Exploring the Features of OpenCL 2.0

Saoni Mukherjee, Xiang Gong, Leiming Yu, Carter McCardwell, Yash Ukidave, Tuan Dao,
Fanny Nina Paravecino, and David Kaeli
{saoni, xgong, ylm, cmccardw, yukidave, tdao, fninaparavecino, kaeli} @ece.neu.edu
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA

I. INTRODUCTION

The growth in demand for heterogeneous accelerators has
stimulated the development of cutting-edge features in newer
accelerators. The heterogeneous programming frameworks
such as OpenCL have matured over the years and introduced
new software features for developers. The first version of
OpenCL (1.0), was a basic programming model. The next
versions, 1.1 and 1.2, enabled different memory management
techniques, and gave users more fine-grain control over the re-
sources. With version 2.0, OpenCL has undergone a significant
evolution by introducing features that can exploit emerging
hardware capabilities as well as provide users more ease of
programming and control over handling the resources.

In this paper we explore one of these programming frame-
works, OpenCL 2.0. To drive our study, we consider a
number of new features in OpenCL 2.0 using four popular
applications from a range of computing domains including
signal processing, cybersecurity and machine learning. These
applications include: 1) the AES-128 encryption standard, 2)
Finite Impulse Response filtering, 3) Infinite Impulse Response
filtering, and 4) Hidden Markov model. We will begin by
discussing the latest runtime features enabled in OpenCL 2.0,
and then discuss how well our sample applications can benefit
from some of these features.

II. OPENCL 2.0

Open Computing Language (OpenCL) is a program-
ming/runtime framework that enables applications to execute
across heterogeneous platforms [1]. OpenCL is presently
supported on a number of CPUs, graphics processing units
(GPUs), digital signal processors (DSPs), field-programmable
gate arrays (FPGAs) and other devices. In 2013, Khronos
released OpenCL 2.0, and announced a number of novel
programming features [2]. These features include:

o Dynamic Parallelism: It allows kernels to launch other
kernels (child) without any host interaction saving both
time and resources, and the CPU can be busy doing
other computations. This will improve the performance
of applications with multiple kernels, help implement
recursive executions, and will also provide the user more
flexibility while designing the applications.

o Shared Virtual Memory: It is one of the landmark
features in OpenCL 2.0. In this version, the host and the
device kernel can share a common virtual address range,
which enables pointers to be shared between host and

device. So explicit copies from host-to-device and device-
to-host can be eliminated. This feature will be leveraged
extensively throughout our implementation of different
applications.

o Image support: OpenCL 2.0 enables support for sSRGB
and 3D image. This is particularly beneficial to the digital
imaging applications. We are not using this feature at this
time.

o Android Installable Client Driver Extension: This ver-
sion adds a new feature, where OpenCL implementations
that are non-native to Android can be used as a shared
object on Android systems.

e Generic Address Space: Earlier during declaring a
pointer or using it as an argument to a function, the
pointer had to be specified with an address space that
the pointer is pointing to. In this version, it stays in the
private address space and it can point to anything on the
named address spaces inside the generic address space.

In the next sections, we will the applications we have chosen
to explore some of the features in OpenCL 2.0, and discuss
how we optimize these applications using OpenCL 2.0.

III. APPLICATIONS

We introduce four applications from a variety of domains
ranging from signal processing to cybersecurity applications.
We start with this small set to demonstrate how we can
leverage some of the features described above. We are actively
working on a more complete set, that will support both
OpenCL 2.0 and Heterogeneous Systems Architecture [3] fea-
tures. We will discuss the entire set as part of our presentation.

A. Advanced Encryption Standard

Our first application is an implementation of the Advanced
Encryption Standard (AES). The program takes plaintext as
input and encrypts it using a given encryption key [4]. AES

[AddRoundKey |« Key |

j» shitRows |-»f MixColumns |-»f AddRoundKeyT

Iterate 13 times for AES-256

| SubBytes

After iterations
L»{ SubBytes M ShiftRows M AddRoundKey|

[Dore |
Fig. 1: AES algorithm

has been adopted by the US government to encrypt data
in applications ranging from personal to highly confidential
domains [5].

