 1 = 4|| 3= BABNs 0.0 MW T o I |9—_} e - e i essa e
53 1 4 s | 616 ns] 20.0 mw | =" pnaing |4 - : :
@sa ofl 4 2| z00ns vomw| | [L80 S TTEM St S = Lonule faneex- Sk
@s5 | 10 4] alletens 0omw g dmtbinding |3 _twe 4 (=1 Lshr (_tne B,
@s6 | 2zl 4] 723z ns] 200 mw| || [T s__Eul binding A te3 [= | extract_L _tmp_4)
@57 o 4 2| 200ns 00mwW _} track = =ub (i, _tmp_
@z | 10 4| sQe1Ens oomw - T y— 5 J
B Sl 0 EETy = / _
@s10] 1 51 12 Wz76 ns00n mw |- i —status_
@z11] 3| 50 17 Wz nsfdndinw {
@z1z] 1 5] s aens] zoomw goto 510:
@3 o] 4| 3| zoons zoomw 1
@z14] 3 s 2 s ns] 200 mw olee
@s15] 2 51 9 Boz sl Boomw c
@s16] 1l 4] el 716ns] 200 mw zoto 511: =
@17 1 4l 2l 76 ns[oo mw ;
Al l@s1:l <l sl B0.0 mW -
1 |{@s13] 1l 4l 1zl 716 ns] B0.0mw '
|| |@se0| 10 4] &l 716ns] z00mw o
|| |@sz1] 0 a4 2] 616ns 00mw
|| |@sez B | =16 ns[2000 mW
(| lmsezl (A 30 ei6n: 00mwls
] |] | -
Help | OK | Cancel '/|
L A
P 4

To perform manual binding for operations in the state S9, right click on Label, "L_S9_2".
It will pop up a menu for the binding options. Select Full binding.

182

Chapter 4. Custom Hardware Design

4.4.1.2. Schedule and bind manually (optional) (cont’d)

=|\wocoder.sce - S0C Enviranment - [Build_Code_FSMD - VocoderFsmd - VocaderFsmd sir] | =1E |
[E]RTL Scheduling & Binding [
H State Oper Variat{ Transfq Celay |P0wer | 3 [J :le Dest inat ion | Operat ion |Source 1 |Sol
Al |@s0 0 a 0 000ns DOmW L_59_0 |0 S i = codveclk]
@51 ol 4 2| zoons nomw| || 551 [2 J = sign[i]
Osz | 1 . 4 | g I B18ns 0.0 mW index = mult (i
@33 | 10 4| s)eiens zoomw o =
@sa o] + 2| 200ns oomw||/|Lsse b3 A =
@ss | 1l 4] aleiens oomw - _f“]l =1 =
@ss | 20 2| 7Hz232ns] 200 mw - E _
@s7 offl 4 2] zoons oomw||[s93 3 i = Fndex.
@s: | 10 4] sleiens oomw| | [Lssd fb 2 ~tnp_d =| Lshr {_twp_5.
sl ¢l z: - AE0aR Lses [- _tmp_3 = | extract_L {_tmp_d
@s10] 1] s 2 Wz7e nsfionn mw Lsoc IE—_{ track - e (L, _twp.
@z11] 3 50 17 Were nshdndew T | [—= 4 statie - S .
@s1z| 1 5| el atens]anomu| |55 F1e3 - - |)
@s13 o] 4| 3| zoons] coomw ir —status_
@x14] 3 1 2B ns] 200 mw £
@s15] 2 51 9 Boznsl Boomw goto 510;
©@s16] 10 2| el 7i6ns] 200 mw 3
@17 1 40 120 716 ns[B00 mw oo
Al @zl 4 sl B0.0 mw :
1 |{@s13] 1l 4l 1zl 716 ns] B0.0mw aoto Sii:
| |@sz20] 10 2| &l 716ns] z00mw
| |@sz1] 1@ = 2] 616ns 00mw 3
| |@s2z R | =16 ns[2000 mW
| |@s23] "B =zl e18n: 00mw
| lmmezal 1 EEEE sl m16ne nnmu S [I
Help | Ok | Cancel
5 %
=

Each column in a statement in right side of the window is now expanded to allow manual
binding. We will bind a function call, mult (Operation column), to "ALU3". To do so,
left click on 2nd blank row of the Operation column. Then pull-down menu pops up
and shows all functional units which can perform function call mult. In this case, one
possible functional unit, "ALU3" is shown in the pull-down menu.

183

Chapter 4. Custom Hardware Design

4.4.1.3. Schedule and bind manually (optional) (cont’d)

=|\wocoder.sce - S0C Enviranment - [Build_Code_FSMD - VocoderFsmd - VocaderFsmd sir] | =1E |
[E]RTL Scheduling & Binding [
H State Oper Variat{ Transfq Celay | Pawer | 3 r :le Destination | Operat.ion |Source 1 |SDu‘
Al |@s0 0 a 0 000ns DOmW L_59_0 |0 S i = codveclk]
@51 ol 4 2| zoons nomw| || 551 [2 J = sign[i]
Osz | 1 . 4 | g I B18ns 0.0 mW index = nult (i,
@33 | 10 4| s)eiens zoomw = =
ol E—
@34 o s 2| 200n: 00mw Lsse o 2 [T 3 (Ao =i
@s5 | 10 4| sPeiEns nomw =
@ss | 20 2| 7Hz232ns] 200 mw - _ -
@s7 offl 4 2| zoons oomw| | [523 B "}pj =| Lonle “index, 3
@s | 10 4] s0eiens oomw| | [Lssd [& fers P-4 =| Lshr (tmp 5.
@ el el z: EEEE00Y | || |[se5 F ks p-3 = extract_1 _tmp_d)
@s10] 1] s 2 Wz7e nsfionn mw Leoe f 2 Trach - e {1, _tap_
@z11] 3 50 17 Were nshdndew T | [—= 4 status - 5 .
@s1z| 1 5| el atens]anomu| |55 F19 - - i !
@s13 o] 4| 3| zoons] coomw i —status_
@x14] 3 1 2B ns] 200 mw £
@s15] 2 51 9 Boznsl Boomw goto 510:
©@s16] 10 2| el 7i6ns] 200 mw 3
@7 10 «1 B0.0 miw oles
Al @zl 4 sl B0.0 mw c
i |@s13] 1l 41 B0.0 mw goto Sil:
| |@sz20] 10 2| &l 716ns] z00mw
| |@sz1] 1@ = 2] 616ns 00mw 3
| |@s2z R | =16 ns[2000 mW
| |@s23] "B =zl e18n: 00mw
| lmmezal 1 EEEE sl m16ne nnmu S [I
Help | Ok | Cancel
5 %
=

We will bind a target variable index (Destination column) to RF1[7]. To do so, left click
on 2nd blank row of the Destination column. Then pull-down menu pops up and shows
all storage units In this case, four storage units such as "MEM1", "RF1", "RF2" and

"RF3" are shown in the pull-down menu. Click on "RF1" to select "RF1".

184

Chapter 4. Custom Hardware Design

4.4.1.4. Schedule and bind manually (optional) (cont’d)

[=IB[x]
H State Oper Variat{ Transfq Celay |P0wer | 3 [J :le Destination | Operat.ion |Source 1 |SDu‘
Al |@s0 0 3 0 000ns 0.0mW Lo b 2 i = codveclk]
@51 ol 4 2| zoons nomw| || 551 [2 J = sign[i]
Osz | 1 . 4 | g I B18ns 0.0 mW index = nult (i,
@33 | 10 4| s)eiens zoomw = =
ol E—
@34 o s 2| 200n: 00mw Lsse o 2 R [5] AUs_ =i
@s5 | 10 4| sPeiEns nomw =
@ss | 20 2| 7Hz232ns] 200 mw - _ -
@57 0 l 4 5 I S00ns 0.0 mW L 593 |3 -‘; _tmp_5 = L_mult (imdex. &
@s: | 10 4] sleiens oomw| | [Lssd fb 2 ~twe_d =| Lshr (tmp 5.
@ sl ¢l z: - AE0aR Lses [- _tmp_3 = | extract_l _tnp_d)
Osio| W sl 12 Wz nsH000 mw | | IF oo E 2 Erack - e {1, _tap_
@z11] 3| 50 17 Wz nsfdndinw — 4 status - 5 .
@s1z| 1 5| el atens]anomu| |55 F19 - - i !
@s13 o] 4| 3| zoons] coomw i —status_
@x14] 3 1 2B ns] 200 mw £
@s15] 2 51 9 Boznsl Boomw goto 510z
©@s16] 10 2| el 7i6ns] 200 mw 3
@17 1 40 120 716 ns[B00 mw oles
Al @zl 4 o0 15 B0 ns[Bo.0 mw c
1 |{@s13] 1l 4l 1zl 716 ns] B0.0mw goto Sil:
| |@sz20] 10 2| &l 716ns] z00mw .
| |@sz1] 1@ = 2] 616ns 00mw 3
| |@s2z R | =16 ns[2000 mW
| |@s23] "B =zl e18n: 00mw
maza | 1 R c W G ne nnemwld | I -
Help | Ok | Cancel
[l

For storage unit binding, the address of the variable in the memory should be specified.
Left click on right side of the 2nd row of Destination column. Specify the memory
address to 7 for variable "index". The -1 in address field for a memory is default value
which means that the address for the memory is not bound yet.

185

Chapter 4. Custom Hardware Design

4.4.1.5. Schedule and bind manually (optional) (cont’d)

=|\wocoder.sce - S0C Enviranment - [Build_Code_FSMD - VocoderFsmd - VocaderFsmd sir] B
FTL Scheduling & Binding
H State Oper farial Transfi Delay '_[J Cycle Destination I Operat ion ISource 1 |Source 2 |
A @s0 0.00 Lo F oo 4 i = codveclk]
@51 2| 2.00 Leat |13 K] = signli]
=5 7
852 | = | 3= B.16 inclex = it . 6554
53 4 sl 616 = = =
@2 off s 2| 200 Lsse |7 [z 45 1 EE — 3
@s| 10 4| alew = -'ﬂl —j—"|[|3' _‘fjl
@sB : 0 ¢ 7 W23z :
@57 l 0 = 4 l 5 |.2.DD Ls9.3 Ik |3 -\; _tnp_5 =| L_mult Cindex,. S
@sas | 10 4] a3l 616 Lsad F [« 3 ~top_d =| Lshr (tne 5. 1)
@ 4 . g . 23 - L35 | |5_-‘n‘li _tmp_3 = | extract_l {_tmp_d>
@310 1 . B I 12 .2-?6 i & track = =ub (i. _tmp_3}
@z 3| 50 7 Wze Ls2e by
. 4 - .
@s1z] 1l &] efore| |[LLF [[5 status I J ©
@s13 off 4| 3| zoo i —status_
@14 3 51 1z Blss i
@s15] 2| 51 BBz goto 510z
©@s16] 1 2| 6l 76 3
@sz17] 1 40 12 78 oles
Al [@s1cl 4 0 15 e :
i |@s13] 1l 4 12[78 soto Sii:
| |@sz0] 10 2| &l 78
| |@sz1] 1@ = 2] 618 3
11 |@ 522 s 1NN D2 Y <16
| lmsz3l -EII 51 BRI P4
11 = | =] I
Help | Ok | Cancel
5 %
furec 2

Likewise, source variable, "i" is bound to RF2[3].

186

Chapter 4. Custom Hardware Design

4.4.1.6. Schedule and bind manually (optional) (cont’d)

=|\wocoder.sce - S0C Enviranment - [Build_Code_FSMD - VocoderFsmd - VocaderFsmd sir] | =1E |
|| = RTL Scheduling & Binding [[xI
H State Oper farial Transfi Delay -_ Cucle Destination I Orerat.ion ISource 1 |Source 2 |
A @s0 0.00 Lo F oo 4 i = codveclk]
@51 2| 2.00 Leat |13 K] = signli]
=EL /
852 | = | 3= B.16 inclex = it | . 6554
53 4 sl 618 = _ _
@2 off s 2| 200 Lsse |7 [z 45 7 — e
@ss | 10 4| alles = _J:] m—-‘lu _""Jl
@sh :l 4 7 lz32 .
@57 I 0 = 4 l 5 |.2.DD Ls9.3 Ik |3 -\; _tmp_5 = L_mult {incex, 52
@sas | 10 4] a3l 616 Lsad F [« 3 ~top_d =| Lshr (tne 5. 1)
@ 4 . g . 23 - L35 | |5_-‘n‘li _tmp_3 = | extract_l {_tmp_d>
@310 1 . B I 12 .2-?6 i & track = =ub (i. _tmp_3}
@z 3| 50 7 Wze Ls2e by
@siz| 1l e eRos| [L=22F [states (= ’ J ©
@s13 off 4| 3| zoo i —status_
@14 3 51 1z Blss i
@s15] 2| 51 BBz goto 510z
©@s16] 1 2| 6l 76 3
@sz17] 1 40 12 78 oles
Al [@s1cl 4 0 15 e :
i |@s13] 1l 4 12[78 soto Sii:
| |@sz0] 10 2| &l 78
| |@sz1] 1@ = 2] 618 3
[|@s22 I 1 2 Y s
| lmszzl (EEE s W sa6 |/
I ET | = 1 T
Help | oK. | Cancel
5 %
e

So for, we performed functional unit and storage unit binding. We can specify more
information on binding, such as ports of the functional unit and storage unit and buses
for data transfers. For the output port binding of the functional unit, left click on the 1st
row of the Operation column which will show all output ports in ALU3 unit.

187

Chapter 4. Custom Hardware Design

4.4.1.7. Schedule and bind manually (optional) (cont’d)

=|\wocoder.sce - S0C Enviranment - [Build_Code_FSMD - VocoderFsmd - VocaderFsmd sir] | =1E |
| |=|RTL Scheduling & Binding [[xI
H State Oper farial Transfi Delay '_[J Cycle Destination I Operat ion ISource 1 |Source 2 |
] e 0.00 Lso o |- |0 -} i = codvec[k]
@51 2| 2.00 Leat |13 K] = signli]
=5 7
852 | = | 3= B.16 index = nult . EEG4)
53 4 3 6.16 = result =
sa ol 4 2| 2oof|||sse F 3 3 3
ol 1= I R T R 2 i ’
@ | 2l 2] W = = : =
@57 I 0 = . | 5 |.2_DD Loz Ik I—3 _} _tnp_5 = h tindex, 59
@sas | 10 4] a3l 616 Lsad F [« 3 ~top_d = (tne 5. 1)
@ 4 . g . 23 - | L35 | |5_-‘n‘li _tmp_3 = | extract_l {_tmp_d>
@310 Tl sl 1z lzvs Lsoe o IE_.\ track = sub (i, _tmp_3)
@s11] s s 17 Wz —— / .
@s1z] 1l &] efore| |[LLF [states (= ’ J ©
@s13 off 4| 3| zoo i —status_
@14 3 51 1z Blss i
@s15] 2| 51 BBz goto 510z
©@s16] 1 2| 6l 76 3
@sz17] 1 40 12 78 oles
Al [@s1cl 4 0 15 e :
@sz19] 1 al z) 78 soto Sii:
@sz0] 1 a| &) 78
@z21] 1 4 2] 618 3
©s2 [N I I I 16
mszal (MR SN 66 |/
= T =] T
Help | oK. | Cancel
F |
=

For the input port binding of the functional unit, left click on the 3rd row of the Opera-
tion column which will shows all input ports in ALU3 unit.

