FIR filtering and AES encryption with OpenCL 2.0

Carter McCardwell, Tuan Dao, Saoni Mukherjee, David Kaeli
Dept. of Electrical and Computer Engineering
Northeastern University
Boston, MA

Abstract—OpenCL has become a popular standard to leverage
the unique power/performance opportunities found on heteroge-
neous systems. In this short contribution, we evaluate the latest
parallel programming features supported in the OpenCL 2.0
standard. We explore using shared virtual memory and dynamic
parallelism to accelerate two example applications.

I. INTRODUCTION

As we see new heterogeneous architectures appear on the
market, supporting programming frameworks that can exploit
new classes of architecture are also starting to appear. In
this paper we explore OpenCL 2.0 by leveraging a number
of its new features to accelerate two popular applications:
1) Finite Impulse Response filtering, and 2) the AES-128
encryption standard. We will begin by discussing the latest
features in OpenCL 2.0, and then describe how our two sample
applications can leverage these features.

II. OPENCL 2.0

OpenCL is a programming/runtime framework to enable
applications to execute across heterogeneous platforms [1].
OpenCL is presently supported to run on a number CPUs,
graphics processing units (GPUs), digital signal processors
(DSPs), field-programmable gate arrays (FPGAs) and other
devices. In 2013, Khronos released OpenCL 2.0 [2], and
announced a number of new and novel programming features.
Some of these features include:

o Dynamic Parallelism: This allows device kernels to en-
queue child kernels to the same device with no host
interaction. This feature will enhance the performance of
programs that feature multiple kernels, support recursive
execution, as well as provide flexibility during the design
of new applications.

o Shared Virtual Memory: This feature allows the host and
the device to share a common virtual memory system,
enabling pointers to be shared between host and device.
This can help eliminate unnecessary RAM usage and
simplify application code. This feature will be lever-
aged extensively throughout our Finite Impulse Response
(FIR) application.

o Images support: OpenCL 2.0 allows sRGB and 3D image
support. This can help with digital imaging applications,
easing the handling of images and image streams.

o Android Installable Client Driver Extension: Android is
the most popular mobile operating system today, so this
feature provides an advantage for OpenCL. It allows

OpenCL implementations to be discovered and loaded
as a shared object on Android systems.

o Generic Address Space: Functions can be written without
specifying a named address space for arguments, espe-
cially useful for those arguments that are declared to be
a pointer, pointing to a type, eliminating the need for
multiple functions to be written for each named address
space used in an application.

In the next section, we will discuss how to use some of these
new features to improve code readability and performance of
OpenCL application.

III. FIR FILTERING WITH OPENCL 2.0

A Filter Impulse Response (FIR) filter produces an impulse
response of finite duration [3]. The impulse response is the
response to any finite-length input. The FIR filtering program
is designed to have the host send array data to the FIR kernel
on the OpenCL device. Then the FIR is calculated on the
device, and the result transferred back to the host.

When designing the FIR application in earlier versions of
OpenCL (e.g., version 1.2), an input array of c¢l_float pointers
were allocated using a malloc call. The output, coefficients
and a temporary output array were similarly declared. The
host program then reads the data from an input file into
the input array. The host will also allocate cl_mem memory
buffers for the input, output and temporary output data using
clCreateBuffer. After copying all the data from the input array
into the input buffer, the program runs the kernel and the
computation begins. The results are then written into an output
buffer, which is copied into the output array, and then control
is returned to the host.

Moving to OpenCL 2.0, the code can be greatly improved.
The input array is now allocated using cl.SV M Alloc:

input = (cl_float*)clSV M Alloc
(context, CL_MEM_READ _WRITE,

numTotal Data” sizeof (cl_float),0);

Since we use the same variable type as before,
there is no need to rewrite the code when moving
to OpenCL 2.0. The other arrays are similarly de-
clared. However, since clSV M Alloc allows the allocated
memory to be shared between the host and the de-
vice, there is no need to allocate input buffers any-
more, thus eliminating time-consuming clCreateBuf fer and
clEnqueueWrite Buf fer calls, reducing memory usage, and

reducing the execution time. The kernel arguments are set
using clSetKernel ArgSV M Pointer since we are now using
SVM pointers. The rest of the program requires minimal
modifications. In a nutshell, by using SVM pointers, the
programmer no longer has to copy the input and output data
to and from buffers, thus reducing memory usage, reducing
the execution time, and reducing the burden on the OpenCL
programmer.