AES has a fixed block size of 128 bits. The key size can
vary between 128, 192 and 256 bits. Our implementation uses
a key size of 256 bits. A block is the unit of plaintext that the
algorithm takes as input and uses to produce the corresponding
n-bit cipher text. Text that is longer than a block is divided
into multiple blocks, the last chunk is padded, and each block
is encrypted separately. The AES algorithm is comprised of
many rounds, as shown in Figure 1, that ultimately turn
plaintext into cipher-text. Each round has multiple processing
steps that include AddRoundKey, SubBytes, ShiftRows and
MixColumns. Key bits must be expanded using a precise key
expansion schedule.

B. Finite Impulse Response

A Finite Impulse Response (FIR) filter produces an impulse
response of finite duration [6]. The impulse response is the
response to any finite length input. The FIR filtering program
is designed to have the host send array data to the FIR kernel
on the OpenCL device. Then the FIR filter is calculated on
the device, and the result is transferred back to the host.

Read input data
& coefficients
Start
global memory Kernel
Data to be filtered
Read input
into register Runs algorithm

f(x)=b,x[n]+b,x[n—1]+...+byx[n—N]
‘ = b-x[n—i]

Wait for kernel completion

Copy data into
e o o

Map and
write to file

Filtered data }

Each work-unit

Work-units copy
data back to GM

Fig. 2: GPU implementation of a FIR filter.

Given an input signal z[n], the FIR produces f(x) as the
output signal. For an Nth order filter there are (N + 1) terms
on the right hand side of the equation shown in Figure 2. Then
a weighted sum of the input signal and b; is computed. b; is
the value of the impulse response at the ith instant, where
0 <4 < N in an N-th order filter.

C. Infinite Response Filter

An Infinite Impulse Response (IIR) filter requires less pro-
cessing power than a Finite Impulse Response (FIR) filter for
the same design requirements. IIR can be further decomposed
into multiple parallel second-order IIR filters to achieve better
performance [7]. We present our multichannel version of a
parallel IIR filter and implement it on the GPU using the
OpenCL framework. The transfer function used to compute
the parallel IIR output is shown in Equation 1. Our parallel IIR
implementation for multiple channels is illustrated in Figure 3.

=1
. (1
fnyv2i—1 + fny42i2
— l+ent2i-127" +en 2277

Channel, [xn) C y(n

)
I_' P
Subfilter, L
Subfilter,

Channel, | yn) C,

Subfilter,
Subfilter,
Parallel IIR

Fig. 3: Multichannel parallel IIR
D. Hidden Markov Model

A Hidden Markov Model (HMM) is a static Markov model
that can generate probabilistic meaning without knowing the
hidden states [8]. It explores the relationship between the
hidden states and observations during the Markov process.
We have developed a Hidden Markov Model on GPU that
targets isolated word recognition [9]. In order to achieve the
best performance on the GPU device, we express the data-level
and thread-level parallelism in the HMM algorithm.

Initialize

Parallel IR

~ y(n
7

[Forward variable (a)

Forv@ Loglikelihood

g Backward - | Backward variable (B) |

@

2

E Prior (1)

EM - State Transition (A)

Mean (u,)
Variance (Y s)

-

Fig. 4: The HMM algorithm used in this work.

In HMM, as shown in Figure 4, the computation is ex-
pressed in matrix form operation to obtain the coalescing
and computation efficiency. The loglikelihood and Forward
variable, o, are computed at the Forward stage. At the Back-
ward stage, the Backward variable, 3, is populated. To update
the expected values, such as prior, hidden states, mean and
covariance, Expectation and Maximization (EM) is applied
[10]. For this application, matrix-vector, matrix multiplication
and parallel reduction dominate execution in our GPU imple-
mentation [11].

IV. IMPLEMENTATION

First, these four applications are implemented in OpenCL
1.2 — we will treat this implementation as a baseline. Next,
the same four applications are implemented in OpenCL 2.0
leveraging its new features. In this section we discuss some
of the implementation details for the four applications.

The easiest OpenCL 2.0 feature to leverage is Shared Vir-
tual Memory. Any application that requires multiple memory
copies can benefit from the new coarse-grained SVM support
provided in OpenCL 2.0. We avoid explicit copies from host-
to-device and device-to-host, when using SVM. The SVM
mechanism maps data into a contiguous block of memory
accessed through a host accessible pointer and provides the
user a software abstraction from all the memory management.
It waits until the unmap command to allow a kernel-instance
to safely read and/or write the buffer. Larger the file, more
pronounced is the effect of using SVM.