188

Chapter 4. Custom Hardware Design

4.4.1.8. Schedule and bind manually (optional) (cont’d)

=|\wocoder.sce - S0C Enviranment - [Build_Code_FSMD - VocoderFsmd - VocaderFsmd sir] | =1E |
|| = RTL Scheduling & Binding [[xI
H State Oper farial Transfi Delay -_ Cucle Destination I Orerat.ion ISource 1 |Source 2 |
] e 0.00 Lso o |- |0 -} i = codvec[k]
=1 2| =00 . - = iznl1
852 l 3|| b.18 R E R in:ex = mult Slg“[i’ 554)
Os3 | . 4' 5. B.16 3y —| result
Sl IO Mol | 10 ST v 7 o] o *J
’ i b = | outA
@ | 2l 2] W inpart =l
@57 I 0 = 4 l 5 |.2.DD Ls9.3 Ik |3 -\; _tmp_5 = L_mult {inclex. 5)
@sas | 10 4] a3l 616 Lsad F [« 3 ~top_d =| Lshr (tne 5. 1)
@ 4 . g . 23 - L35 | |5_-‘n‘li _tmp_3 = | extract_l {_tmp_d>
@310 Tl sl zWevs Lsoe o IE_.\ track = sub (i, _tmp_3)
@z 3| 50 7 Wze —— - 4 siatus - s . 5
@s1z] 1 5| e o Lssz F [r 3 - - -
@s13 o] 24| 3| zm . —status_
@14 3 51 1z Blss i
@s15] 2| 51 BBz goto 510z
©@s16] 1 2| 6l 76 3
@sz17] 1 40 12 78 oles
Al [@s1cl 4 0 15 e :
i |@s13] 1l 4 12[78 soto Sii:
| |@sz0] 10 2| &l 78
| |@sz1] 1@ = 2] 618 3
[|@s22 I 1 2 Y s
| lmszzl (EEE s W sa6 |/
11 = | =] |
Help | Ok | Cancel
I
[fe

In this way, we can select write port for the write storage unit (RF1[7]) and read port for
the read storage unit (RF2[3]).

189

Chapter 4. Custom Hardware Design

4.4.1.9. Schedule and bind manually (optional) (cont’d)

=|\wocoder.sce - S0C Enviranment - [Build_Code_FSMD - VocoderFsmd - VocaderFsmd sir] | =1E |
_§|ﬁ Scheduling & Binding ||E
H State Oper farial Transfi Delay '_[J Cucle Destination I Orerat.ion ISource 1 |Source 2 |
] e 0.00 Lso o |- |0 -} i = codvec[k]

@51 2| 2.00 Lssi |1 3 K] = signli]

= 7
@sz | l) AL index = it 0, GBE4]
883 | = 4' 5II .16 I_" —| result
54 ol ¢ 2| zoo Lsaz2 F |2 |~ L3 e |—_~.

@ss | 10 4] alles BUS1 b—jTAIE :

©ss | 20 4 72 ELS2 == 2

OS? 0 . 4 2I 200 LS9 3 & |3 -} = = L_mult {incdex. 5)

@ss | 10 4| s@ets|||Lsse F [« k4 =| Lshr (tmp_5. 1)

@ sl ¢ z: N LS96 F [~fBUsS = | ewtract_l (_tmp_d)

@sz10] 1] 5] 2 Wes | A|BUSE - s L, _top 3

@s11] s s 17 Wz Lsee P 4 ot - s . o

@s1z] 1l &] efore| |[LLF 5 - nl J

@s13 off 4| 3| zoo i —status_

@14 3 51 1z Blss i

@s15] 2| 51 BBz goto 510z

©@s16] 1 2| 6l 76 3

@sz17] 1 40 12 78 oles
4 [©@s1:l <+ sl f

@sz19] 1 al z) 78 soto Sii:

@sz0] 1 a| &) 78

@z21] 1 4 2] 618 3

©s2 [N I I I 16

mszz] (B s W oeas |4

= T =] T

Help | oK. | Cancel

£ 4
=

For the bus binding, left click on the Ist row of the Destination column which shows
all allocated buses. For target variable "index", "BUS3" is selected for write.

190

Chapter 4. Custom Hardware Design

4.4.1.10. Schedule and bind manually (optional) (cont’d)

[E[I=1ES]
|FTL Scheduling & Binding
H State Oper farial Transfi Delay '_[J Cycle Destination I Operat ion ISource 1 |Source 2 |
Al |@so0 0.00 Lsa o & |0 4 i = codveclk]
@51 2| 2.00 Lssi |1 3 K] = signli]
=Hb /
@sz | l) AL index = wult i, £56d)
853 | = 4| 5|| B.16 B3 BUS3 2| vesuit o mus2
54 0 4 2| 200 Lsaa [2 Soe 3 LUz Fo ||—_s
@ss | 1 2] allss : :[? _f"JI I— j tﬂ-‘[!
@s6 : 2 7 a3z e ks o
@57 l 0 = 4 l 5 |.2.DD Ls9.3 Ik |3 -\; _tnp_5 =| L_mult {index . 5)
@ss | 10 4] sPeis||||Lsea o [2 —tmp_d =] Lshr (_tmp 5. 13
@ 4 . g . 23 - L35 | |5_-‘n‘li _tmp_3 = | extract_l {_tmp_d>
@s10 1 . 5' 1z .2-?6 ~ LS9 6 & |6 £ track = =ub (i, _tmp_33}
@s11] s s 17 Wz —— / - .
@s1z] 1l &] efore| |[LLF [15 st N ’ - ©
@s13 off 4| 3| zoo i —status_
@14 3 51 1z Blss 1
@s15] 2l 51 slEe: goto 510:
©@s16] 1 2| 6l 76 3
@sz17] 1 40 12 78 oles
Al [@s1cl 4 0 15 e :
1 OS19| 1 . 4' 12. 716 goto 511z
| |@sz0] 10 2| &l 78
| |@sz1] 1@ = 2] 618 3
[|@s22 I 1 2 Y s
| lmszzl (EEE s W sa6 |/
I ET | = 1 T
Help | Ok | I Cancel
i
==

In this way, we can perform all binding in the RTL Scheduling and Binding window.
However, manual binding takes too much time and is an error-prone task. An easier
alternative is to use automatic scheduling and binding tools.

Left click on Cancel. Otherwise, the scheduling and binding information will be in-
serted and then used by automatic scheduling and binding tools. It may generate an
incorrect RTL. model.

191

Chapter 4. Custom Hardware Design

4.4.2. Schedule and bind automatically

=|\wocoder.sce - S0C Enviranment - [Code_10i40_35hits - VocoderFsmd - VocaderFsmd sir] =S
W File Edit “iew Froject gynthesisl Walidation Windows Help =|=] x|
D B[S0 AlocatePEs. Ba 0
Z Show Yariahles I
@ | Type A .
Desigh Architecture Plugins g ame
®- 2 VocogierSpec. sir B0 architecture Refinement... Coder & Code_10
=] r] i —
m'ﬂﬂ Vocoaerarss.sir schedule behaviors... ﬁﬁj@gﬁa}ﬂfﬁﬁé‘ﬁ&&_u en
N3 VncoderSched sir Scheduling Pl ! Standard_wrap ¥ cod
BF2)2 Vocodercormi. Enequiing Flugins - debook ;”g‘f—u‘?;”gffb " - h
RERE oin: ocheduling Refinement... W—”—"‘_AO_ S == IO, —d’prm
e LB ar it codebook AR INIT Codebosk e
Allocate Busses... | B codebook Codefook —(px
C Cotebon 7 ey
{5} Show Channels . oo s L o coder
Communication Pluging - Cor B % FShD — @dn
2|2 Communication Refinement... M st sign Ser Sign FSMD - @dn
= : A cor i Car fr FSMO - g inds
RTL Preprocessing... M searctr THAG Search 1048 FSMO | o ipos
&llocate RTL Units... :Mﬂo‘_coa‘e Bt Coe FSMD L o pos_r
) g8 &g FEAD -
Schedule & Bind RTL.. B B seqf Codebook_Seqe / - grr. /
] T RTL Plugins ™ 1 scrtl_hind T P =N =
Models | Impots | Sources | B RTL Refinement... 2 scril_sched Bl 1 hw |>|5
- By C Code Generation... |
X | compile | Simulate | Ana ell |
H - — Import Decisions... il
=xxx caloulating critic
#xx% caloculating power @ Slop
#% pehavior: Set_Sign FomO
#=x%x% cgloulating critical path delay
==xx caloulating pouer
|
| |Hriting 5IR file "/home/specc/deno/VMocoderFsnd,rtlStats.sir" ., . A
[Ready A

As already discussed, manual scheduling and binding takes too much time for a designer
to do and also is an error-prone task. We will now perform scheduling and binding with
the help of tools which implement scheduling and binding algorithms. In our design
flow, an automatic decision making tool for system-level design is called a "Plug in". For
RTL scheduling and binding, we call "RTL Plugins" by selecting Synthesis—RTL
Plugins—scrtl_bind from the menu bar. Before that, we have to select a behavior
"Code_10140_35bits".

192

Chapter 4. Custom Hardware Design

4.4.2.1. Schedule and bind automatically (cont’d)

=|\wvocoder.sce - S0C Enviranment - [Cade_10i40_3Shits - VacoderFsmd - VocoderFsmd sif =S
W File Edit Wiew Project Synthesis Walidation Windows Help =|=] x|
N H@ 8| ve XBbn| X EE| 83 0
x] 2l 3
; i MName |Type ol MG
Design A tain
m- {3 VocogerSpec.sir I coder Coder &»Code_10
(-88 Uneogerdreh sir ose Motorsia DEPSE6E0 M ¢ cn
(253 VocomerSched sir AU g aﬁgé'g_ weap o cod
o)z . e r)
518 vocadercomin si [RTL Synthesis oh ook :g hrm
ot . IMIT_Codetock P
—Plugin - o
Solat
Marme: scHl_bind biook_Seq T -y
Description: '3 3 - @ codey
RTL scheduling and hinding K FEMD I gdh |
Sigr_ FSMD - @ dnZ
f FSMD - @ indx
Eehawiar: | Caode_10i40_33hits (H¥) _iI betr TGHER FSMD L oipos
- o |l Come_Famo L s ¢
I Clock period: |1D ns 7 || Fswed G pos_|
kool _Seqs / B Oi"w /
| | More == | II Start Cancel | 1 = |/=d =
hodels | Imports | Saurces | A :I Hw I] |
’—"1 Compile | Simulate | Analyze | Refine | Synthesize | Shell |
Freparing scrl_hind... 4

An RTL Synthesis dialog

box pops up. In the middle of the dialog box, a pull-down

list is available to select the desired behavior. The default behavior in the list is the
one that is highlighted in the behavior hierarchy tree. For our demo, select behavior
"Code_10i40_35bits (HW)" from the list. By default, the clock period of the behavior is
10 ns. Now click on Start to begin "scrtl_bind".

193

Chapter 4. Custom Hardware Design

4.4.2.2. Schedule and bind automatically (cont’d)

Environment - [Code_10i4 [=I[=l]
W File Edit Wiew Project Synthesis Walidation Windows Help =|=] x|
N 1@ &8 ve x K| FEE] B @ 0
- i Mane |Type I T
Design = tain
m- {3 VocogerSpec.sir o W coger Coder &»Code_10
B30 Yocoger A sir o5P Motorsia_DEPSE6ET W Lo cn
U555 Vocoerseted sir i ;_"; W HW_ Stapdzm wEp - cod
ojm : Hl HW_Standand
3|8 VocogerComn. - o h
LEH OC m - B ar_wr_codebook AR_WA_Codepock L prm
vocoderFsmd s B B ar it codebook AR_INIT Codebook o
B B codebook Cotebook e
B B segT Codetaok_Seq 1 &y
i > I & codey
— @dn
- - @ dng
A cor i Car fr FSMO L o indx
M searctr THAG Search 1048 FSMO L @ ipos
A buiie coge Bt Coe FSMD L o pos_r
T v @ p FEMD GRS
B B segs Codebook_Seqé Cer
] I (= I = =] -
hodels | Imports | Saurces | Hierarchy | Behaviors | Channels | :I Hw! I] |
’—"1 Compile | Simulate | Analyze | Refine | Synthesize | Shell |
| - caloculating power Al
Writing SIF file "/homnesspecc/demno/VocoderFsnd,sunthesized,sir", ..
Done .,
[Ready A

Note that "scrtl_bind" annotates scheduling and binding information into SFSMDs for
all 6 sub-behaviors of the behavior "Code_10i40_35bits", as seen in the logging window.
The tool finally generates the SEFSMD model for the behavior "Code_10i40_35bits".

194

Chapter 4. Custom Hardware Design

4.4.2.3. Browse scheduling and binding result (optional)

= | vocoder.sce - 50C Environment - [Build_Code_FSMD - YocoderFsmd - YocoderF smd sir [read-only]] ([=I[3l[>]
W File Edit Wiew Project §ynthesis| Yalidation Windows Help =|=~| x|
- Allocate PEs... |% @ I .l
G Show Mariahles 1
. . [Type e P
Design architectura Fluging - HW_ZFandzrd_Whap
- 12 VcoderSpec sir 88 Architecture Refinement... HW_ Standand & Build_Code,
B2 Uocogerars sir SRR —— DK AR WA _Cogebook & cod
) Chedule Renaviors... codebook AR INIT Codebook o
B35 Vo ogierSohed sir : : : LI codver
Elg P — Scheduling Fluging L fOR Codetoak #h
ala [) 7 Gtk _Seg? .
o Scheduling Refinement.. o 7dG Code A0 35hits P indx
allocate Busses.. cor fr X Cor fi_x FSMOD < sign
set_sign Set_Sign_FSiD &y
&) Bl Cheiels cor Cor_fr_ FSMD
Communication Pluging - |sesmh 7548 Search 10AG FSMO
2|8 Communication Refinement... & 2
&z & @ g FSMD ~
RIL Prepracessing... Codebooh_Seql
allocate RTL Wnits... [Lofehaok AR_.SVNC_CQJ&MQK
konitor
Schedule & Bind RTL.. Stimulus /
A T - RTL Plugins - T = 1 -
kadels I Imports | Sources | [RTL Refinement.. Bnnels | :I HW I}lﬂ
C Code Generatian...]
X compile | Simulate | &na R ca el |
3 Import Decisions...
@ :iop
RTL scheduling and variable & operator binding A

To check the scheduling and binding result generated by "scrtl_bind", we have to go
over to RTL Scheduling & Binding window again by selecting Synthesis—RTL
Scheduling & Binding from the menu bar. Before that, we have to select a behavior
"Build_Code_FSMD".

