
Side-Channel Power Analysis of a GPU AES
Implementation

Abstract—Graphics Processing Units (GPUs) have been used
to run a range of cryptographic algorithms. The main reason
to choose a GPU is to accelerate the encryption/decryption
speed. Since GPUs are mainly used for graphics rendering, and
only recently have they become a fully-programmable parallel
computing device, there has been little attention paid to their
vulnerability to side-channel attacks.

In this paper we present a study of side-channel vulnerability
on a state-of-the-art graphics processor. To the best of our
knowledge, this is the first work that attempts to extract the secret
key of a block cipher implemented to run on a GPU. We present
a side-channel power analysis methodology to extract all of the
last round key bytes of a CUDA AES (Advanced Encryption
Standard) implementation run on an NVIDIA TESLA GPU. We
describe how we capture power traces and evaluate the power
consumption of a GPU. We then construct an appropriate power
model for the GPU. We propose effective methods to sample
and process the GPU power traces so that we can recover the
secret key of AES. Our results show that parallel computing
hardware systems such as a GPU are highly vulnerable targets
to power-based side-channel attacks, and need to be hardened
against side-channel threats.

I. INTRODUCTION

Graphics Processing Units (GPU), originally designed for 3-
D graphics rendering, have evolved into high performance gen-
eral purpose processors, called GPGPUs. A GPGPU can pro-
vide significant performance advantages over traditional multi-
core CPUs by executing workloads in parallel on hundreds to
thousands of cores. What has spurred on this development is
the delivery of programmable shader cores, and high-level pro-
gramming languages [1]. GPUs have been used to accelerate
a wide range of applications [2], including: signal processing,
circuit simulation, and molecular modeling. Motivated by the
demand for efficient cryptographic computation, GPUs are
now being leveraged to accelerate a number of cryptographic
algorithms [3], [4], [5].

While cryptographic algorithms have been implemented to
run on GPUs for higher performance, the security of GPU-
based cryptographic systems remains an open question. Previ-
ous work has analyzed the security of GPU systems [6], [7],
[8], [9]. The prior work focused more on using software meth-
ods to exploit the vulnerabilities of the GPU programming
model. Side-channel vulnerabilities of GPUs have received
limited attention in the research community. Meanwhile, cryp-
tographic systems based on CPU, application-specific inte-
grated circuits (ASICs), and FPGA platforms have been shown
to be highly vulnerable to side-channel attacks. For example,
Moradi et. al. showed that side-channel power leakage can
be utilized by attackers to compromise cryptographic systems

that use microcontrollers [10], smart cards [11], ASICs [12]
and FPGAs [13], [14].

Different attack methods can be used for analyzing side-
channel power leakage, e.g., differential power analysis
(DPA) [15], correlation power analysis (CPA) [16] and mutual
information analysis (MIA) [17]. These attack methods pose
a large threat to both hardware-based and software-based
cryptographic implementations. Given all of this previous side-
channel power analysis activity, it is surprising that GPU-based
cryptographic resilience has not been considered. In this paper,
for the first time, we apply CPA on an AES implementation
running on a GPU, and succeed in extracting the secret key
through analyzing the power consumption of the GPU.

Note that the inherent Single Instruction Multiple Thread
computing architecture of a GPU introduces a lot of noise into
the power side-channel, as each thread can be in a different
phase of execution, generating a degree of randomness. We
certainly see that GPU execution scheduling introduces some
timing uncertainties in the power traces. In addition, the
complexity of the GPU hardware system makes it rather
difficult to obtain clean and synchronized power traces. In
this paper, we propose an effective method to obtain clean
power traces, and build a suitable side-channel leakage model
for a GPU. We analyze AES on an NVIDIA TESLA C2070
GPU [18] and evaluate power traces obtained on a Keysight
oscilloscope. CPA analysis using the acquired traces shows
that AES-128 developed in CUDA on an NVIDIA C2070 GPU
is susceptible to power analysis attacks.

The rest of the paper is organized as follows. In Section II,
we provide a brief overview of the CUDA GPU architecture,
including both software and hardware models. We also de-
scribe our CUDA-based AES implementation. In Section III,
we describe the experimental setup used to collect power
traces, and discuss difficulties we faced during designing
our power analysis attack on GPUs compared to on other
platforms. In Section IV, we discuss the construction of our
power model, and present our attack results. Finally, we
conclude the paper in Section V.

