CUDA and OpenCL Implementations of 3D CT
Reconstruction for Biomedical Imaging

Saoni Mukherjee!, Nicholas Moore!, James Brock* and Miriam Leeser!

Department of Electrical and Computer Engineering
Northeastern University, Boston, MA 02115
Email: 1L{saoni, nmoore, mel} @coe.neu.edu, *jbrock@ece.neu.edu

Abstract—Biomedical image reconstruction applications with
large datasets can benefit from acceleration. Graphic Processing
Units(GPUs) are particularly useful in this context as they
can produce high fidelity images rapidly. An image algorithm
to reconstruct conebeam computed tomography(CT) using two
dimensional projections is implemented using GPUs. The imple-
mentation takes slices of the target, weighs the projection data
and then filters the weighted data to backproject the data and
create the final three dimensional construction. This is imple-
mented on two types of hardware: CPU and a heterogeneous
system combining CPU and GPU. The CPU codes in C and
MATLAB are compared with the heterogeneous versions written
in CUDA-C and OpenCL. The relative performance is tested and
evaluated on a mathematical phantom as well as on mouse data.

I. INTRODUCTION

Biomedical image reconstruction applications are often not
time efficient and thus these can benefit from acceleration.
One such biomedical application, CT imaging, has become
a very popular medical diagnostic tool. It provides a non-
invasive quantification of human body or other living parts
for biomedical diagnosis, treatment and research. For di-
agnostic and treatment interventions, CT imaging methods
require high speed reconstructions in real time to remove the
chance of interruptions during the treatment of patients. A
number of algorithms have been proposed to implement CT
reconstruction. Feldkamp, Devis and Kress (FDK) proposed a
method that most of today’s conebeam CT scanners use. The
implementation takes slices of the target, weighs the projection
data and then filters the weighted data before backprojecting
and creating the final three dimensional construction [1]. The
most computationally intensive part is backprojection, which
has a complexity of O(N*) in the spatial domain [4]. This
is generally the bottleneck in most software solutions. Many
researchers are trying to accelerate conebeam reconstruction
using different hardware architectures including Application
Specific Integrated Circuits (ASICs) and Field Programmable
Gate Arrays (FPGAs) to efficiently use both intensive comput-
ing power and speed. However the expensive nature of these
boards coupled with less flexibility to reprogram limits their
use. Current Graphic Processing Units (GPUs) offer massively
parallel processing with the intensive computation necessary
for three dimensional conebeam reconstruction.

The main contributions of this paper are:

o Our implementations are compatible with Fessler’s image

reconstruction tool box [14], a popular toolbox consisting
of a collection of open source algorithms for image
reconstruction written in MATLAB.

o We compare the performance of two implementations of
the same approach, in CUDA-C and OpenCL, to serial
and multithreaded C and MATLAB implementations.

« We test our implementations on two types of hardware
platforms: CPU and a combination of CPU and GPU.
In addition, there are two types of GPUs (NVIDIA and
AMD of the same generation) used for evaluating the
implementations.

In this paper we provide an overview of the algorithm to
reconstruct conebeam tomographic imaging and show how
we can move to GPU-based implementations from CPU-
based implementations. We also report relative performance
using different programming paradigms on different hardware
architectures.

II. RELATED WORK

Many researchers have worked on implementing CT recon-
struction on GPUs. Mueller et al. [2],[3] list different architec-
tures and programming platforms to explain the use of com-
modity graphics hardware in accelerating CT reconstruction
processes. They propose an OpenGL based implementation
that uses the graphics pipeline [2]. It incorporates a load
balancing scheme that helps to reduce the computational cost
[13]. A similar implementation of conebeam reconstruction
using CUDA has been demonstrated by Yang et al. [5].
Another approach is to implement streaming shader-based
CT reconstruction that pipelines the process [3]. The work
is divided by convolution on the CPU and backprojection
on the GPU to reconstruct in faster time. Yang et al. [5],
Churchill et al. [6] and Scherl et al. [7] present conebeam
CT reconstruction from mobile C-arm units using an NVIDIA
device. Scherl et al. implement a CUDA based reconstruction
and compare with a Cell-based implementation [7]. Some
researchers have introduced other strategies to accelerate
conebeam reconstruction. For example, Grass et al. [9] use a
rebinning strategy that rearranges and interpolates conebeam
projections to turn these into parallel beam projections. A
similar method has been used by Li et al. [8] to implement
faster backprojection for CT reconstruction. The advantage of

this approach is that it discards redundant information which
could affect the noise behavior of the reconstruction.