If the reader is not interested in details of the scheduling and binding results, she or he
skips this section and go directly Section 4.5 RTL Refinement (page 198).

195

Chapter 4. Custom Hardware Design

4.4.2.4. Browse scheduling and binding result (optional) (cont’d)

= ‘vocodersce - S0C Environment - [Build_Code_F5hD - VocoderFsmd - YocoderFsmd.sir [read-only]] ||=||g||y
i%lﬁ Scheduling & Binding 'Ekll
| State | Operations |-[J Cycle Dest inat ion Operat ion |Source 1 ISource 2 |
= @30 m Lo I IO__'} i = codveclk] B
ol| @31] LS9l IF |1 .} i = =signli] |
ERicka | 1 Leno b [index | =| mult (i, G554} e
823 | 1D g~ o binding “tep 5 | = | L_mult {index, &)
@5 | 1 “ge Unit binding Ztme_d | =| L_shr tmp 5, 13 i
OSG . z L_SE._EUH hinding ; _tmp_3 = | extract_1 {_tmp_d?
Q=7 0 LS9 6 |- |5 -} track = sub {i, _tme_32
@38 I 16 LS9.7 I |2_'} _status_ = > J 0
@510 1 if _status_
@1} 3 £
051 2 I 1 goto 5107
@513]]
Os14 . 3 else
@s1s 2 c
) OS16I 1 goto 511; =
@7 1 3
—| [Os: 4 ¢
| @=19] 1 i
@szo] 1 |
@s21] 1
@sz: 1l
@sa3l 1|z
FU— -
Help | Ok | Cancel
11 A=
el A

In the RTL scheduling and Binding window, Cycle column shows the control step of
each statement. To see the binding information, we activate Full binding by selecting
Full binding in the binding pop-up menu.

196

4.4.2.5. Browse scheduling and binding result (optional) (cont’d)

Chapter 4. Custom Hardware Design

| State | Operations |'[J Cycle Destinat ion Operat ion ISDurce 1 |Source 2 I |
I l@s0 0 Lo F o _', i = codveclk] B
D|| (@51 d Lsa_1 |- | -\ d = signli] |
EINEE | 1 index = nult (i £554) B
BUS3 result 1| BUS4
@s3 | 1
(@)L 0 L5392 |© | _\ _\
o 1 ; ; RF1 = [|=] ALUS | RF1 ||:|]
OSG . 5 inport a.b — | outE
OS? 0 _tmp_5 = L_mult {index. 53
@36 I 1 BUS3 res —I | BUs4
5 Lsas B[S o rlo -"] Az R -‘-]
@s10 1 1 inport a.b — | outA |
@51 . 3 L5944 |3 -'} _tmp_d = L_shr {_tmp_5. 1)
os12 I 1 LS95 IF |4 .} _tnp_3 = | extract_l {_tmp_d?
8213 . g Ls9s |- |5 -} track = sub (i _tmp_3)
@515 . > LS9 7 IF |2 -} _status_ = S g v}
|| o 516 I i if _status_ |
Sl @si7]l 1 {
| @z Il 4 goto 5107 L]
| @s13] 1 3 =
1| |@s20 | 1 elss =
||| |@sa1]l 1 c
©@szz [0 zoto S11;
@saa | 147
FU— = }
Help | Ok | Cancel
Rk P

This is the scheduling and binding result for the L_S9_2 and L_S9_3 statement. The
statement L_S9_2 is scheduled control step 1 relative to the start of state S9. The func-
tion call "mult" is performed by ALU3. The variable "index" in statement L_S9_2 is
bound to RF1[2] which stores the result of the function call "mult" through the bus
"BUS3".

Left click on Cancel.

197

Chapter 4. Custom Hardware Design

4.5. RTL Refinement

So far, we performed allocation, scheduling and binding of which information is an-
notated into the SFSMD model. Then the SFSMD model should be refined into cycle-
accurate RTL model, which is represented by finite state machine with data (FSMD).
The cycle-accurate model will reflect all scheduling and binding information.

Basically, this step will split the state to the multiple states reflecting scheduling infor-
mation. Now each state will take exactly one clock period to perform.

The RTL refinement tool can generate cycle-accurate FSMD models in various hardware
description languages such as Verilog HDL and Handel-C in addition to SpecC. The
Verilog HDL model will be used as input for commercial logic synthesis tool like Design
Compiler from Synopsys. Also the Handel-C model will be fed into Celoxica Design Kit
to generate gate-level netlist.

198

4.5.1. Generate RTL model

Chapter 4. Custom Hardware Design

B5 C Code Generation...

= | vocoder.sce - 50C Environment - [Code_10i40_35hits - VocoderFsmed - VocoderF smosir [read-only]] [EEIE
W File Edit ¥iew Project §ynthesis| Walidation Windows Help =|=] x|
Nz &llocate PEs... = .|
& Show Yariahles
. : Type (- e
Desigh Architecture Pluging -
- 2 Viocoaerspes. sir B8 Architecture Refinement... Cioder & Code_10
oo ; Ao L
=38 Vocoderarchsir Schedule behaviors... ija?g & en
W28 VoconerSohed sir ceheduling Plugi i - cod
BH2|2 Vocoder o, Enequiing Fugins = obook :’gf_ﬁ L efrh
o Scheduling Refinement... ‘_0_ s — - farm
iE_codehook AR o
allocate Busses... obrok Cirtebo _of)x
5 Show Channels seq 7 Corebe | ggndet
Communication Plugins .~ [% v - @dn
22 Communication Refinement... - set_sigr et Sig I @dn
— - W cor i Cor i - @ind=
RIL Preprocessing... Ll searh 1048 Searci L aipos
Allocate RTL Units . -:fwﬂa’_wa‘e Buig L o pos_r
. LR (= -
Schedule & Bind RTL... seq e / — grrl /
B T RTL Plugins - T B <E
todels | Imports | Sources | [RTL Refinement... Channels | H I:l >

__ﬂ Compile | Simulate | &na

Import Decisions...

el |

@ stop

RTL refinement

|

We refine the SFSMD model to a cycle-accurate model by selecting Synthesis— RTL

Refinement from the menu bar.

The refinement step will split the state into multiple states reflecting the scheduling
information. Also, each state will take exactly one clock period to execute.

199

Chapter 4. Custom Hardware Design

4.5.1.1. Generate RTL model (cont’d)

= | vocoder.sce - 50C Environment - [Code_10i40_35hits - VocoderFsmed - VocoderF smosir [read-only]] [EEIE
W File Edit View Project Synthesis Validation Windows Help =|=] x|
N B8 &8 |0 e X EEEEEEIE
= i
= x 4
. = E IType B Marme
Design : - -
QVocoa’er.Svec.sﬂr Behavior: Code_10i40_35Shits (H'W) _lI Codar & Code_10
#-38 VocoderAmir.sir Clock period: - en
B2 UncomerSched sir ¢ cod
32|12 Viscodersomm 4 - Output style —c ' h
o v -~ ~ (1) Mo hinding —(ﬁj farm
+ (2) Storage binding —gx
o oy
~ (3) FU & storage hinding | o coder
() Bus, FU & storage hinding - gadn
= gdnZ
© Keep original hehavior - @ind=
— Translation — @ipos
I Generate Verilog output: - @pos_r
 @rr
|fh0mefspeccfdem0NucoderRTL.v| C_?ﬂ:“ /
— | Generate Handel-C output: - T —
Madels | Imports | Sources e H_IW 5.'.5
|fh0mefspeccfdem0f€ude_1Eli4E|_35bits.hcc = =
__ﬂ Compile | Simulate | anal
II Start Cancel |
A
Freparing refinement... A

The RTL Refinement dialog box pops up showing us all options which can be used for
the refinement tool. At the top of the dialog box, a pull-down list is available to select
the desired behavior to be refined. The default behavior is the one that is highlighted
in the behavior hierarchy tree. For our demo, select "Code_10i40_35bits (HW)" from
the list then left click on Start to begin RTL refinement. Notice that like in the earlier
refinement phases, we have options for partial refinement steps. The user might avoid
some binding steps if he wants to look at intermediate models. Also note that we have
selected a clock period of 10 ns, corresponding to the speed of our custom hardware unit.
It may be recalled that while selecting the hardware component, we specified a hardware
component with clock speed of 100 Mhz, which imposes a clock period of 10 ns.

The RTL refinement tool can generate cycle-accurate FSMD model in various hardware
description language such as Verilog HDL and Handel-C in addition to SpecC. The
Verilog HDL model will be used to be input of the commercial logic synthesis tools
such as Design Compiler from Synopsys. Also the Handel-C model will be fed into
Celoxica Design Kit to generate gate-level netlist. In this demo, we will generate SpecC

200

Chapter 4. Custom Hardware Design

RTL and Verilog HDL model for the design.
Change the output file name for the Verilog HDL model to "VocoderRTL.v".

201

Chapter 4. Custom Hardware Design

4.5.1.2. Generate RTL model (cont’d)

Environmant - [fain - s ly (==

[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|

EXSIES EEEEEEIE

i
- 1 _Name At Marme
Design -
) Vocogerspec.sir & Main
®-33 Viocoderarh sir Monitol @lacal_dt
5 ioconerSohed sir A stimulus Stimulu Thdbs_mod
BH2|2 VocogerTomn sir 4 Build_Code T serial_hbi
|4 Euild_Code_FSkD
L& Cor_h Ihspeech_
EAY ocoderFsi L4 Cor_h_FSMD O idtx_ctr
L@ Cor h_x & coder
& Cor_h_»_FSMD & monitor
4 L_unit_32 & stimulus
&+ Il Motorola_DSPSEE00_BF —
-—"Q_p
4 C_p_FsMD
M FRF_32 32 5
M RF_32_64_6
—4F Search_10i40 /
N — I = | -
Models [imports | Sources | Hierarchy | Behaviors || Channels | Rat I E)J.C

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

*% pehavior: Set_Sign_FSMD Al
*#%x% calculating critical path delay
*x2%x% caloylating power

kriting SIR file "/home/specc/demo/VocoderFend,rtll,sir", ..

Done.,

|
£

[Ready A

Note that the RTL refinement step generates a new RTL model for 6 sub-behaviors of
the behavior "Code_10140_35bits", as seen in the logging window. Also note that a new
model "VocoderFsmd.rtl.sir" is added in the Project manager window.

202

Chapter 4. Custom Hardware Design

4.5.1.3. Generate RTL model (cont’d)

§| vocodersce - 50C Environment - [kain - VocoderFemd - VocoderFsmd flsir reacd-only]] ||Q|E|Z
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
N B8 &8 |0 e X EEEEEEIE
e - i
) i MName
Design
) Vocogerspec.sir & Main
®-33 Viocoderarh sir @lacal_dt
W28 VoconerSohed sir O dt_mod
3|2 ViscoderComm sir T serial_hi
ﬁ—- Vocadertsme si Fcor h Ihspeech_
e W 0coderF piadeihed = T =D obaltx_ctr
Open & coder
Delete Del | FSMD & monitor
e — 4 & stimulus
REn npuy | DSPSEE00_BF s
Becreate
o
Rename... 75
Change Description... 16
Statistics .. ni40 /
=l I T]]== | - -1 -
todels | Imparts | sources | Hierarchy [Behaviors | Channels | Raw I E~ | 5

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

T o LT 5 e T IR T T 1 Y

**#x% calculating critical path delay
»##% calocuylating power

kriting SIR file "/homedspecc/denoVocoderFsnd,rtl.sir". ..

Done.,

|
£

[Ready A

Like before, we must give our new model a suitable name. We can do this by right click-
ing on "VocoderFsmd.rtl.sir" and selecting Rename from the pop up menu. Rename the
model to "VocoderRTL.sir".

203

Chapter 4. Custom Hardware Design

4.5.2. Browse RTL model

RIL Preprocessing...
Allocate RTL Units...
Schedule & Bind RTL...

RTL Plugins -
BA RTL Refinement..

R — |
Models | Impors | Sources

Search 10RO ATE
ap AT
Coaehook_Segs

= | vocoder.sce - 50C Environment - [Build_Code_RTL - YocoderRTL - VocoderRTL.sir'] [EEIE
[Eile Edit ¥iew Project §ynthesis| Validation Windows Help =|=| x|
N [[=l=] [§|;;|.¢) allocate PEs... =X I .|
Show Yariahles
@ 5 IType Ny
Design Architecture Plugins - il
- 2 Viocoaerspes. sir 88 Architecture Refinement... Coder & Build_Cade,
1] ; Motoroia DEFSEEHE W
o B8 VocoderAmésir Schedule behaviors. .. H;Qg a_d o e & cod
W28 VoconerSohed sir ceheduling Plugi HW_‘S}‘Q"?;'M_WP ¢ codvec
ojm cheduling Plugins - ! Standa h
o|a VocoderCoimm.
Iil—_l|£_- Vorodgerss B2 Bcheduling Refinement... | v codsboak AfLWE Codeboak o indw
" — X it coqebaok AR INIT_ Codabook i
l—m &llocate Busses... Logehook Cinreb ook &Slgn
@ Show Channels -8 seg7 Codebook_Seq T ¥
B - B coge_ T0/4G Cergle TG40 358ds
Communication Flugins - y Cor b ox BTE
212 Communication Refinement... M set_sigr Sel_Sigr_ATL
— M cor i Cor f ATE

| -

5 I Channels I

B5 C Code Generation...

Tow [

X compile | Simulate | Ana

Impart Decisians...
% sir_rename -i ‘home/s e

el |

RTL

@ stop

r —o fhome/specc/denoVocoderRTL .= ir VocoderFemd Vocoder

RTL scheduling and variable & operator hinding

|

In order to look at RTL model for the behavior "Build Code RTL",
Synthesis—Schedule & Bind RTL from the menu bar.