II. TARGETED GPU ARCHITECTURE AND AES
IMPLEMENTATION

A. GPU Hardware/Software Model

A GPU is designed to support execution of hundreds
to thousands of concurrent threads run on hardware cores.
Compared to CPU execution, GPU threads are designed to be
lightweight, and can execute a program in parallel with low

context switching overhead. The massive number of threads
are used to hide long latency operations.

CUDA [19] is a parallel computing platform and program-
ming model developed by NVIDIA, which provides extensions
to C/C++. In this work we are utilizing CUDA 6.5. From
a hardware standpoint, the GPU is equipped with its own
memory hierarchy that includes global memory, local memory,
L1 and L2 caches, and registers. From the software standpoint,
the same code, referred to as kernel code, is executed in
parallel using a large number of threads. These threads are
grouped into blocks, which are then clustered into a grid, and
which are scheduled to run on the hardware cores. Each thread
is indexed by its thread id and block id. A 2-D thread structure
is shown in Fig. 1, where one block consists of 12 threads,
and there are 6 blocks in the grid. The programmer specifies
how many threads are needed to run the kernel and partitions
the workload for those threads. To initiate execution, the data
is first copied from the CPU memory to the GPU memory.
Next, the kernels start execution on the GPU. After the kernels
complete execution, the results are copied back to the CPU.

Block(1,1)

Thread(0,0) Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Grid

Block(0,1) Block(1,1) Block(2,1)

Block(0,0) Block(1,0) Block(2,0)

Fig. 1. A sample CUDA execution of threads and blocks in a single grid [20].

B. Target Device Model

In this study, we target a TESLA C2070 GPU, which has
14 steaming multiprocessors (SMs), where each SM has 32
CUDA cores, totaling 448 CUDA cores. These numbers will
vary for different models of GPU. For memory, an off-chip
global memory is shared across the SMs. An L2 cache is also
shared, but it is on chip. An L1 cache, which serves as shared
memory, is only shared by the CUDA cores within an SM.

Fig. 2 shows a block diagram of a single SM. It features
2 warp schedulers, a 3K 32-bit register file, 32 CUDA cores
and other functional units. The CUDA cores are the basic

computational unit on a GPU, and are used to execute the
kernel. In one thread block, every 32 threads are grouped into
a warp. If the number of threads in the block is not divisible
by 32, the last warp will have less than 32 threads. Threads
in the same warp are executed in a synchronized fashion on
the CUDA cores of one SM, and share a common program
counter. This provides us with some level of determinism
during execution. It also eliminates the need to synchronize
threads inside a single warp. Multiple blocks can reside on
one SM concurrently. Typically, there are multiple warps in a
single block. Whenever the warp in execution is stalled due
to a data dependency or control hazard, the GPU’s scheduler
will dispatch another warp in the same block, or from another
block, to the CUDA cores. Given the large size of the register
file provided on the GPU, each thread has its own registers, we
should not have to rename them or spill the other context to
global memory. Therefore, the overhead of switching contexts
on CUDA cores is minimized. As long as we have enough
active warps, the CUDA core’s pipeline can be kept full.

Instruction Cache

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit

Register File (32,768 x 32-bit)

Core Core

Core Core

... ...

Core Core

Core Core

..
.

..
.

LD/ST

...

LD/ST

SFU

..
.

SFU

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Fig. 2. Block diagram of one TESLA C2070 streaming multiprocessor [20].

To begin to launch a power attack on a GPU, we need
to understand how work is dispatched to the CUDA cores.
There are two schedulers in each SM, so two instructions
can be executed at the same time. While prior generations
of G20 and GT200 utilized a static round robin scheduler, the
Fermi scheduling scheme has been reported to vary greatly
from round robin. Further, NVIDIA has not publicly described
the details of the scheme implemented in the Fermi. From
a programmer’s perspective, the scheduler’s behavior needs
to guarantee forward progress and avoid starvation, but it is
difficult for us to assume more than this on Fermi, which
makes our task of understanding the detailed behavior on the
Fermi device challenging.