IV. AES-128 wiTH OPENCL 2.0

Our second application is an implementation of the Ad-
vanced Encryption Standard (AES) [4]. The program reads an
input file and encrypts it with a given encryption key. In this
application, we can leverage the new features of OpenCL 2.0
using shared virtual memory and dynamic parallelism (i.e.,
kernel enqueuing).

The shared memory scheme can greatly benefit a program
such as encryption, since the runtime does not need to spend
a significant amount of time copying blocks of data back and
forth to the device. Data is placed into the shared memory
where it is copied by each work-unit and/or kernel after
processing has finished. This benefit becomes more important
in the context of dynamic parallelism, where a controller
kernel automatically launches device kernels using the data
in shared memory. Hence, the device can spend more time
processing, and potentially improve task-level parallelism.

The host operation simply focuses on reading data into/out
of shared memory, while the controller kernel can delegate
work to slave kernels. Communication between the host and
the controller kernel can be accomplished using flags in shared
memory. Instead of using the default OpenCL queue to send
events, pointer arrays that hold dynamically-updated memory
addresses, are sent to the controller kernel. The pointer array
will address the flags that signal when new data has been
copied by the host, and will include the memory address of the
new data. For example, the AES algorithm requires that data
be broken into 16-byte states that are processed individually.

Before the host commits the data into shared memory, each
state is aligned and unionized with a sequence number and a
Boolean value that is set to 0, before the state is processed.
Since the data is aligned on a fixed number of bytes, the
kernel and host can read the memory space using pointer
arithmetic. After the kernel processes the state, it will set the
corresponding flags to 1. The host uses the sequence number to
copy the data back in the correct order. The data does not need
to be processed in a specific order, so the controller kernel can
adapt and scale the number of workunits based on the compute
capabilities of the device, and also based on the size of the
plaintext file. In most cases, the bottleneck in this application

becomes the speed of reading the initial file and writing the
final file.

Using OpenCL 2.0’s shared virtual memory and dynamic
parallelism, we have the ability to create more flexible and
dynamic applications. In the case of the AES example, the new
simultaneous host/kernel operation is much more efficient. So

here we have three benchmark programs that are being run for
the test of the increased speed of using shared virtual memory

(SVM). First, there is a multithreaded CPU implementation
(AES_ pu) that will be used as a baseline point. For speed-up,
we have implemented the same in OpenCL 1.2 (AES,cl1.2)
and then to take advantage of OpenCL 2.0’s SVM feature, we
have implemented it in OpenCL 2.0 (AE S,cl2.0). In this case,
as mentioned earlier, instead of copying the data to global
memory, we use SVM. Both versions of the GPU program
use the CPU for key expansion, since the CPU can expand
the private key and avoid the overhead of kernel start. The
expanded key can then be dynamically placed in memory as
input to the OpenCL kernel so that the keys will exist in
constant memory. When each kernel starts, each state (i.e.,
AES data block) is copied into the register of the work-unit,
processed, and then written back to global memory.

V. RESULTS

Data for AES: The data tested is a 600kb copy of Sherlock
Holmes, and 10, 50, 100, and 1000-megabyte files consisting
of random data.

Datasize AES py AES,c1.0
0.6 MB 1271 ms 806 ms
10 MB 19946 ms 12270 ms
52 MB 109275 ms 59080 ms
105 MB | 2117082 ms | 116783 ms
1 GB 1160867 ms | 2117082 ms

VI. SUMMARY

In this contribution we have discussed the benefits of
OpenCL 2.0. We have explored some of the benefits of this
new programming framework by discussing two applications:
FIR filtering and AES-128 encryption. In our future work,
we will consider programmer productivity measures that we
positively impacted when leveraging OpenCL 2.0.

REFERENCES

[1] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Heterogeneous
Computing with OpenCL, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011.

[2] K. O. W. Group et al., “Opencl 2.0 specification,” Khronos Group, Nov,
2013.

[3] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and systems.
Prentice-Hall Englewood Cliffs, NJ, 1983, vol. 2.

[4] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer, 2002.