204

select

Chapter 4. Custom Hardware Design

4.5.2.1. Browse RTL model (cont’d)

= [wocadersce - S0C Enviranment - [Build_Code_RTL - YocoderRTL - YocoderRTL sir] [EEIE
= | RTL Scheduling & Binding
State Oper{ Vari4 TranlDBIayI |P0wer I IJ Cycle Destination | Operat ion |Source 1 |SDL
@so O 0 0 000ns 00mW bus1 = RFOL1]
Q= o o 1 [ons] 103 mw LS30 b= bus0 = codvecbus1]
@sz M1 ol sl 94 mw _r k7 RFO[OT | = buzd
©@s3 ol [Es 0 mw [] |eoto s
@34 o ol 1ons] 103 mw
@ss W ol 1l 94mw
@ [l ol s 93 mw
@s60 [l ol B ses mw
@s7 o ol 1[ons] 103 mw
@ss [ol s 94mw
FEN ° ol :EFns zsamw
@391 1 ol s R TiEmw
@39z ol 3 R 535 mw
@sz93 W ol 2B 241 mw
@s94 W ol B S0amw
@95 o ol Sisnw
@s10 o oS Rl sl 700 mw
©@so [l ol 2 EEEEE 560 mw
@510z o o 3BT ns| 534 mw
@sn o e EEEEE 1116 mw I
@z [l ol B deaw
@s11_2 o o] 3BT ns| 283 mw
@s1z o ol s sl 46z mw
@zz.0 [l o s 94mw
[k] n o B R nem e | R I =
Help | Ok | Cancel
AH
Ready

In the right-most column of the RTL Scheduling and Binding window, some states are
split to multiple states. For example, state S9 is split to 6 states, S9, S9_1, ..., S9_5. Note
that the delay of these states is less than 10 ns in Delay in the right-most column.

Left click on Cancel.

205

Chapter 4. Custom Hardware Design

4.5.3. View RTL model (optional)

b B seg’?
[+ B coce TOM4R

[C

Coraehook_Seg?
Cioate_ 1848 3560
Cow fo 5 ATL

Set Sige ATL
Gor fr_ATL

Searoh TG ATL

&g RTE
Coaehook_Segs

= |vocoder.sce - S0C Environment - [Build_Code_RTL - VocoderRTL - YocoderRTL sir’] [EEIE
[Eile Edit ¥iew | Project Synthesis Validation Windows Help =|=| x|
DNe B _orc. Kon X REE]DS]]
. Hierarchy... 3
[Dasinn | Connectivit _ZP L ITWB | name
Design = g L [il| o @ rain
B 1 Uocoser. Graphs = o W coger Coger & Build_Code
®-88 Voco. Trace.. DSP Motoraia DSPSEET W, o cod
el) _ il Wty HW Standant wesp & codvec
g Quality Metrics.. B Al HW_ Standant h
= |§—|§ Show Testhanch B ar W cogebook AR WA Codebock Sind
= » B2 X it coqebaok AR INIT_ Codabook i
sz Show Children - B comebook Codetoak A sign
Customize... ’

S

Models | Imports | Sources |

| -

Hierarchy | Behaviors | Channels |

Tow [

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

RTL

¥ =ir_rename -i Jhome/sspeccsdemosVocoderFsnd,rtl.sir -0 Jhomesspecc/demnos/VocoderRTL ,2ir VocoderFsmd Vocoder

Yiew source

|

We now browse through the newly created model in the Design hierarchy window. Note
that the type of the instance "build_code" has now changed to "Build_Code_RTL" after

RTL refinement.

Select the behavior "Build_Code_RTL" by left clicking on it. We now take a look at the
synthesized source code to see if the RTL refinement tool has correctly generated the
RTL model. Do this by selecting View— Source from the menu bar.

If the reader is not interested, he or she may skip this section to go directly to
Section 4.5.4 View Verilog RTL model (optional) (page 209).

206

Chapter 4. Custom Hardware Design

4.5.3.1. View RTL model (optional) (cont’d)

File Edit Search Wiew

‘vocodersce - S0C Environment - [Build_Code_RTL - WocoderRTL - YocoderRTL 5ir"]

EEx

elp x| x|

ol

bit[31:
bit[31:
bit[31:
bit[31:
bit[31:
bit[31:
bit[31:
bit[31:
bit[31:
unsigned bit[0:0] _status_;

L I

Fsmd(10u)
3

pehavior Build_Code_RTL(
in short int codvec[101,
in short int signl40]1,
out short int codl401,
in short int hl401,
out short int y[401,
out short int indx[10])

void main(void)
H

BUST ;
BUS2;
BUS3;
BlUS4;
BUSS ;

MEMI [25E]1;
RF1[321;
RF2[321;
RFa[321;

L_51_0: BUST1 = 0;
RF1[01 = BUST;
goto 52;

H

5|

ame

b Build_C
o cod

#'h
cF indx
o sign
'y

¢ codvec

ode,

N

£

-

[Line: 4492 Cal: 1 A

Rl

|

The SpecC Editor pops up showing the RTL code for behavior, "Build_Code_RTL."
Scrolling down the editor window shows several function declarations in this behavior.
It is to be noted that these declarations correspond to the functions implemented for the
allocated RTL components. Also, we can observe a FSMD construct with 10 ns clock

period.

207

Chapter 4. Custom Hardware Design

4.5.3.2. View RTL model (optional) (cont’d)

= vocodersce - S0C Environment - [Build_Code_RTL - VocoderRTL - VocoderRTL sir] (==

File Edit Search Wiew

H

59:

o { ame

BUSZ2 = RFI[1]; b Build_Code

L_S9_0: BUS1 = codvec[BUSZ]; ool

RF1I0T = BUST; co

goto 59_1; o codves

z h

o 29—1) = ' indx
BUS2 = RF1[0T; & sign

BUS4 = RF1[0T; 'y

L_59_2: BUS3 = mult(BUSY, £554);

RF1[2] = BUS3;

L_S9_1: BUST = sign[BUSZ];

RF2[01 = BUST;

goto 59_2;

i

mlol [

59_2:

i
BUS2
BUS4

RF2L01;

RF1L21;

L_59_7: _status_ = BUSZ > 0; 1 -
L_59_3: BUS3 = L_mult(BUS4, 5); Hiw

RF3[0] = BUS3;]_[514
goto 59_3; = 7
H

£

59_3:
i

BUS2 = RF3[01;

L_59_4: BUS1 = L_shr(BUS2, 1);
RFZI0]1 = BUST;

goto 59_4;

3

£

3 -
E [Line: 4432 Col: 1
e 7

|

Scrolling down further shows the assignments for the state variables. Recall that the
RTL synthesis produced 112 states. These states are enumerated here from 0 through
111. Note the final assignment (S_EXIT = 111). Further observations of the generated
code show read/write operations on the register files. For instance, RF1 is the register
file written in the statement RF1[0] = BUS1; as shown in state S9.

208

Chapter 4. Custom Hardware Design

4.5.4. View Verilog RTL model (optional)

[0:0] clk:
[0:0] rat:
[0:0] _start_:
[0+0] _done_t
[15:0] codwvec:
[15:0] =ign:
[15:0] cod:
[15:0] h:
[15:0] y:
[15:0] indx:
[15:0] cod:
[15:0] y:
[15:0] indx:

[31:0] RFL[0:31]:
[31:0] RF2[0:31]:
[21:0] RFE[0:3L]:

[31:0] MEML[0;255]:

[31:0] BUSL:
[31:0] BUS2:
[31:0] BUS3:
[31:0] BUS4:
[31:0] BUSS:
[31:0] BUSE:
[0:0] _status_t
[E:0] state:

S0 =0
51 =1:
52 = 2:
53 = 3;
54 = 4:
Sh = B
Sk = B:
561 =7
57 =8:
58 =9
59 = 10

44,1

0

[EIEIE,

Help x|~| %]

Mame

& Build_Cade,
o cod
¢ codvec
#'h
cF indx
o sign
'y

L

[Ready

|

Check out the Verilog code generated in the file VocoderRTL.v. This code is generated
by the RTL refinement tool. The designer may go the shell and launch his favorite editor

to browse through the generated Verilog code.

If the reader is not interested, she or he can skip this section to go directly to
Section 4.5.5 Simulate RTL model (optional) (page 211).

Note that the Verilog code has corresponding modules for 6 sub-behaviors of
Code_10140_35bits.

209

Chapter 4. Custom Hardware Design

4.5.4.1. View Verilog RTL model (optional) (cont’d)

[SEIET
=l AR TS

g
BUSZ2 = RF1[1]:
RF1[0] = BUSL: SEl
BUSL = codvecl BUS2]: ' Mame

state = §9.1;

= i & Build_Code
RFL[2] = BUSE: e o cod
BUS2 = RFi[0]: P codvec
BUS4 = RF1[0]: h
RF2[0] = BUSL:
BUSL = signEBUS2];) S indx
BUS3 = mult{BUS4, B5543:
ztate = §9_2: Cf)SIQn

Ay

89 2

RF3[0] = BUS3;

BUSZ = RFZ[0]:

Bl)S4 = RFL[2]:

BIUSE = L_mult{BUS4, G
status = BUSZ:0:

59 31 .
RF2[0] = BUSL:
BUS2 = RF3[0]; /
BUS1 = L_shr(BUS2, 1): =

state = 59 4: —— .ﬁJHW I-)l;

59 4:
RF3[0] = BUSL:
BUS2 = RF2[0]:
BUS1 = extract_l(EUSZ):
state = §9.0:

§9.5:
RF1[Z] = BUSL:
BUS2 = RF1[0]:
BUS3 = RF3[0]:
BUS1 = sub(EIE2, BUSZ):

267,29 4z

)

In the Verilog code, we use "case" construct to represent FSMD. All states are defined by
parameter construct. If "_start_" signal is activated, FSMD begins to execute and then if
FSMD reaches state S_EXIT, "_done_" signal is asserted and FSMD will end to execute
and will wait for the next entry of execution.

210

Chapter 4. Custom Hardware Design

4.5.5. Simulate RTL model (optional)

[T [&5 ™

= |vocoder.sce - S0C Environment - [Build_Code_RTL - VocoderRTL - YocoderRTL sir’] [EEIE
[File Edit View Project Synthesis Validation | Windows Help =|=| x|
NeE i Xe I 3¢ B = Enable Instrumentation § ¢ I .l
Compile I = I
wpe r
Design M simulate Mame
Q VocoderSpe siv Cpen Terminal - Ciogar 83 Build_Code,
B8 Vacoderdrmi.sir Eill simulation [Adodorpis DEPSEEGET W P ooy
B2 UncomerSched sir e Log HW_Standzm_weap o codvec
BH2|2 VocogerTomn sir = W Stangart & h
ﬁ—- VoroorEame s Prafile (G AR WA Codebeck o ind
: anal i codehook AR INIT_ Codabook i
Analyze ook Codebook sign
Evaluate eq 1 Coaebook_Seq 1 &y
VT ode TG Code_ 167403501t
- : W cor i % Cor b & RTL
Show Esfimates sef_sign Sef_Sign ATL
Estimate W cor i Cor f_ATL
W seamt 740 Searmd TG ATE
Analyze RTL F =
@ Stop & op ATE

Coaehook_Segs /

S

| -

Models | Imports | Sources |

Hierarchy | Behaviors | Channels |

Tow [

RTL

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

¥ =ir_rename -i Jhome/sspeccsdemosVocoderFsnd,rtl.sir -0 Jhomesspecc/demnos/VocoderRTL ,2ir VocoderFsmd Vocoder

Compile

|

Now, we have to create an executable for the generated FSMD model by selecting
Validation—Compile from the menu bar.

If reader is not interested, she or he can skip this section to go directly
Chapter 5 Embedded Software Design (page 215).

211

Chapter 4. Custom Hardware Design

4.5.5.1. Simulate RTL model (optional) (cont’d)

= | vocoder.sce - 50C Environment - [Build_Code_RTL - YocoderATL - VocoderRTL sif [EEIE
[] File Edit ¥iew Project Synthesis Vglidationlﬂindows Help =|=] x|
o D @[=] ﬁ [=) ::|g) G I 3¢ [t = Enabhle Instrumentation o I .l
Compile I = [J
wpe B
Design M simulate Name
Q L-’gcaa’er@gec_sﬁr Open Terminal - Ciogar & Build_Code,
B33 VocogerArh sir Eill simulation [Adodorpis DEPSEEGET W P ooy
B2 UncomerSched sir e Log AW Standar Wesp ¢ codvec
BH2|2 VocogerTomn sir = HW_Standany h
Iil—- VipcoderFamd s Frofile GREbIGH AR_WE Codetock S indx
: anal i codehook AR INIT_ Codabook i
anahjze ook Codepook =lan
Evaluate eq 1 Coaebook_Seq 1 &y
AR octe_ 10148 Code_10i49_35bits
- : W cor i % Cor b & RTL
e e set_sign Sef_Sign_ ATE
Estimate W cor i Cor i1 ATL
W seamt 740 Searmd TG ATE
Analyze RTL ; e
@ siop gL & p ATL
T T wsege Cogetooh_Segl /
F | == |] =J]
Iodels | Imports | SOUrces | Hierarchy | Behaviors | Channels | :I HW Iﬁli’
__ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |
: Irput: “"VocoderRTL.cc" Al
Output: "VocoderRTL .o"
Linking, ..
Input: “"VocoderRTL.o"
Output : "VocoderRTL"
| |Done. JI
Simulate A

Note that the RTL model compiles correctly generating the executable VocoderRTL
as seen in the logging window. We now proceed to simulate the model by selecting
Validation—Simulate from the menu bar.

212

Chapter 4. Custom Hardware Design

4.5.5.2. Simulate RTL model (optional) (cont’d)

S=1ES
frame=147 encoding delay = 18,12 ns Help x| =] %]
frame=143 encoding delay = 18,12 ms
frame=149 encoding delay = 18,12 ns
frame=150 encoding delay = 18,12 ns i
frame=151 encoding delay = 18,12 ns ITBI'FIB |
Frame=152 encoding delay = 18,12 ms Mame
frame=153 encoding delay = 18,12 ns -
frame=154 encoding delay = 18,12 m= Caater &BUIId_CDdE_
frame=155 encoding delay = 18,12 ms Motornia DECSEEHE W o oog
frame=156 encoding delay = 18,12 ms o -
frame=157 encoding delay = 18,12 ns gm—g&wﬁ&‘g—mp & codves
frame=158 encoding delay = 18,12 ns _AEEE & h
frame=159 encoding delay = 18,13 ms AR_WE Codetock S inds
frame=1E0 encoding delay = 18,13 ms AR_INIT_Codebook .
frame=161 encoding delay = 18,13 ms Comebook gs'gn
frame=162 encoding delay = 18,12 ns
frame=163 encoding delay = 18,12 ns wdeboo‘ﬁ—‘seq? . 4

G 104G 358
done, 162 frames encoded Cow fo 5 ATL
Sl Sign RTE
Files srcdspeechfiles/nodtx_good.bit and nodtx,bit are identical Cor & AT
Simulation exited with status O =T .
Press return to continue .. Searci TOA0 H
T ol p ATE
‘ ‘ B segd Codebook_Seql /
“'l—ll I | = I - | ﬁJ -
Models | Imports | Sources Hierarchy | Behaviors | Channels | HW
| LARE
__ﬂ Caompile | Simulate | Analyze | Refine | Synthesize | Shell |
: % xterm -title VocoderRTL -& /fbindsh —o |, AocoderRTL sroc/speechfilessspoch_unx, inp nodbx,bit nodtx zs diff
-z =rc/speschf ilesnodb=_good,bit nodtx.bit: echo "Simulation exited with status $7?" recho "Press return to
continue ,,," rread confirm
[Ready A

The simulation window pops up showing the progress and successful completion of
simulation. We are thus ensured that the RTL refinement step has taken place correctly.
Also note that we can perform the RTL refinement on any behavior of our choice. This
indicates that the user has complete freedom of delving into one behavior at a time and
testing it thoroughly. Since the other behaviors are at a higher level of abstraction, the
simulation speed is much faster than the situation when the entire model is synthesized.
This is a big advantage with our methodology and it enables partial simulation of the de-
sign. The designer does not have to refine the entire design to simulate just one behavior
in RTL.