Our approach can be seen as a generalization of previous
work. The implementation is divided into two platforms by
convolution on the CPU and backprojection on the GPU [3].
However the load balancing scheme has not been implemented
as it does not conform to our goal of reconstructing the
whole volume in faster time [13]. Ikeda et al. demonstrate that
fragment culling increase the speedup, but it is not possible
to get acceleration of the complete reconstruction because the
idea is limited to using voxels within a region of interest,
culled from rendering. In addition, we used rebinning based
on [9] to accelerate the process and improve the quality of the
output image. In our implementation, we consider each pixel to
be independent and loaded the full volume and all projections
consecutively on the GPU. In contrast, No€l et al. [17] consider
all projection, but part of the volume. We transfer the whole
projection data to the GPU at an early stage and transfer the
reconstructed volume back to the CPU at the end. On the GPU
a number of threads are launched that can compute on each
and every pixel since they can be independently mapped to
the final volume.

III. CONEBEAM COMPUTED TOMOGRAPHY

Figure 1 shows the schematic drawing of a conventional
three dimensional conebeam CT with flat panel detector. Gen-
erally a scanner rotates a two dimensional detector or sensor
around a patient or object and captures data in it. This process
is called conebeam scanning. In this process, the trajectory
of the source is circular and each horizontal row of detector
values is ramp filtered and considered as a two dimensional
object. Then the filtered projections are backprojected along
the original rays. During the process of acquiring scanned
data, the x-ray source moves in a circular orbital path of
radius 7 and the detector panel moves in the same motion
along with the source. The detector plane lies perpendicular
to the rotational axis of the x-ray source. It produces a set of
projections Py, Ps, ..., Px at K discrete positions of the source
with uniform angular spacing. Sometimes there are mechanical
limitations to completing a full rotation.

Feldkamp et al. [1] published the first algorithm on
conebeam reconstruction in 1984. The reconstruction is con-
ceptualized as a weighted backprojection. It is carried out in
two stages. In the initial step, the raw data is individually
weighted and ramp filtered to produce filtered projections
Q1,Qo, ..., Q. The projections are collected at a distance d’
with angle 6,, where 1 < n < K. d; is the distance between
the volume origin and the source. Let F(x,y,z) denote the
value of voxel (x,y, z) in volume F', as shown in figure 2. The
xyz space is the volume and uv represents the projections that
are to be backprojected to the volume. Then in backprojection,
the volume F' is reconstructed using the following equations
[10]:

2D X-ray
detector

-ray
source

path of rotation

Fig. 1. Scheme of conventional 3D conebeam CT
v z
/ X-ray

source

&

Fig. 2. Co-ordinate system for backprojection

t

1
F(xayaz) = % ZWg(x,y,i)Qi(u(x,y,i),v(x,y,z,i)),
(D

i=1
where Wo(x,y,n) represents the weight value and u(z,y,n)
and v(z,y, z,n) represent the co-ordinates.

d'(—zsinb; 4+ ycosb;)

. — 2
U(x7yvl) d; — z cos 9; —ySinai)’ ?
_ d'z
U(x,y,z,l) - dl —(ECOSei _ySinai)’ (3)
WQ(QT,yJ) (4)

- d; —zcosf; —ysinb;)
IV. IMPLEMENTATION
A. GPU Architecture and GPGPU

GPUs were originally designed for processing graphics and
generating high quality games, but the increase of perfor-
mance in these units is a perfect fit for scientific computing.
The fact that GPUs are increasingly flexible as well as the
development of GPGPU (General Purpose GPU) languages
contribute to higher peak performance exceeding the CPU in

TABLE I
PERFORMANCE OF DIFFERENT IMPLEMENTATION OF THE METHOD (IN SECONDS)

Dataset Programming paradigm Hardware Time to run Backprojection | Total time
Phantom MATLAB Intel Xeon W3580 17.02 17.09
Phantom C Intel Xeon W3580 1.36 1.44
Phantom C with OpenMP Intel Xeon W3580 0.32 0.33
Phantom OpenCL NVIDIA Tesla 2070 0.01 0.11
Phantom OpenCL AMD Raedon HD 5870 0.1 0.16
Phantom CUDA NVIDIA Tesla 2070 0.01 0.1
Mouse scan MATLAB Intel Core i7 8440.1 8443.33
Mouse scan MATLAB PCT Intel Core i7 5556.49 5559.9
Mouse scan C Intel Xeon W3580 4477.33 4483.83
Mouse scan C with OpenMP Intel Xeon W3580 1929.90 1932.27
Mouse scan OpenCL NVIDIA Tesla 2070 67.07 91.44
Mouse scan CUDA NVIDIA Tesla 2070 42.95 55.47