CPU

Write data to file

A

Move
key to GPU

Expand
rivate ke

Read data
- EVM_,_>| Start Kernel |

Thread 1

Wait for completion
LI

Thread 2

Plain text

| Shared Virtual | Encrypted text

Memory

A

4

y
Read state
into registers

Fig. 5: The AES GPU implementation used in this work.

Each work unit

Work units copy
runs algorithm

data back
GPU

In AES, both versions of the GPU program use the CPU
for key expansion. Our experiments reveal that it is faster
to use the CPU for key expansion. The expanded key is
then dynamically placed in memory as input to the OpenCL
kernel so that the keys will exist in constant memory, as
shown in Figure 5. When the kernel starts, each state (i.e.,
AES data block) is copied into the register of the work-unit,
processed, and then written back to the global memory. In
signal processing applications FIR and IIR, we have used the
SVM to keep track of the input signal and its coefficients.
When these are later needed to calculate the output signal,
which is a weighted sum of the coefficients and input signal,
instead of copying the data coefficients, input, and partial sum
back and forth between host and device, they are managed
through SVM. SVM maps it into a contiguous block of
memory accessed through a host accessible pointer. It waits
till the unmap command to allow a kernel-instance to safely
read and/or write the buffer.

Another new OpenCL 2.0 feature that we have used is
dynamic parallelism. In HMM, since updating the expected
values for each hidden state is an indepedent operation, there
is a golden opportunity to explore dynamic parallelism. The
dynamic parallelism feature allows the kernel to launch the
relabelUnroll K ernel function from within the main kernel.
This saves time as control does not need to be handed back to

the host to start the next kernel. This saves many memory copy
operations and kernel launch startup overhead. Together with
this, SVM helps in avoiding to work with explicit memory
copy operations. The data will be stored in one pool of
memory until the algorithm is finished.

V. RESULTS
A. Evaluation Platform

To drive our study, we use an AMD Radeon R9 290x
GPU. We evaluate the four applications developed in both
OpenCL 1.2 and 2.0. Table I includes the particulars of the
GPU platform used for evaluating OpenCL 2.0 features, as
compared to our baseline. For OpenCL 2.0, the AMD OpenCL
2.0 beta driver version 14.41 has been used, since during the
time of development of this paper, the final version was not
released.

TABLE I: Architectural specifications of the GPU used for
evaluation.

Peak Single Precision FLOPS(Gflops) | 5632

Peak Bandwidth (GB/s) 352

Streaming Cores 2816

Clock Rate (MHz) 1000

Global Memory (GB) 8

Wavefront Size 64

B. Performance Analysis

All of the applications presented enjoy some benefits when
using SVM. The degree of speedup depends on amount of
data size being managed using SVM and resulting a number
of copy operations avoided. In figs. 6, 7 and 9, the runtimes
for IIR, FIR, HMM and AES are compared with baseline, for
a range of input sizes. All of the runtimes reported include
all communication overhead experienced by the application,
including preprocessing, data transfer and kernel runtime.

10000

WOpenCL 1.2
100011 mOpenCL 2.0

Time (seconds)

0.1+

’ Unencrlyopted File Size (r\;OBl; -
Fig. 6: Comparison of runtimes of AES in OpenCL 1.2 and
2.0.

Previous work has shown that moving the data from and
to the device memory may be the bottleneck in performing
AES on the GPU [12]. So, we first explored speedup using
SVM, and then further explored optimizations using dynamic
parallelism. The data is divided into 16-byte blocks, called
states which are encrypted completely in parallel. We obtain
speedup with SVM, but do not observe similar speedups when
using dynamic parallelism. The child kernels are launched for
memory intensive SubBytes and ShiftRows processing, when
the parent kernel is active on the GPU. The child kernels

EOpenCL 1.2
| | @OpenCL2.0

Time (seconds)

256 512 1024 2048 4096
Signal Length

Fig. 7: Comparison of runtimes of FIR in OpenCL 1.2 and
2.0.

are restricted by the amount of available compute resource,
thereby leading to decreased occupancy for child kernels. This
increases the latency of child kernels and leads to decrease in
the overall throughput of the application.