In this simulation, we see the delay per frame in RTL model increases to 18.13 ns from
17.05 ns compared to SFSMD model. Because each state in the SFSMD model is split
into multiple states by scheduling and binding.

213

Chapter 4. Custom Hardware Design

4.6. Summary

In this chapter we showed the task of custom HW design for the behaviors mapped to
HW component. We started from a bus functional model of the system and isolated the
behaviors that we want to implement in HW. These behaviors underwent a series of
transformations to arrive at a FSMD style model that can serve as input to industry stan-
dard logic synthesis tools. Besides, generating the SpecC models, SCE is also capable of
generating HW models in standard HDL like Verilog and Handel-C, which can be used
by the Celoxica Design Kit.

We also saw various advantages of working with SCE during RTL synthesis. The envi-
ronment and language allow the user to concentrate only on one behavior if he or she
needs to. That is, the designer may choose to perform cycle a accurate implementation
of a critical behavior and keep the remaining behaviors at a higher level of abstraction
for fast simulation. The RTL synthesis process itself allows the designer to perform the
scheduling and binding steps manually. However, we also showed the automatic RTL
synthesis capabilities. The designer is free to tweak the synthesis results and generate a
new model at any time.

214

Chapter 5. Embedded Software Design

5.1. Overview

Figure 5-1. SW code generation with SCE

Specification

Analysis untimed

System level
Design

Architecture
Exploration

SW Scheduling/ timed

RTOS
v

Communication
Synthesis

Custom HW SW code cycle
generation generation accurate

In this chapter, we look at software code generation as highlighted in Figure 5-1. The
bus functional model derived after system level design contains a behavioral hierarchy
of tasks mapped to SW components. Since the SpecC code is not a natural input for
generating the processor’s instruction-set specific code, we need to produce C code that
can be compiled for the processor. In this phase we use the SW generation tool to flatten
the hierarchical SpecC code and produce C code. We thus enable the designer to use
an off the shelf processor with C compiler and produce cycle accurate SW for it. The
instruction set simulator for the processor can be used in conjunction with the SpecC
simulator to perform cycle accurate simulation of both HW and SW.

215

Chapter 5. Embedded Software Design

5.2. SW code generation

Environment - [hMotorala, =1
BEA File Edit ¥iew Project Synthesis Walidation Windows Help =|=| x|
Dz 0d 8 ve [xbB X[FE| 6|0
. IType it MName
Design
m- 12 Vscoserspes.siv Coger & motorola,
B30 VocogerArh sir Notorsia_ o ar_ce
B VocoderSehed sir / o ar_cc
|Jﬂ-§|§ Voraaert o 2ir . W intr_BusG KW handier lhandier e ar_co
i—-lf der et 5 =~ AW Standand weap | ar co
DOTEEHT S Si AF monitor onitor s -
A stimulus Stimulus [AL
| ¥ Build_Code o ar_ce
|4 Build_Code_FSMD | o ar_co
& Cor_h i ar_ce
—' CDI’_h_FSMD —(ﬁj ar_cco
A Cor_h_x L ar o
A Cor_h_x_F3nD e ar o
A L_unit_3z e ar_cc
Il Matorola_DSPSEE00_BF =
Fop o ar_cc
il ! el
~l | = I I =] =
Models | imports | Sources | Hierarchy | Behawiors | Channels]DSP I: |]
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
[Ready 4

Once we are done with HW and have obtained a RTL model, we will generate soft-
ware for the DSP. For our design example, we need to generate C code for behavior
"Motorola_DSP56600" and all its child behaviors. We start by selecting behavior "Mo-
torola_DSP56600" in the design hierarchy tree.

216

Chapter 5. Embedded Software Design

5.2.1. Generate C code

= | vocoder sce - S0C Environment - [Matorola_DSPSEE00 - YocoderRTL - YocoderRTL 5if [EEIE
BEA File Edit View Project Synthesis I Walidation Windows Help =|=] x|
0 D«[== [=R Allocate PEs... =X I .|
: . o) Show Mariahles i
: : IType A Mame
Desigh Architecture Pluging -
- 2 Viocoaerspes. sir 88 Architecture Refinement... Coger & hotarola,
ag ; —,
=33 VocoderArhsir g — o ar_ce
B35 VncomarSched sir ; : i ar_ce
@_Elg P — Scheduling Plugins o psl HW fandier fhandier e ar o
W Voo, S22 Scheduling Refinement.. ﬁg’r’ig&m&‘m’_mﬁ L P ar cc
LERPERE Alocate Busses.. Stimulus P ar_co
o ar_cc
5 Show Channels o | | ar oo
Communication Pluging - o ar_ce
3|g Communication Refinement... 7 ar_cc
RTL P - o ar_co
TL Prepracessing... | ar cc
Allocate RTL Units... L
. 00_BF ooar_cc
Schedule & Bind RTL... y i ar_ce .
N e e
= I RTL Plugins - T B

1] -
Models | Imports || Sources | [RTL Refinement... I Channels I]DSP Iﬁli’

Bg C Code Generation... i

X compile | Simulate | Ana

Import Decisions...

@ stop

C code generation A

To generate C code for behavior "Motorola_DSP56600", select Synthesis—C Code
Generation... from the menu bar.

217

Chapter 5. Embedded Software Design

5.2.1.1. Generate C code (cont’d)

= | vocoder.sce - 50C Environment - [Motorola_DSPSEBO0 - YocoderRTL - VocoderRTL sit] [EEIE
BEA File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
N B8 &8 |0 e X EEEEEEIE
B X al
_ IType 7 | name
Design
13 Vocoderspec.sir Coger & Motorala,
B33 VocodierAretr sir Motorsls_DSPSEER0 Wrap - ar_ce
(5353 VinooerScfied sir o ar_co
BF2|2 VocoderTomn 1| o e — o ar_co
o ar_co
Behaviar: | Matorola_DSPSEE00 (DSP) | P ar_co
o ar_co
C code file: L ar co
IfhumefspeccfdemofMotorola_DSPSEEDD.c - ar_cc
C header file: o ar_ce
o ar_co
[tomesspeccrdemaMotorola_DSPEEE00.N | ar e
I keep original hehavior o ar_ce
o ar_co
£ PET
F | Start I Cancel B R | J>)
hodels | Imports I Sources)] i [blg’

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

Freparing code generation...

|

A dialog box pops up for the user to input the name of the C and Header file of the
generated software. Now press the Start button to start the C code generation process.

218

Chapter 5. Embedded Software Design

5.2.1.2. Generate C code (cont’d)

Code generation successfully completed,

S=1ES
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
EXSIES EEEEEEIE
- [Eame i Marme
Design B
) Vocogerspec.sir Coger & Main
B33 VocogerArh sir A monitor Monitor @ local_dt
5 ioconerSohed sir A stimulus Stimulus Thdbs_mod
BH2|2 VocogerTomn sir - Bu!ld_Code Chserial_hi
=) ¥ Build_Code_FSD
ﬁ—- Vocadertsme si | Cor h Ihspeech_
Y erRTL.si |4 Cor_h_FSMD Chtxett<_ctr
e ocoderRT i Car_h_x sicndgr
& Cor_h_x_FSMD & monitor
@ L_unit_3z & stimulus
B} & Motarola_D3SPS6EOD
&+ Bl Wotorola_DSPSEG00_BF
— G_p
- O_p_FsMD
A RF_32_32_5
A RF_32_G4_6
[= 1] =)
Models | imports | Sources | Hierarchy | Behaviors || Channels Raw I - |]
__ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |
: ++++ Summary of Software Generation ++++ A
-- 17 global varisbles are generated in C
-- 45 gzlobal functions are generated in C
-- 9% behaviors are implemented in C
-- 0 channels are implemented in C

7|

[Ready

4

As displayed in the logging window, the software generation is being performed. The
newly generated software model "VocoderRTL.C.sir" is displayed to the design window.
It is also added to the current project window, under the RTL model "VocoderRTL.sir"

to indicate that it was derived from "VocoderRTL.sir"

219

Chapter 5. Embedded Software Design

5.2.1.3. Generate C code (cont’d)

S=1ES
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
EXSIES EEEEEEIE
: [
E[Mame |Type IPE |E|l a1
Design I | o A b ain
13 VscoserSpes.sir W cogier Cadar Bu
EE Vocoderdrt sir - D5F Motorods DEPSEERE Wwrap D5F
B2 UncomerSched sir : L =l
Iil—ﬁlﬁ VaroderCam sir . M intr Bustt HW _fandier ihandier
Ifl—-lf I B Al HW_ Standam_wram HW
CLOGErTSME S AF manitor konitar
@B ocoderRTL. sir A stimulus Stimulus
..... derRTLL |- Euild_Code
& Build_Code_F5MMD i
4 Cor_h
4 Cor_h_F3hD
i Cor_h_x
@ Cor_h_x_FSMD
- L_unit_3z
B & Motarola_D 3P 56600
i+ Bl hotorola_DSPSEG00_BF /
= = I -
Models | Imparts | Sources | Hierarchy | Behaviars | Channels

__ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |
: % sir_rename -i Jhome/specc/denoVocoderRTL.c.sir -0 Ashome/specc/denc/VocoderRTLE ,sir VocoderRTL VocoderRTL
C

[Ready A

Like in the previous sections, we need to change the design name to follow the same
naming style in this tutorial. In the project window, select design "VocoderRTL.C.sir".
Right click and select Rename... Change the design name to "VocoderRTLC.sir"

220

Chapter 5. Embedded Software Design

5.2.2. Browse and View C code

File Edit 3Settings Help

[=[[Eix]

[EIEIE,

Help x|~| %]

Ethuct C_Motorola_DSPSee00

short int TO;

zhort int ch_anal10];
short int code[407;

short int exc_i[40];
short int gain_codes;
zhort int gain_pit;

zhort int hi[40];

bool local_dtx_mode;
short int pre[57];

short int res2[407;

bool reset_flag_1;

bool reset_flag 25

short int speech_frame[160];
short int syn[1607;

short int twxdbx_ctrl_val;
short int xn[40];

short int yl[40];

short int y2[40];

struct Coder_12k2 coder_12k2;
ztruct Post_Process post_process;
struct Pre_Process pre_process;

IH

void Closed_Loop_Seql_mainfztruct Closed_Loop_Seql #This)

WATTFOR D)

(®{This->p_h1)) = {(short int) (x{Thiz->h1});

(#(This-p_exc_i)) = (x(This-sp_exc)) + (#(This->i_subfrd);
(#(Thiz->p_speech_1)) = (#{This-»p_speech)) + (x(Thiz->i_subfri);

void Compute CH_Ewcitation_Gain_main=truct Compute CH_Escitation_Gain #This)
2h5,1 47%

[el
[O Weapwar

PE

LAEF

Al

Bus [|

Bz

7|

4

4

Check out the C code generated in the file "Motorola_DSP56600.c". This code is gen-
erated by the software generation tool. The designer may go to the shell and launch his

favorite editor to browse through the generated C code.

The code generation process converts the SpecC description of tasks into ANSI C code.
The main idea is that we convert the behaviors and channels into C struct and convert
the behavioral hierarchy into the C struct hierarchy. Variables defined inside a behavior
or channel and ports of behaviors are converted into data members of the corresponding

C struct. Finally, functions inside a behavior or channel are converted into global func-
tions with an additional parameter added representing the behavior to which the function

belongs.

221

Chapter 5. Embedded Software Design

5.2.3. Simulate C model (optional)

= | vocoder.sce - 50C Environment - [Motorola_DSPSEEO0_C_Wrapper - VocoderRTLC - VocoderRTLC sir'] [EEIE
[File Edit View Project Synthesis Validation | Windows Help =|=| x|
NeE [[y [@Hl‘) G I 3¢ B = Enable Instrumentation § ¢ I .l
Compile T
|Type IPE |E|l",.J
Design Simulate
Q VocoderSpes.si Open Terminal - Coder i
EE Vacoderdrt sir Kill simulation [Motorods DEPSEERE Wwrap D5F
(5353 VinooerScfied sir . /
Br-212 Vocodertomm sir View Log.. s0_HW_hardler (bandier
ﬁ—- VimoodarFame sy (2l AU Sanaan_wrap W
’ konitar
B v ocoderRTL sir Analyze Stimulus
Exaluate
Metrics... L i
Show Estimates
Estimate
&nalyze RTL
. Stop EBDD
T wreror—eo=5600_BF J
] | ,/l || I -
Models | Imparts | Sources | Hierarchy | Behaviars | Channels

ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |

¥ =ir_rename -i Jhome/speccsdemosVocoderRTL,.c.sir -0 Jhomedspecc/demc/VocoderRTLE ,sir VocoderRTL WVocoderRTL
C

Compile A

So far we have finished the C code generation. However, we also need to confirm
that the generated C code is correct for the design. In other words the C code must
be functionally equivalent to the SpecC model. The simulation step is optional,
so if the designer is not interested in it, he or she may skip it and go directly to
Section 5.3 Instruction set simulation (page 225).

We will validate the generated C code through simulation. But first we need to import C
code into the design and compile the model into an executable. To compile the C code
model to executable, go to Validation menu and select Compile .