many problems. GPUs have many parallel cores that can run
simultaneously. Each core can run many threads. So at a given
point, thousands of lightweight threads are run on the GPU
in parallel. Problems with data-parallel computation can be
accelerated with the millions of threads available on a GPU.
The programming model is SIMD (Single Instruction Multiple
Data). Biomedical image processing applications often have a
great deal of parallelism and CT reconstruction has inherent
features that can be parallelized. Sequential parts can be run
on the CPU and computationally intensive parallel parts can
be accelerated by running on the GPU. Users across science
and engineering are achieving 10x or better speedup by using
GPUs.

In this paper, we demonstrate the implementation of back-
projection on two types of CPU architectures: CPU and GPU.
We have used two CPUs to collect the data- Intel Xeon W3580
processor with 4 cores and Intel Core i7 quad-core processor.
The GPUs we have used are NVIDIA Tesla C2070 and AMD
Radeon HD 5870 graphics card. For NVIDIA Tesla devices
each multiprocessor can have a maximum of 1536 resident
threads and there are 14 streaming multiprocessors on the
C2070 [12]. So the theoretical limit on the number of threads
in flight at once is 21,504. The AMD 5800 series graphics
card can run up to 31,744 threads concurrently [16]. Note that
these two graphics card are of the same generation.

We have used two GPGPU languages to implement the CT
reconstruction, CUDA (Compute Unified Device Architecture)
C and OpenCL. Both provide a software environment for
writing parallel code that can be run in millions of threads
on the GPU. CUDA-C was developed by NVIDIA and runs
only on NVIDIA GPUs, whereas OpenCL is developed by the
Khronos group and runs on several platforms including AMD,
Intel, NVIDIA etc. NVIDIA provides optimized libraries along
with CUDA-C, which often results in a better performance.
CUDA-C and OpenCL both support heterogeneous computing
with separate host code and device code. They have several
advantages over other low level GPU programming languages.
They require minimal extensions to C/C++ programs. Serial
host code runs in one host thread and parallel kernel code runs
in several device threads across multiple GPU blocks. The
access to arbitrary addresses in device memory is allowed in

individual
weighting
and ramp
filtering

Raw |
Projections

Back-
projection

Fig. 3. Overview of serial CPU implementation

CUDA and OpenCL. User managed shared memory is shared
among threads in a block. The accuracy of data may be as
important in biomedical applications as speed. It has been
shown that the results provided by GPU may have better
precision over serial CPU code for floating point values [15].

B. From CPU to GPU

Figure 3 shows the overview of the FDK method which
is divided into three steps: weighting, filtering and backpro-
jection. The first step of the FDK algorithm can be further
divided into two parts, weighting and ramp filtering. Weight-
ing includes cosine weighting and short-scan weighting. The
weighted projections are then filtered. The last part of the FDK
method, backprojection, is the most computationally intensive
part.

We start with a serial CPU implementation. Then we
parallelize the implementation by using a multi-threaded C
program with OpenMP constructs. To move to the next step
towards GPU-based implementation from the CPU code, the
first thing to be considered is memory transfer. As memory
transfer from host to device is expensive, transferring the
whole data to GPU before start of computation and transferring
back after the final volume is reconstructed is a good idea to
save memory cycles. In the filtering stage, different pixels for
the same projection can be simultaneously filtered as there is
no dependency between any two pixels. Furthermore, different

memory
transfer
from host
to device

Raw II
Projections

individual
weighting
and ramp
filtering

Raw |I
Projections

Back-
projection

memory
transfer
from device
back to host

GPU

Fig. 4. Overview of GPU implementation

projections can also be simultaneous filtered as they do not
have any dependency. Although the next step, backprojection,
takes the most time to complete, different voxels are indepen-
dent and can be processed simultaneously. Figure 4 shows
the processing on the GPU including data transfer. In our
implementation, we have divided the processing into three
parts: weighting, filtering and backprojection. After moving
all the projection data to GPU memory, separate kernel calls
are launched to execute these three steps. Although the kernel
calls are issued in a non-blocking manner, they are executed
in series as each step needs to finished before the next can
begin.