8
8

T | ®OpenCL1.2
| | EOpenCL2.0

n
]
]

Time (milliseconds)

256 512 1024 2048 4096
Signal Length

Fig. 8: Comparison of runtimes of IIR in OpenCL 1.2 and 2.0.

25

B OpenCL 1.2
| ®@OpenCL 2.0

Time(seconds)

64 128 256 512 1024 2048 4096
Number of Hidden States

Fig. 9: Comparison of runtimes of HMM in OpenCL 1.2 and
2.0.

Another interesting observation is that when two identical
kernels of the two signal processing applications- IIR and FIR
with same input are run with OpenCL 1.2 and OpenCL 2.0,
the kernel that is run with OpenCL 2.0 is faster.

For HMM, we have experimented with another OpenCL 2.0
feature- work-group function. However, utilizing this feature
resulted in a slowdown for the IIR application compared to
the same algorithm implemented in OpenCL 1.2, as shown in
Figure 8. The HMM application computes a weighted sum
of input signals. Work-group function is used to perform
reduction over the weighted input signals to compute the sum.
To the best of our knowledge, there was no code profiler
available that was compatible with the current version of the
driver at the time of this work. Presently we are moving to the
next version of the OpenCL 2.0 driver that will be supported
by CodeXL. We will provide a full explanation of this issue
in the final version of this paper.

VI. CONCLUSION

In this contribution we have explored the benefits of
OpenCL 2.0. We have discussed some of the benefits of
this new programming framework using four applications:
AES-256 encryption, FIR and IIR filtering, and a HMM.
During implementation, we have found OpenCL 2.0 features
(SVM) that provide consistent benefits. We also found issues
with utilizing the work-group function. OpenCL 2.0 has the
potential to generate faster running programs and increase
programmer productivity.

VII. FUTURE WORK

In the near future, we would like to add fine-grained SVM
to the existing implementations. Fine-grained SVM allows
pointers to be directly shared between the host and device,
hence memory can be written to and read from simultaneously.
This will enable other features such as dynamic parallelism to
be added too. Then the host operation can simply focus on
reading data into/out of shared memory, while a controller
kernel can delegate work to slave kernels. Communication
between the host and the controller kernel can be accomplished
using flags in shared memory. Instead of using the default
OpenCL queue to send events, pointer arrays that hold dy-
namically updated memory addresses are sent to the controller
kernel. The pointer array will address the flags that signal
when new data has been copied by the host, and will include
the memory address of the new data. We are also interested
in exploring other features introduced in OpenCL 2.0, such as
Image support, in the future.

REFERENCES

[1] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Heteroge-
neous Computing with OpenCL, 1st ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2011.

[2] Khronos OpenCL Working Group and others, “OpenCL 2.0 Specifica-
tion,” Khronos Group, Nov, 2013.

[3] G. Kyriazis, “Heterogeneous system architecture: A technical review,”
AMD Fusion Developer Summit, 2012.

[4] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer, 2002.

[5] N. F. Pub, “197: Advanced encryption standard (AES),” Federal Infor-
mation Processing Standards Publication, vol. 197, pp. 441-0311, 2001.

[6] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and systems.
Prentice-Hall Englewood Cliffs, NJ, 1983, vol. 2.

[7]1 B. Porat, A course in digital signal processing. Wiley New York, 1997,
vol. 1.

[8] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state Markov chains,” The annals of mathematical
statistics, pp. 1554-1563, 1966.

[9] L.R. Rabiner, S. E. Levinson, and M. M. Sondhi, “On the application of
vector quantization and hidden Markov models to speaker-independent,
isolated word recognition,” Bell System Technical Journal, The, vol. 62,
no. 4, pp. 1075-1105, 1983.

[10] T. K. Moon, “The expectation-maximization algorithm,” Signal process-
ing magazine, IEEE, vol. 13, no. 6, pp. 47-60, 1996.

[11] L. Yu, Y. Ukidave, and D. Kaeli, “GPU-accelerated HMM for Speech
recognition,” in Heterogeneous and Unconventional Cluster Architec-
tures and Applications Workshop (HUCAAI4). IEEE, 2014.

[12] S. A. Manavski, “Cuda compatible gpu as an efficient hardware acceler-
ator for aes cryptography,” in Signal Processing and Communications,
2007. ICSPC 2007. IEEE International Conference on. 1EEE, 2007,
pp. 65-68.