222

Chapter 5. Embedded Software Design

5.2.3.1. Simulate C model (cont’d)

= | vocoder.sce - 50C Environment - [Motorola_DSPEEBE00_C_Wrapper - VocoderRTLC - VocoderRTLC sit] [EEIE
[] File Edit ¥iew Project Synthesis Vglidationlﬂindows Help =|=] x|
| D = : = Enahle Instrumentation @ I .l
. Compile i
|Type IPE |E|l",.J
Desigh Simulate
) Viocoserspec.sir Open Terminal - Coder i
EE Vreaderd et air Kill simulation s Mataroia DEPSEEIT Wrap
B35 VncomarSched sir : L
212 ocoderComn sir View Log.. st MW fandler hanater
ﬁ—- VioeoaerFsmed sir EICE HW_Standara_wrap i
) konitor
FHERY ocoderRTL sir Analyze Stimulus
Exaluate
Metrics.. D -
Show Estimates
Estimate
Snalyze RTL
.Stgp EBDD
T e rrorors—eorwS00_BF /
] | /I |] I -
Models | Imparts | Sources | Hierarchy | Behaviars | Channels
__ﬂ Compile | Simulate | analyze | Refine | Synthesize | Shell |
: Irput: “VocoderRTLC,cc" Al
Output: "VocoderRTLC 0"
Linking, ..
Input: “"VocoderRTLC,.o"
Output : "VocoderRTLC
Done ., JI
Simulate A

The messages in the logging window shows that the C code model is compiled success-
fully without any syntax errors. Now in order to verify that it is functionally equivalent
to the previous model, we will simulate the compiled model on the same set of speech
data used in the specification validation. Go to Validation menu and select Simulate .

223

Chapter 5. Embedded Software Design

5.2.3.2. Simulate C model (cont’d)

vocodersce - 50C Environment - [kMotorola_DEPSEEOD_C_Wrapper - VocoderRTLC - WocoderRTLC sir) ||Q|E|Z
' i i Help x| x|
frame=147 encoding delay = 18,12 ms
frame=143 encoding delay = 18,12 ms L I
—| [frame=143 encoding delay = 18,12 ms pe I PE |Ell T
D frame=150 encoding delay = 18,12 ms
]E frame=151 encoding delay = 18,12 ms o B
frame=152 encoding delay = 18,12 ms
frame=153 encoding delay = 18,12 ms tarnia DSOSEE0E Wiap D55
frame=154 encoding delay = 18,12 ms e g
frame=155 encoding delay = 18,12 ms Rt
frame=156 encoding delay = 18,12 ms
frame=157 encoding delay = 18,12 ms f:ﬁ%ﬁhﬁ&ﬁf_uﬁ&p M
frame=1h3 encoding delay = 18,12 me niar
frame=159 encoding delay = 18,13 ms ulus
frame=160 encoding delay = 18,13 ms
frame=161 encoding delay = 18,13 ms -
frame=162 encoding delay = 18,12 ms
frame=163 encoding delay = 18,12 ms
done, 163 frames encoded
Files srcszpeschfilesdnodty_good,bit and nodtx,bit are identical
Simulation exited with status 0
Press return to continue ..
|| £
-l == [-
Models | Imparts | Sources | Hierarchy | Behaviars | Channels

ﬂ Caompile | Simulate | Analyze | Refine | Synthesize | Shell |

% xterm -title VocoderRTLC -e /bindsh -© . /VocoderRTLC sroc/speechfiles/spoh_unx, inp nodbx,bit nodbx ss dif
f -z sroispeechf iles/nodtx_good,hit nodtx,bit: echo "Simulation exited with status $7" :echo "Press return
to continue ,,." rread confirm

[Ready A

Like in the earlier cases, a simulation window pops up. The simulation result is correct
and we have thus verified that the generated C code is functionally correct.

224

Chapter 5. Embedded Software Design

5.3. Instruction set simulation

= | wocoder.sce - 50C Environment - [Motorola_DSPSEEO0_C_Wrapper - YocoderRTLC - YocoderRTLC sir] |Q|E|E
[O] Eile | Edit Wiew Project Synthesis Validation Windows Help =|=| x|
| [[bew.. cren (@ | % N iaEEEEE
2> Cpen.. Cirl+0
— £ : &[Mame |Type IPE |Ell A [J
De €3 Close Citl+W | A 2 @ vain
‘B Reload Ctrl+R I coder Coter =2
D5F Motoris_ DEPSEGRE_wrag 5P
Reload Al . .
& Save Citl+5 e M ity Bust HW fandier handier
Save s) E- = AW MW Standam_ wrap HW
= i S _ A manitar anitar
& 5ave Al BrRTL.sir A stirulus Stimulus
|- Euild_Code
lmport.. |4 Build_Code_F3MD =
Export... ¥ Cor_h
Print Clrl+P A Cor_h_FSMD
S : A Cor_h_x
Properties... |4 Cor_h_x_F3MD
Statistics... —AFL_unit_32
- % Motorola_DSFSERO0
Recent Files - Il Motorola_DSPSEE0N_BF /
R Exit ctrl+a T =|||F =
MOGETS [Tmpors | Sodrces | Hierarchy | Behaviors | Channels

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

to comtinue L,." :read conficm
Simulation exited. exit status: O

xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx.bit: echo "Simulation exited with status $7" recho "Press return

Import design

)

After we generated C code for the DSP, we compile the C code into DSP’s instruction
set and import the instruction set simulator (ISS) for the Motorola DSP56600. To start

importing, select File—Import from the menu bar.

225

Chapter 5. Embedded Software Design

5.3.1. Import instruction set simulator model

= | vocoder.sce - 50C Environment - [Motorola_DSPEEBE00_C_Wrapper - VocoderRTLC - VocoderRTLC sit] [EEIE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
N B8 &8 |0 e X EEEEEEIE
: i
5 Mame |Type IPE |E|l a1
Design
) Vocogerspec.sir Coder Bu
EE Vocoderdrri siv Motorois DPe?e?_ ,c:- LEF
B35 Lincood -
F-a]2 Lz o
ﬁ-- Look in: |_\|fh0mefspeccfdemnf ﬂ gll_
. [wocoderarch.z sir [vocoderarch sir [wacoe
[wocoderarchana.siv [vocoderCommanasir [Vocoe |
(A SCE_Tutorial [] Yocoderarch.ins.sir [wocoderComm fsmd.insir [vococ
Cdoc [] wocoderarchsched.insir] VocoderCammfamd.sir [] Wocog
Cfiqures [] wocoderarch sched sir [wocoderCamm.ins.sir [vacoe
Cdstc [7 wocoderarch.schedtmp.sic] YocoderComm.sir [7 vocoe
1 | 17
File name: | I apen | /
£ P— | =
Madels | Imparts || File type: SIR files (%.sif) _1| Cancel |
) =
__ﬂ Caompile | Simuleare[~AIEyZE [ReMme [SyrnEsZe [Sher |

Select design to import...

rread confirm
Simulation exited, exit status: 0

% xterm -title VocoderRTLC -e /bindsh -© . /VocoderRTLC sroc/speechfiles/spoh_unx, inp nodbx,bit nodbx ss dif
f -z srodspeechf iles/nodtx_good,bhit nodtx,bit: echo "Simulation exited with status $7" :echo
to continue L ,.,"

"Press return

Select directory "IP" from the file selection menu by double Left click.

226

Chapter 5. Embedded Software Design

5.3.1.1. Import instruction set simulator model (cont’d)

= vocoder.sce - S0C Enviranment - [Matorala_DSP56E00_C_Wrapper - VocaderRTLC - VocoderRTLC.sir] [EEIE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
N B8 &8 |0 e X EEEEEEIE
_ E[Mame |Type IPE |E|l A [J
Design I
) Vocogerspec.sir Coder Bu
w88 Vocoderdmrrsr | | | ®OsE__ Motoimia DSPSEE00 D55
B35 Lincood
55 Vg HUW
ﬁ-- Look in: |3 shomesspecc/demod|P/ ﬂ gll_
=
(Rstc o
File natne: |Dsp|ss.sir || Open /
————— I —
Madels | Imparts || File type: SIR files (%.sif) _1| Cancel |
) =

__ﬂ Caompile | Simuleare[~AIEyZE [ReMme [SyrnEsZe [Sher |

to continue ,,." rread confirm
Simulation exited, exit status: 0

f -z srodspeechf iles/nodtx_good,bhit nodtx,bit: echo "Simulation exited with status $7" :echo

% xterm -title VocoderRTLC -e /bindsh -© . /VocoderRTLC sroc/speechfiles/spoh_unx, inp nodbx,bit nodbx ss dif

"Press return

Select design to import...

Inside directory IP, select "Dsplss.sir" and Left click on Open.

The SIR file contains the instruction set simulator for our chosen DSP. The behavior
loads the compiled object code for the tasks that were mapped to DSP and executes it

on the instruction set simulator.

227

Chapter 5. Embedded Software Design

5.3.1.2. Import instruction set simulator model (cont’d)

o S=1ES
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
EEEEEEIE
E[MName Type a1
Design I | - A Main
13 VscoserSpes.sir W cogier Coder
®-33 Viocoderarh sir AF monitor Monitor
BHES: ViocoaierSohed sir - A stimulus Stimulus
om . A Build_Coade
u|a VrcoderComn s T
wEl2) A Build_Code_FSMD
-0 ViscogerFamd i | @ cor b
FHERY ocoderRTL sir _’Cgr:h_FSMD
..... derRTL A Cor_h_x
M Cor_h_#_F3SMD
4 L_unit_3z
- & hotorola_DSPSEEO0
- Il Motorola_DSPEEE00_BF
—aG_p
4 C_p_FSMD
A RF_32_32_5 £
=] | | =
Models | Imparts | Sources | Hierarchy | Behaviars | Channels
__ﬂ Caompile | Simulate | Analyze | Refine | Synthesize | Shell |
: % xterm -title VocoderRTLC -e /bindsh -© . /VocoderRTLC sroc/speechfiles/spoh_unx, inp nodbx,bit nodbx ss dif
f -z sroispeechf iles/nodtx_good,hit nodtx,bit: echo "Simulation exited with status $7" :echo "Press return
to continue ,,." rread confirm
Simulation exited, exit status: O
[Ready A

Once "Dsplss.sir” is imported, we can notice behavior "DspISS" as a new root behavior
in the design hierarchy tree. This is because behavior "DspISS" has not been instantiated

yet.

228

Chapter 5. Embedded Software Design

5.3.1.3. Import instruction set simulator model (cont’d)

= | vocoder.sce - 50C Environment - [Motorola_DEPSEE00_wrap - YocoderRTLC - YocoderRTLC sir'] [EEIE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=] x|
Dz Ed gve[XbBd X[FE B0
. i
E[MName Type |F' a1
Design I | - A Main
13 VscoserSpes.sir W coger Coder
®-33 Viocoderarh sir i P—
5 ioconerSohed sir : Hl_Standar SOUES
@_Elg F T —— A manitar honitor Hierarchy...
2 ’ A stimulus Stimulus o L
; annectivity...
-0 ViscogerFamd i | @ Build_Code L Y
FHERY ocoderRTL sir | 4 Build_Code_FSMD |solate
,,,,, derRTL ¥ Cor_h Wrap
& Cor_h_FSMD =
L4 Cor h_x Delete Del
|4 Cor_h_x_F3MD Rename
r- I DsplSs
L@ _unit_az Lhange Type |
k- %0 Motorola_DSPSEE0D Set &g Top-Level
& Il Motarola_DSFPSEE00_BF — |
—.'_Gl_p Graphs - J
=] | | =
Models | Imparts | Sources | Hierarchy | Behaviars | Channels
__ﬂ Caompile | Simulate | Analyze | Refine | Synthesize | Shell |
| |% wtern -title vocoderRTLC -e fbindsh o LAocoderRTLE sroc/speschf iles//spoch_unx, inp nodtx,bit nodbtx ss dif
f -z sroispeechf iles/nodtx_good,hit nodtx,bit: echo "Simulation exited with status $7" :echo "Press return
to continue ,,." rread confirm
Simulation exited, exit status: O
[Ready A

In the design hierarchy tree, select behavior "DSP". Right click and select Change
Type.

229

Chapter 5. Embedded Software Design

5.3.1.4. Import instruction set simulator model (cont’d)

§| vocodersce - 50C Environment - [kMotorola_DEPSEEOD_wrap - WocoderRTLC - WocoderRTLC 5ir"] ||Q|E|Z
[Eile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
N B8 &8 |0 e X EEEEEEIE
- : H[Mame Type |P 3l
Design I | - A Main
13 VscoserSpes.sir W coger Coder
B33 VocogerArh sir 5P hdntnrnla NSPSRAND wran
5 H

B2 UncomerSched sir i
BH2|2 VocogerTomn sir . manitor
B VocoderFama sir A stimulus
- |- Euild_Code
EVDCDD’BYRTL.SW —’BUild_CDdE_FSMD
derRTL(¥ Car_h
& Cor_h_FSMD |
A Cor_h_x
|4 Cor_h_x_F3MD
r- I DsplSs
A L_unit_37
k- %0 Motorola_DSPSEE0D
& Bl Motorola_DSPSEE00_BF
__‘![g_p /
=] | | =
Models | imports | Sources | Hierarchy | Behaviors | Channels

__ﬂ Caompile | Simulate | Analyze | Refine | Synthesize | Shell |
: % xterm -title VocoderRTLC -e /bindsh -© . /VocoderRTLC sroc/speechfiles/spoh_unx, inp nodbx,bit nodbx ss dif
f -z sroispeechf iles/nodtx_good,hit nodtx,bit: echo "Simulation exited with status $7" :echo "Press return

to continue ,,." rread confirm
Simulation exited, exit status: 0

[Ready A

The type of behavior "DSP" may now be changed by selecting DspISS.

By doing this, we have now refined the software part of our design to be implemented
with the DSP56600 processor’s instruction set. Recall that the software part mapped to
DSP has already been compiled for the DSP56600 processor and the object file is ready.
As mentioned earlier, the new behavior will load this object file and execute it on the
DSP’s instruction set simulator. Thus the model becomes clock cycle accurate.

230

Chapter 5. Embedded Software Design

5.3.2. Simulate cycle accurate model

= | vocoder.sce - 50C Environment - [Dspl55 - VocodetRTLC - VocoderRTLC sir'] [EEIE
[] File Edit ¥iew Project Synthesis Vglidationlﬂindows Help =|=] x|
| D = : Enahle Instrumentation @ I .l
Compile i
Type |F' 3
Desigh Simulate
13 VscoserSpes.sir Open Terminal - Coder
®-38 Vocogerdrir.sir Kill simulation - LEpIS
5 ioconerSohed sir . HIL Stanaard wisp H
oo View Log.. hnnitor
3|2 ViscoderComm sir Simulus
B VocoderFama sir EICE
FHERY ocoderRTL sir Analyze D
..... ! R Exaluate
Metrics... —
Show Estimates
Estimate
pE00
Analyze RTL OO0 BF
. Stap 0_wrap
[T == ~=F £
] =) = | =
Models | Imparts | Sources | Hierarchy | Behaviars | Channels |
ompile imulate nalyze efing rthesize g
X | Compile | Simulate | Analy Ref Synth Shell
% xterm -title VocoderRTLC -e /bindsh -© . /VocoderRTLC sroc/speechfiles/spoh_unx, inp nodbx,bit nodbx ss dif
f -z sroispeechf iles/nodtx_good,hit nodtx,bit: echo "Simulation exited with status $7" :echo "Press return
to continue ,,." rread confirm
Simulation exited, exit status: O
Compile A

We now have the clock cycle accurate model ready for validation. We begin as usual
with compiling the model by selecting Validation— Compile from the menu bar.