V. RESULTS

We have implemented the method and evaluated the perfor-
mance using two datasets. One is a mathematical phantom
of input data size 64 x 60 pixels with 72 projections to
get a final volume of 64 x 60 x 50 voxels and the second
is a mouse scan of 512 x 768 pixels with 361 projections.
The dimensions of the output volume is 512 x 512 x 768.
A single projection of the phantom is shown in Figure 5
and the animal scan is shown in Figure 6. Note that the
code depends on the size of the data, not the content. The
method is implemented in C, C with OpenMP constructs,
CUDA-C and OpenCL and compared with the image toolbox
provided by Fessler [14] implemented in MATLAB and a
multi-threaded version of the same implementation using
MATLAB PCT (Parallel Computing Toolbox) with a poolsize
of 8. Performance is reported using an Intel Xeon W3580
quad-core processor with 3.33GHz speed and Intel Core i7
quad-core processor with a 3.4 GHz speed. The graphics that
are used are NVIDIA Tesla C2070 and AMD Raedon HD
5870. The number of cores in the CPU are not relevant in the
context of the serial application as the code is not parallelized
and it runs on a single thread. However the multithreaded C
code runs concurrently on 4 threads. Adding more threads
introduces overhead and does not improve performance. The
performances of all the implementations is listed in Table I.

Fig. 5. A single projection of the mathematical phantom

Fig. 6. A single projection of the mouse scan

W Backprojection
0 Weighted Filtering

MATLAB € C+OpenMP OpenCL CUDA

Fig. 7. Relative times taken by two phrases of FDK in different implemen-
tations

It is evident that backprojection takes almost 99.9% time of
the total time in the serial MATLAB code. The relative times
taken by the two phrases, weighted filtering (total of weighting
and filtering) and backprojection, are shown in Figure 7.
This is the motivation of this work. Backprojection has been
parallelized. The multi-threaded MATLAB implementation of
backprojection shows a speedup of 1.5x over serial MATLAB
in an Intel Core-i7 quad-core processor with 3.40 GHz speed
when the implementations are run with the mouse scan data.
The multithreaded C implementation of backprojection shows
a speedup of around 2x over serial C. OpenCL gives another

H Backprojectiontime
OTotal time

MATLAB C+OpenMP OpenCLin CUDA

NVIDIA

Fig. 8. Runtime for Phantom data of different implementations of FDK
method

<

g -

3

£ B Backprojection time

'g B DOTotaltime

g

e

MATLAB c C+OpenMP‘ OpenCLin CUDA
NVIDIA

Fig. 9. Runtime for Mouse data of different implementations of FDK method

30x (approximately) and CUDA gives a 50x (approximately)
speedup over multi-threaded C for the same dataset. The GPU
versions of the code show a speedup of around 80x (OpenCL)
and 130x (CUDA) over the multithreaded MATLAB imple-
mentations when they are run on the same NVIDIA GPU.
CUDA gives a better speedup than OpenCL because the results
are taken on a NVIDIA GPU and CUDA is better supported
on NVIDIA GPUs than OpenCL [11]. The libraries that are
provided with CUDA are optimized to run faster. The FDK
method uses a few forward and backward FFTs (Fast Fourier
Transform) to implement ramp filters. In OpenCL, the FFTs
have been written, but the CUFFT libraries used in CUDA
are optimized and provide up to a 10x speedup [12]. Figure
8 and 9 show the runtime taken by different implementations.
Runtime is shown on a logarithmic scale. The same OpenCL
code is run on NVIDIA and AMD GPUs. A run of the
same OpenCL code with the mathematical phantom takes 0.11
seconds to reconstruct the image on an NVIDIA GPU, whereas
it takes 0.16 seconds on the AMD GPU of the same generation.
We suspect that the speedup is comparatively less in the AMD
GPU because the code is not optimized enough to run on AMD
GPU architecture. The runtime of different kernels of the same
OpenCL code when it is run on NVIDIA and AMD GPUs
with the mathematical phantom is shown in Table II. Here the
mouse data could not be tested because the AMD GPU did not
have enough memory to allocate all the projections and final
volume. Note that every kernel runs faster on the NVIDIA
architecture.

VI. FUTURE WORK

Although the current execution settings produce significant
speed-ups on GPUs, the runtime can be still optimized.
After backprojection is parallelized, the new bottleneck is

TABLE II
PERFORMANCE OF THE SAME OPENCL CODE ON NVIDIA AND AMD
GPUS (IN MILLISECONDS)

GPU Kernel Time
NVIDIA Weighting 2.25
Filtering 89.62
Backprojection 14.07
AMD Weighting 14.70
Filtering 123.23
Backprojection 19.68

the weighted filtering step. This needs to be sped up more.
In addition, only a subset of the number of launch kernel
configurations have been tested so far. The number of threads
are arbitrarily chosen from a small set of tests. These issues
will be investigated with auto-tuning. The data sizes that
are seen so far can be accommodated in the GPU memory,
but for larger data sizes, streaming can be added to the
current implementation. However that may result in significant
overhead. Overlapping communication and computation will
be investigated.

