
Graduate
Category: Engineering and Technology
Degree Level: PhD
Abstract ID# 216

Saoni Mukherjee†, Miriam Leeser†

† Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA

Abstract

Biomedical applications with large datasets can benefit
from acceleration. Graphic Processing Units(GPUs) are
particularly useful in this context as they can produce high
fidelity images in faster time. An image algorithm to
reconstruct conebeam computed tomography(CT) using 2D
projections is implemented using GPUs. The
implementation takes slices of the target, weighs the
projection data and then filters the weighted data to
backproject the data and creates the final 3D construction.
The implementation is tested using mathematical
phantoms to evaluate its performance.

GPU and CUDA

• Sequential part runs on CPU
and computationally intensive
part is accelerated by GPU
• Massively multithreaded
multicore chips
• Users across Science and
Engineering achieving 100x or
better speedup on GPUs
• Theoretical peak
performance: 518 GFLOPS

• Enabling heterogeneous
computing
• Minimal extension to C/C++
environment
• Serial host code runs in one
host thread and parallel kernel
code runs in several device
threads across multiple GPU
threads, all written in C.

Background – State of the art

Results

Feldkamp Algorithm

Future Works

Acknowledgements

1. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical
cone-beam algorithm,” J. Opt. Soc. Am., vol. 1 (A),
pp. 612-619, 1984.

2. S Xiao, Y Bresler, Munson Jr. DC, “Fast feldkamp
algorithm for cone-beam computer tomography”.
Proceedings IEEE International Conference on Image
Processing (ICIP) 2003; 819–22.

3. NVIDIA CUDA C programming guide, CUDA 4.1
documentation.

References

Goal

The serial application has already been implemented
and the implementation does not provide real time
images. The goal is to make the reconstruction as close
as real-time.

Goal Achieved?

The Algorithm used to implement this application is
Feldkamp Algorithm.

The serial version takes 3.04 seconds to run (on average)
The GPU version takes 0.2 seconds to run (on average)

Speed-up = 15 times

• Apply to real world data.
• Improve speed up.
• Accelerate other biomedical imaging applications.

 James Brock, Nicholas Moore.

This work was supported in part by the National

Science Foundation Engineering
Research Centers Innovations
Program, Biomedical Imaging
Acceleration Testbench (Award
Number EEC-0946463).

Serial vs. Parallel

Serial implementation goes through each slice one after
another, whereas the GPU kernel code contains the
operation inside for loop. That kernel is called from the
host code. The rest is handled by GPU. GPU executes
the same operations multiple times and sends back the
result to host.

* The above algorithm is an excerpt from [2]