231

Chapter 5. Embedded Software Design

5.3.2.1. Simulate cycle accurate model (cont’d)

= | vocoder.sce - 50C Environment - [Dspl55 - VocoderRTLC - VocoderRTLC sit] [EEIE
[] File Edit ¥iew Project Synthesis Vglidationlﬂindows Help =|=] x|
| D = = Enahle Instrumentation @ I .l
.. Compile T
Type |F' 3
Desigh Simulate
13 Vocoderspec.sir Open Terminal = Coder
B33 VocogerArh sir Eill simulation
B8 UncodierSced sir View L HIWW Stangan weap H
oo) 1256 L. tonitar
3|2 ViscoderComm sir Simulus
B VocoderFama sir EICE
FHERY ocoderRTL sir Analyze D
Exaluate
Metrics... =
Show Estimates
Estimate
pidauli]
Analyze RTL BO0_BF
.Stgp 0_wrap
[T ===-F £
] =) = | =
Models | Imparts | Sources | Hierarchy | Behaviars | Channels |
x| Compile Simulate Analyze Refine Synthesize Shell
= Y Y
: Irput: “VocoderRTLC,cc" Al
Output: "VocoderRTLC 0"
Linking, ..
Input: “"VocoderRTLC,.o"
Output : "VocoderRTLC

Simulate

Done. JI
A

The model compiles correctly as shown in the logging window. We now proceed to
simulate the model by selecting Validation— Simulate from the menu bar.

232

Chapter 5. Embedded Software Design

5.3.2.2. Simulate cycle accurate model (cont’d)

S=1ES
Help x| x|
European digital cellular telecommunications system i
12200 bits/s speech codec for Type | =1
enhanced full rate zpeech traffic channels
Bit—Exact SpecC Simulation Code - encoder Cioder
Version 1,0
March 13, 1333 HW_Stangam wisp H
tanitor N
Stimulus
ITx: disabled
Input speech file: sro/speechfiles/spch_unx,inp
Output bitstream file: nodtx,bit
D5PERE: Loading file 'dsp.cld' ...
DSPEEG: Running. .. N
DSPSEE Cycle 42277
T TOOT O _ O T OO0 _ T T
—a_p /
=] | | =
Models | Imparts | Sources | Hierarchy | Behaviars | Channels |

to continue ,,." rread confirm

ﬂ Caompile | Simulate | Analyze | Refine | Synthesize | Shell |

% xterm -title VocoderRTLC -e /bindsh -© . /VocoderRTLC sroc/speechfiles/spoh_unx, inp nodbx,bit nodbx ss dif
f -z sroispeechf iles/nodtx_good,hit nodtx,bit: echo "Simulation exited with status $7" :echo "Press return

[Ready

|

Like in the earlier cases, a simulation window pops up. The DSP Instruction set simu-
lator can be seen to slow down the simulation speed considerably. This is because the
simulation is being done one instruction at a time in contrast to the high level simulation

we had earlier.

233

Chapter 5. Embedded Software Design

5.3.2.3. Simulate cycle accurate model (cont’d)

= | vocoder.sce - 50C Environment - [Dspl55 - VocoderRTLC - VocoderRTLC sit] [EEIE
[] File Edit ¥iew Project Synthesis Vglidationlﬂindows Help =|=] x|
: Enahle Instrumentation @ I .l
Compile i
|Type |F' 3
Desigh Simulate
- 2 Viocoaerspes. sir Open Terminal = Coder
B8 Vocoderdrt sir Kill simulation - W
- L YWocoderRTLC
5 ioconerSohed sir . " HIL Stanaard wisp H
g) View Log.. tonitar
3|8 VrcomarCmmm. sir Simulus
B VocoderFama sir EICE
FHERY ocoderRTL sir Analyze D
,,,,, derR Evaluate
Metrics... —
Show Estimates
Estimate
pE00
Analyze RTL 00 BF
. Stap 0_wrap
[T == ~=F £
] =) = | =
Models | Imparts | Sources | Hierarchy | Behaviars | Channels |
__ﬂ Caompile | Simulate | Analyze | Refine | Synthesize | Shell |
| |% wtern -title vocoderRTLC -e fbindsh o LAocoderRTLE sroc/speschf iles//spoch_unx, inp nodtx,bit nodbtx ss dif
f -z sroispeechf iles/nodtx_good,hit nodtx,bit: echo "Simulation exited with status $7" :echo "Press return
to continue ,,." rread confirm
[Ready A

It may take hours for the simulation to complete. The simulation may be killed by se-
lecting Validation—Kill simulation from the menu bar.

234

Chapter 5. Embedded Software Design

5.3.2.4. Simulate cycle accurate model (cont’d)

= | vocoder.sce - 50C Environment - [Dspl55 - VocoderRTLC - VocoderRTLC sit] [EEIE
[C] File | Edit View Project Synthesis ‘Validation Windows Help =|=] x|
| [[hiew... Cirle | G | [&
= CIpen.. Ctrl+0 o [
— = P E[Mame Type |F' Sl
De €3 Close Cirl+ | 1 & @ an
Reload Cirl+R W cocter Coder
ettoed] Al B = AU H_.S?‘am‘am‘_mp
& Save Cirl+3 |, AF monitor tdanitar
Save As _ A stimulus Stimulus
- eEls |4 Euild_Code
ﬁ Save All prRTL.sir | @ Build_Code_FSMD
] ¥ Car_h
Import... -
1y L& Cor_h_FSMD N
Expart... 4 Cor_h_x
& Brint Cirl+F A Cor_h_x_FSMD
_ A L_unit_32
Froperties.. @ Motorola_DSP5EE00
Statistics... Il Motorola_DSPSEEO0_BF
= = M-totorola_DSPOEE00_wrap
| Recent Files - —.'_Gl_p /
~_ Ext [od (P e | I | =
Mdders mpars OUrces | Hierarchy | Behaviars | Channels |
__ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: % xterm -title VocoderRTLC -e /bindsh -© . /VocoderRTLC sroc/speechfiles/spoh_unx, inp nodbx,bit nodbx ss dif
f -z sroispeechf iles/nodtx_good,hit nodtx,bit: echo "Simulation exited with status $7" :echo "Press return
to continue ,,." rread confirm
Gt (Ctrl+ @) A

The demo has now concluded. To exit the SoC environment, select Project— EXxit from
the menu bar.

235

Chapter 5. Embedded Software Design

5.4. Summary

In this tutorial, we performed the SW synthesis task after RTL synthesis of HW. Note
that these two tasks are orthogonal and may be done in any order. We showed C code
generation for the behaviors mapped to SW component. This is a useful feature of SCE,
since we can generate C code which can be compiled onto any processor to generate
assembly. The code can then used for an instruction set simulator to run on a cycle-
by-cycle basis with the RTL. HW. All these built in features of SCE allow the designer
to move across abstraction levels even for parts of a design. The flexibility and design
capablity that is thus provided to the designer is enormous.

236

Chapter 6. Conclusion

In this tutorial we presented the System on Chip design methodology. The SoC method-
ology defines the 4 models and 3 transformations that bring an initial system specifica-
tion down to an RTL-implementation. In addition to validation through simulation, the
well-defined nature of the models enables automatic model refinement, and application
of formal methods, for example in verification.

The complete design flow was demostrated on an industrial strength example of the
Vocoder Speech encoder.We have shown how SCE can take a specification model and
allow the user to interactively provide synthesis decisions. In going from specification
to RTL/Instruction-set model for the GSM Vocoder, we noted that compared to tradi-
tional manual refinement, the automatic refinement process gives us more than a 1000X
productivity gain in modeling, since designers do not need to rewrite models.

Table 6-1. Vocoder Refinement Effort

Refinement Step |Modified Lines |Manual Automated
Refinement Refinement

Spec -> Arch 3,275 3~4 months ~1 min.

Arch -> Comm 914 1~2 months ~0.5 min.

Comm -> RTL/IS 6,146 5~6 months ~2 min.

Total. 10,355. 9~12 months. ~4 mins.

To draw the conclusion, SCE enables the designer to use the following powerful advan-

tages that have never been available before.

1. Automatic model generation.

New models are generated by Automatic Refinement of abstract models. This means
that the designer may start with a specification and simply use design decisions to

automatically generate models reflecting those decisions.

2. Eliminates SLDL learning.

SCE eliminates the need for system-level design languages to be learnt by the
designer. Only the knowledge of C for creating specification is required.

3. Enables non-experts to design.

This also enables non-experts to design systems. There is no need for the designer

237

Chapter 6. Conclusion

238

to worry about design details like protocol timing diagrams, low level interfaces etc.
Consequently, software developers can design hardware and hardware designers
can develop software.

. Supports platforms.

SCE is great for platform based design . By limiting the choice of components and
busses, designers may select their favorite architecture and then play around with
different partitioning schema.

. Customized methodology.

SCE can also be customized to any methodology as per the designer’s choice of
components, system architecture, models and levels of abstraction.

. Enables IP trading.

SCE simplifies IP trading to a great extent by allowing interoperability at system
level. With well defined wrappers, the designer can plug and play with suitable IPs
in the design process. If an IP meets the design requirements, the designer may
choose to plug that IP component in the design and not worry about synthesizing or
validating that part of the design.

Appendix A. Frequently Asked Questions

1. What is SCE ?

SCE is an acronym for System-on-Chip Environement. It is a design environement
based on a model refinement methodology. The environment consists of several
tools and user interfaces to help the designer take a functional system specification
to its cycle accurate implementation with minimal effort.

2. What are the supported platforms for SCE ?

SCE 2.2.0 beta is currently supported on Linux RedHat 7.3. The public distribution
of the operating system is included on the CD-ROM. SCE has also been tested for
RedHat 8.0 and SuSE 8.2 distributions of Linux. Other platforms will be supported
in the future as the need arises.

3. What is the level of expertise needed to design with SCE ?

SCE is designed with the goal of allowing even non-experts to perform system de-
sign. A very basic knowledge of SW and HW design, equivalent to an undergraduate
degree in computer engineering, is required to work with SCE.

4. What is the difference between behavior and model ?

A model is a description of the design in a machine readable form (like SpecC).
There may be several models used in a system design effort. These models capture
the design with varying levels of abstraction. A behavior, in context of SCE, is a unit
of computation. A model is made up by a hierarchy of behaviors that communicate
with each other using variables or channels.

5. What are the models that I need ?

In SCE, the designer may start with only a specification model. This model cap-
tures the functionality of the design without any implementation details. As we go
through the design process, various models with greater implementation details are
generated automatically using the built in tools in SCE. The designer only needs
to guide the model generation with decisions. The four primary models in the SCE
methodology are Specification model, Architecture model, Communication model
and Cycle-accurate model. The designer may choose to start with any model as per
his or her choice.

6. What do I need to do with all these models ?

239

Appendix A. Frequently Asked Questions

10.

I11.

240

Each of the models need to be compiled to generate an executable. Once they are
compiled, they need to be simulated to make sure that they work correctly. The
designer may choose to view the models in graphical form to understand and verify
the implementation details added as a result of refinement. The specification model
also needs to be profiled to get useful data for making architectural decisions.

. How do I get a cycle accurate model of my design ?

The designer may start with any of the system level models, namely the specification
model, the architecture model or the communication model. With the help of design
decisions, SCE will generate subsequently refined models of the design. The final
model generated after RTL refinement and SW compilation will be a cycle accurate
model of the design.

. Why is profiling relevant ?

Profiling is performed to gather useful data about the specification. It gives both a
quantitative and a qualitative measure of the computation inside each behavior or a
set of behaviors. This information is used to choose the right type and number of
components for the system architecture.

. How do I discover the '"computationally intensive'' behaviors in my model ?

A straightforward approach is to produce bar charts for each leaf behavior in the
model. For a reasonably complex design, the designer can use the hierarchical na-
ture of the behaviors to display comparision between composite behaviors. Behav-
iors with low computation may be eliminated. For a behavior with high compu-
tation, the designer can display its child behaviors and so on. The author of the
specification model can also supply this information upfront, since he or she would
be well conversant with the model.

Why should I evaluate an architecture before refinement ?

Most designs have constraints on execution time. The architecture exploration phase
requires the designer to come up with the best set of components (and the distri-
bution of computation over them) to meet this constraint. One way would be to
generate the architecture model and then simulate it. This is time consuming if the
designer has to go over several architectural choices. Evaluation of a model is a
static analysis feature that allows the designer to check if an architectural choice
meets the design constraints.

If my architecture model simulation shows an encoding delay of ''0.0ms"', what
did I do wrong ?

12.

13.

14.

15.

16.

17.

Appendix A. Frequently Asked Questions

This may be because the specification was not profiled before an architecture model
was generated. Profiling generates information that allows architecture refinement
to insert the appropiate delays for the target component.

Can I refine any behavior in a model ?

The behavior which is set as the "top level" of the design is considered for archi-
tecture and communication refinement by the tools. Typically, the behavior repre-
senting the design under test (without the testbench) is set as the "top level" behav-
ior. However, for RTL refinement, the designer may choose a particular behavior
mapped to HW. This will allow the designer to examine only an interesting part of
the design without having to simulate the entire model at cycle accurate level.

Why do I need to rename all the generated models ?

Renaming is done to avoid overwriting of models during exploration. Automatically
generated models are read-only for the same reason. Renaming also gives a suitable
name to the model so that it can be easily recognized in the project window.

I want multiple busses in my design. How do I map channels to busses ?

The design example in the tutorial has only one bus. The shortcut for mapping
all channels to one bus is to map the top level behavior to that bus. In case of
multiple busses, select Synthesis— Show Channels after allocating the busses.
This would expose all the channels between the components. Individual channels
can then be mapped to respective busses.

Can I use point to point wire connections instead of busses in my design ?

Busses in SCE represent generic connection elements. It is possible to have point
to point connections between components. This can be done simply by including
such a point to point protocol in the protocol library and selecting it during com-
munication synthesis. During channel mapping the designer must take care to map
channels between only the relevant components to the point to point "connection
element."

Why do I need to do RTL preprocessing ?

Preprocessing is needed to generate a super finite state machine model of the de-
sign, which serves as an input to RTL refinement. The preprocessing step splits the
behaviors into super states, with each super state comprising of a basic block.

Why does RTL scheduling and binding display work only for leaf behaviors ?