VII. CONCLUSION

We have presented a faster way to reconstruct conebeam
projections in a GPU-enabled system based on the FDK
method. Our results show that, on an NVIDIA GPU, CUDA-C
outperforms the OpenCL implementation due to better support
for CUDA. The experimental results show that the CUDA code
takes 42.95 seconds to backproject a 512 x 512 x 768 voxel
volume from 361 projections of 512 x 768 pixels, which is
approximately 200x faster than the single-threaded implemen-
tation in MATLAB, approximately 100x faster than the single-
threaded implementation in C and around 50x faster than the
multi-threaded implementation C with OpenMP constructs.
The scanner takes 8.42 seconds to collect the mouse scan data
and generating the complete volume takes around 43 seconds
using the CUDA-C implementation.

VIII. ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation Engineering Research Centers Innovations Pro-
gram, Biomedical Imaging Acceleration Testbench (Award
Number EEC-0946463). This work is funded in part by a gift
from Mathworks

We thank Drs. Ralph Weissleder and Sarit Sekhar Agasthi,
Massachusetts General Hospital for providing the mouse scan
data.

REFERENCES

[1] L. A. Feldkamp, L. C. Davis, J. W. Kress, Practical cone-beam algorithm,
J. Opt. Soc. Am..Nolume 1(A), (1984).

[2] F. Xu, K. Mueller, Real-time 3D computed tomographic reconstruction
using commodity graphics hardware, Physics in Medicine and Biology,
52(12) (2007).

[3] K. Mueller, F. Xu, N. Neophytou, Why do commodity graphics hardware
boards (GPUs) work so well for acceleration of computed tomography?,
Proceedings of the SPIE, Yolume 6510, (2007).

[4] K. Mueller, F. Xu, Practical consideration for GPU-accelerated CT, IEEE
Int. Symp. Biomed. Imaging, (2006).

[S] H. Yang, M. Li, K. Koizumi, H. Kudo, Accelerating Backprojections
via CUDA Architecture, 9th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine,
Volume 9, (2007).

[6] M. Churchill, G. Pope, J. Penman, D. Riabkov, X. Xue, A. Cheryauka,
Hardware-accelerated cone-beam reconstruction on a mobile C-arm,
Proceedings of the SPIE, Volume 6510, (2007).

[7] H. Scherl, B. Keck, M. Kowarschik, J. Hornegger, Fast gpu-based ct
reconstruction using the common unified device architecture (cuda),
Nuclear Science Symposium Conference Record, (2007).

[8] M. Li, H. Yang, K. Koizumi, H. Kudo, Fast cone-beam CT reconstruction
using CUDA architecture, Medical Imaging Technology 25(4), (2007).

[9] M. Grass, T. Kohler, R. Proksa, 3D cone-beam CT reconstruction for
circular trajectories, Physics in Medicine and Biology 45(2), (2000),
329347.

[10] F. Ino, S. Yoshida, K. Hagihara, RGBA Packing for Fast Cone Beam
Reconstruction on the GPU, Proc. of SPIE, Volume 7258, (2009).

[11] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, J. Dongarra, From
CUDA to OpenCL: Towards a performance-portable solution for multi-
platform GPU programming, September 2010.

[12] NVIDIA corporation, NVIDIA CUDA C Programming Guide, CUDA
Toolkit 4.1.

[13] T. Ikeda, F. Ino, K. Hagihara, A code motion technique for accelerating
general-purpose computation on GPU, Proc. 20th IEEE Int’l Parallel and
Distributed Processing Symp., (2006).

[14] Fessler’s image reconstruction toolbox,
http://www.eecs.umich.edu/~fessler/irt/fessler.tgz.

[15] D. Yablonski, Numerical Accuracy Differences in CPU and GPGPU
Codes, Masters thesis, Northeastern University.

[16] https://en.wikipedia.org/wiki/AMD_FireStream

[17] PB Noél, A Walczak, KR Hoffmann, J Xu, JJ Corso, S Schafer, Clinical
Evaluation of GPU-Based Cone Beam Computed Tomography, Proc.
of High-Performance Medical Image Computing and Computer-Aided
Intervention (HP-MICCAI), (2008).