During preprocessing each leaf behavior under the selected behavior for HW im-
plemetation is converted to a super FSM. Displaying only one super FSM at a time

241

Appendix A. Frequently Asked Questions

18.

19.

20.

21.

242

avoids overcrowding in the display and state name conflicts.
How do I know which RTL units to choose ?

The designer chooses the RTL units that can perform the operations required in
the model. RTL analysis gives statistical information on the number and type of
operations in each super state. Structural constraints can put lower bound on the
number of units. For example, if a unit with 3 inputs and 1 output is allocated, then
atleast 4 busses must be allocated for feasible binding.

How do I view source code generated by SCE ?

The SpecC source code for the behavior definition can be seen by clicking on the be-
havior in the hierarchy tree and selecting View—;Source. The code for the behav-
ior instance can be seen by right clicking on the instance in hierarchy and clicking
Source. However, SCE also produces C, Verilog and Handel-C files. Since these
files do not show up in the hierarchy, they have to be opened externally from a shell
using standard editors.

What is the current status of SCE ?

SCE is currently a demo version that works for select examples. In the future, it will
be enhanced to a prototype tool.

What other features are planned in the immediate future for SCE ?

In the immediate future, we plan to expand the libraries with more components, IPs
and bus protocols. Improvements are planned for communication synthesis frame-
work to handle complex communication architectures. There is also work planned
for OS targetting and generation of RTOS models.

References

S. Abdi, J. Peng, R. Doemer, D. Shin, A. Gerstlauer, A. Gluhak, L. Cai, Q. Xie, H. Yu,
P. Zhang, and D. Gajski, System-on-Chip Environment - Tutorial, CECS Technical
Report 02-28, September 24, 2002.

A. Gerstlauer, R. Doemer, J. Peng, and D. Gajski, System Design: A Practical Guide
with SpecC, Kluwer Academic Publishers Inc., June, 2001.

D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao, SpecC: Specification Lan-
guage and Methodology, Kluwer Academic Publishers Inc., March, 2000.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of Embedded
Systems, Prentice Hall, June, 1994.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, “SpecSyn: An Environment Supporting the
Specify-Explore-Refine Paradigm for Hardware/Software System Design”, IEEE
Transactions on VLSI Systems, Vol. 6, No. 1, pp. 84-100, 1998, Awarded the IEEE
VLSI Transactions Best Paper Award, June 2000.

D. Gajski, L. Ramachandran, F. Vahid, S. Narayan, and P. Fung, “100 hour design cycle
: A test case”, Proc. Europ. Design Automation Conf. EURO-DAC, 1994.

243

References

244

	Table of Contents
	Chapter 1. Introduction
	1.1. Motivation
	1.2. SCE Goals
	1.3. Models for System Design
	1.4. SystemonChip Environment
	1.5. Design Example: GSM Vocoder
	1.6. Organization of the Tutorial

	Chapter 2. System Specification Analysis
	2.1. Overview
	2.2. Specification Capture
	2.2.1. SCE window
	2.2.2. Open project
	2.2.2.1. Open project (cont'd)
	2.2.2.2. Open project (cont'd)
	2.2.2.3. Open project (cont'd)
	2.2.2.4. Open project (cont'd)

	2.2.3. Open specification model
	2.2.3.1. Open specification model (cont'd)
	2.2.3.2. Open specification model (cont'd)
	2.2.3.3. Open specification model (cont'd)
	2.2.3.4. Open specification model (cont'd)
	2.2.3.5. Open specification model (cont'd)

	2.2.4. Browse specification model
	2.2.4.1. Browse specification model (cont'd)
	2.2.4.2. Browse specification model (cont'd)
	2.2.4.3. Browse specification model (cont'd)

	2.2.5. View specification model source code
	2.2.5.1. View specification model source code(cont'd)

	2.3. Simulation and Analysis
	2.3.1. Simulate specification model
	2.3.1.1. Simulate specification model (cont'd)
	2.3.1.2. Simulate specification model (cont'd)
	2.3.1.3. Simulate specification model (cont'd)
	2.3.1.4. Simulate specification model (cont'd)
	2.3.1.5. Simulate specification model (cont'd)
	2.3.1.6. Simulate specification model (cont'd)

	2.3.2. Profile specification model
	2.3.2.1. Profile specification model (cont'd)
	2.3.2.2. Profile specification model (cont'd)

	2.3.3. Analyze profiling results
	2.3.3.1. Analyze profiling results (cont'd)
	2.3.3.2. Analyze profiling results (cont'd)
	2.3.3.3. Analyze profiling results (cont'd)
	2.3.3.4. Analyze profiling results (cont'd)
	2.3.3.5. Analyze profiling results (cont'd)
	2.3.3.6. Analyze profiling results (cont'd)

	2.4. Summary

	Chapter 3. System Level Design
	3.1. Overview
	3.2. Architecture Exploration
	3.2.1. Try pure software implementation
	3.2.1.1. Try pure software implementation (cont'd)
	3.2.1.2. Try pure software implementation (cont'd)
	3.2.1.3. Try pure software implementation (cont'd)
	3.2.1.4. Try pure software implementation (cont'd)
	3.2.1.5. Try pure software implementation (cont'd)
	3.2.1.6. Try pure software implementation (cont'd)
	3.2.1.7. Try pure software implementation (cont'd)
	3.2.1.8. Try pure software implementation (cont'd)
	3.2.1.9. Try pure software implementation (cont'd)
	3.2.1.10. Try pure software implementation (cont'd)
	3.2.1.11. Try pure software implementation (cont'd)
	3.2.1.12. Try pure software implementation (cont'd)

	3.2.2. Estimate performance
	3.2.2.1. Estimate performance (cont'd)
	3.2.2.2. Estimate performance (cont'd)
	3.2.2.3. Estimate performance (cont'd)
	3.2.2.4. Estimate performance (cont'd)
	3.2.2.5. Estimate performance (cont'd)

	3.2.3. Try software/hardware implementation
	3.2.3.1. Try software/hardware implementation (cont'd)
	3.2.3.2. Try software/hardware implementation (cont'd)
	3.2.3.3. Try software/hardware implementation (cont'd)
	3.2.3.4. Try software/hardware implementation (cont'd)
	3.2.3.5. Try software/hardware implementation (cont'd)
	3.2.3.6. Try software/hardware implementation (cont'd)
	3.2.3.7. Try software/hardware implementation (cont'd)

	3.2.4. Estimate performance
	3.2.4.1. Estimate performance (cont'd)
	3.2.4.2. Estimate performance (cont'd)
	3.2.4.3. Estimate performance (cont'd)
	3.2.4.4. Estimate performance (cont'd)

	3.2.5. Generate architecture model
	3.2.5.1. Generate architecture model (cont'd)
	3.2.5.2. Generate architecture model (cont'd)

	3.2.6. Browse architecture model
	3.2.6.1. Browse architecture model (cont'd)
	3.2.6.2. Browse architecture model (cont'd)
	3.2.6.3. Browse architecture model (cont'd)
	3.2.6.4. Rename architecture model

	3.2.7. Simulate architecture model (optional)
	3.2.7.1. Simulate architecture model (optional) (cont'd)
	3.2.7.2. Simulate architecture model (optional) (cont'd)

	3.3. Software Scheduling and RTOS Model Insertion
	3.3.1. Serialize behaviors
	3.3.1.1. Schedule software
	3.3.1.2. Schedule software (cont'd)
	3.3.1.3. Schedule software (cont'd)
	3.3.1.4. Schedule software (cont'd)
	3.3.1.5. Schedule software (cont'd)
	3.3.1.6. Schedule software (cont'd)
	3.3.1.7. Serialize behaviors in HW
	3.3.1.8. Serialize behaviors in HW (cont'd)

	3.3.2. Generate serialized model
	3.3.2.1. Refine after serialization
	3.3.2.2. Refine after serialization (cont'd)
	3.3.2.3. Refine after serialization (cont'd)

	3.3.3. Simulate serialized model (optional)
	3.3.3.1. Simulate serialized model (optional) (cont'd)
	3.3.3.2. Simulate serialized model (optional) (cont'd)

	3.4. Communication Synthesis
	3.4.1. Select bus protocols
	3.4.1.1. Select bus protocols (cont'd)
	3.4.1.2. Select bus protocols (cont'd)
	3.4.1.3. Select bus protocols (cont'd)
	3.4.1.4. Select bus protocols (cont'd)

	3.4.2. Map channels to buses
	3.4.2.1. Map channels to buses (cont'd)

	3.4.3. Generate communication model
	3.4.3.1. Generate communication model (cont'd)
	3.4.3.2. Generate communication model (cont'd)
	3.4.3.3. Generate communication model (cont'd)

	3.4.4. Browse communication model
	3.4.4.1. Browse communication model (cont'd)
	3.4.4.2. Browse communication model (cont'd)
	3.4.4.3. Browse communication model (cont'd)

	3.4.5. Simulate communication model (optional)
	3.4.5.1. Simulate communication model (optional) (cont'd)
	3.4.5.2. Simulate communication model (optional) (cont'd)

	3.5. Summary

	Chapter 4. Custom Hardware Design
	4.1. Overview
	4.2. RTL Preprocessing
	4.2.1. View behavioral input model
	4.2.1.1. View behavioral input model (cont'd)
	4.2.1.2. View behavioral input model (cont'd)

	4.2.2. Generate SFSMD model
	4.2.2.1. Generate SFSMD model (cont'd)
	4.2.2.2. Generate SFSMD model (cont'd)

	4.2.3. Browse SFSMD model
	4.2.3.1. Browse SFSMD model (cont'd)

	4.2.4. View SFSMD model (optional)
	4.2.4.1. View SFSMD model (optional) (cont'd)
	4.2.4.2. View SFSMD model (optional) (cont'd)

	4.2.5. Simulate SFSMD model (optional)
	4.2.5.1. Simulate SFSMD model (optional) (cont'd)
	4.2.5.2. Simulate SFSMD model (optional) (cont'd)

	4.2.6. Analyze SFSMD model
	4.2.6.1. Analyze SFSMD model (cont'd)
	4.2.6.2. Analyze SFSMD model (cont'd)
	4.2.6.3. Analyze SFSMD model (cont'd)
	4.2.6.4. Analyze SFSMD model (cont'd)
	4.2.6.5. Analyze SFSMD model (cont'd)
	4.2.6.6. Analyze SFSMD model (cont'd)

	4.3. RTL Allocation
	4.3.1. Allocate functional units
	4.3.1.1. Allocate functional units (cont'd)
	4.3.1.2. Allocate functional units (cont'd)
	4.3.1.3. Allocate functional units (cont'd)
	4.3.1.4. Allocate functional units (cont'd)
	4.3.1.5. Allocate functional units (cont'd)

	4.3.2. Allocate storage units
	4.3.2.1. Allocate storage units (cont'd)
	4.3.2.2. Allocate storage units (cont'd)
	4.3.2.3. Allocate storage units (cont'd)
	4.3.2.4. Allocate storage units (cont'd)
	4.3.2.5. Allocate storage units (cont'd)

	4.3.3. Allocate buses
	4.3.3.1. Allocate buses (cont'd)
	4.3.3.2. Allocate buses (cont'd)
	4.3.3.3. Allocate buses (cont'd)
	4.3.3.4. Allocate buses (cont'd)
	4.3.3.5. Analyze allocated SFSMD model
	4.3.3.6. Analyze allocated SFSMD model (cont'd)
	4.3.3.7. Analyze allocated SFSMD model (cont'd)
	4.3.3.8. Analyze allocated SFSMD model (cont'd)

	4.4. RTL Scheduling and Binding
	4.4.1. Schedule and bind manually (optional)
	4.4.1.1. Schedule and bind manually (optional) (cont'd)
	4.4.1.2. Schedule and bind manually (optional) (cont'd)
	4.4.1.3. Schedule and bind manually (optional) (cont'd)
	4.4.1.4. Schedule and bind manually (optional) (cont'd)
	4.4.1.5. Schedule and bind manually (optional) (cont'd)
	4.4.1.6. Schedule and bind manually (optional) (cont'd)
	4.4.1.7. Schedule and bind manually (optional) (cont'd)
	4.4.1.8. Schedule and bind manually (optional) (cont'd)
	4.4.1.9. Schedule and bind manually (optional) (cont'd)
	4.4.1.10. Schedule and bind manually (optional) (cont'd)

	4.4.2. Schedule and bind automatically
	4.4.2.1. Schedule and bind automatically (cont'd)
	4.4.2.2. Schedule and bind automatically (cont'd)
	4.4.2.3. Browse scheduling and binding result (optional)
	4.4.2.4. Browse scheduling and binding result (optional) (cont'd)
	4.4.2.5. Browse scheduling and binding result (optional) (cont'd)

	4.5. RTL Refinement
	4.5.1. Generate RTL model
	4.5.1.1. Generate RTL model (cont'd)
	4.5.1.2. Generate RTL model (cont'd)
	4.5.1.3. Generate RTL model (cont'd)

	4.5.2. Browse RTL model
	4.5.2.1. Browse RTL model (cont'd)

	4.5.3. View RTL model (optional)
	4.5.3.1. View RTL model (optional) (cont'd)
	4.5.3.2. View RTL model (optional) (cont'd)

	4.5.4. View Verilog RTL model (optional)
	4.5.4.1. View Verilog RTL model (optional) (cont'd)

	4.5.5. Simulate RTL model (optional)
	4.5.5.1. Simulate RTL model (optional) (cont'd)
	4.5.5.2. Simulate RTL model (optional) (cont'd)

	4.6. Summary

	Chapter 5. Embedded Software Design
	5.1. Overview
	5.2. SW code generation
	5.2.1. Generate C code
	5.2.1.1. Generate C code (cont'd)
	5.2.1.2. Generate C code (cont'd)
	5.2.1.3. Generate C code (cont'd)

	5.2.2. Browse and View C code
	5.2.3. Simulate C model (optional)
	5.2.3.1. Simulate C model (cont'd)
	5.2.3.2. Simulate C model (cont'd)

	5.3. Instruction set simulation
	5.3.1. Import instruction set simulator model
	5.3.1.1. Import instruction set simulator model (cont'd)
	5.3.1.2. Import instruction set simulator model (cont'd)
	5.3.1.3. Import instruction set simulator model (cont'd)
	5.3.1.4. Import instruction set simulator model (cont'd)

	5.3.2. Simulate cycle accurate model
	5.3.2.1. Simulate cycle accurate model (cont'd)
	5.3.2.2. Simulate cycle accurate model (cont'd)
	5.3.2.3. Simulate cycle accurate model (cont'd)
	5.3.2.4. Simulate cycle accurate model (cont'd)

	5.4. Summary

	Chapter 6. Conclusion
	Appendix A. Frequently Asked Questions
	References