C. AES Implementation

In this paper, we implement a 128-bit ECB mode AES-
128 encryption in CUDA based on the CUDA reference
implementation by Margara [21]. Because the GPU’s register
width is 32-bit, the T-table version of the AES algorithm [22]
is adopted. Each thread is responsible for computing one
column of a 16-byte AES state, expressed as a 4× 4 matrix,
with each element a state byte. Four threads are needed to
process a single block of data. Note here, the GPU thread block
is different from AES data block, which is a 16-byte data block
iteratively updated on each round, transforming the plaintext
input to ciphertext output. Due to the ShiftRows operation,
threads working on different columns share their computation
results, and thus shared memory is used to hold the round
state results, which facilitates communication between threads
easily and efficiently. Since threads for one data block will
be grouped into the same warp, there is no need to explicitly
synchronize the threads.

Fig. 3 shows the round operations for one column running
in a single thread. The initial round is simply an XOR of the
plaintext and the first round key. There are nine middle rounds
for the 128-bit AES encryption. Each thread takes one diagonal
of the state as its round input, and maps each byte into a 4-byte
word through a T-table look-up-table. These four 4-byte words
are XORed together with the corresponding 4-byte round key
bytes, and the results are stored in a column of the output
state. The last round has no MixColumns operation, and so
only one out of four bytes is kept after the T-table lookup.

+ + + + =

T-table lookup

Round key

+ + + + =

T-table lookup

Round key

+ =

Round key

Initial round

Middle rounds

Last round

Fig. 3. The round operation running as one thread.

The T-tables are stored in the GPU’s constant memory,
which is cached to improve performance. The key scheduling
is performed on the CPU, and then the expanded key is

copied into GPU memory. According to the configuration
of the TESLA C2070, there are at most 8 blocks and 48
warps residing together on one SM. The number of threads
present in a single block is set to 192 (48 × 32/8), which
fully utilizes the hardware. To perform an encryption, the grid
size is determined by the number of plaintext blocks to be
encrypted. In this work, 49,152 plaintext blocks are encrypted
at one time, so the grid size is 1024 (49152× 4/192) blocks,
in order to achieve good occupancy on the GPU.

III. POWER LEAKAGE ACQUISITION

In our experiments, the TESLA C2070 GPU is hosted on
the PCIE interface of a desktop server running Ubuntu. Fig.4
shows the experimental setup. In order to measure the power
consumption of the GPU card, a 0.1 ohm resistor is inserted
in series with ATX 12V power supply. The voltage drop on
the resistor is measured by a Keysight MSOX4104A oscil-
loscope. The AES encryption runs on the server, providing
an encryption service. The attacker sends plaintext over the
network through TCP/IP. Upon receiving the data file, the
server copies it to the GPU memory for encryption. The
ciphertext is generated on the GPU, sent back to the server,
and then returned to the attacker through the TCP connection.

During encryption, the oscilloscope records the power con-
sumption and sends the measurement back to the attacker
through the network. Since there is no GPIO (General-purpose
input/output) or dedicated pins on GPU to provide a trigger
signal to indicate the start or end of the encryption, the
oscilloscope takes the rising edge of the power trace as the
trigger signal. Because a power trace can be very noisy and
its rising and falling edges are not distinct, it is challenging
to always identify beginning of an encryption in a trace
and the traces are not synchronized, like traces of an FPGA
implementation.

Server

ATX Power

Attacker

0.1 Ohm

GPU

Oscilloscope

Voltage
probe

Power
supply

Power
supply

plain

cipher

plain

cipher

Power trace

Fig. 4. The power measurement setup used in this work.

Power leakage acquisition on a GPU is performed very
differently than the approaches used on MCUs, FPGAs and
ASICs [10], [13], [12] for a number of reasons. First, our
measurement point on the ATX power supply is far away from
the GPU chip power supply. On the GPU card, there are many
DC-DC units converting the 12V voltage into various other
voltage values needed by the GPU. These power management

units contain many capacitors to supply a steady voltage, and
can filter out fluctuations in the power consumption (exactly
the kind of information side-channel attackers require). These
capacitors act as a local energy reserve – when we need to
provide a large amount of power in a short amount of time,
current is drawn from the capacitors instead of the power
supply, so the changes in terms of power consumption are
not directly observable externally. What is worse, the DC-
DC converter relies on switching circuits on and off at a high
frequency, which generates a large amount of switching noise.
This behavior can obscure any useful dynamic power signal.

Second, the measured total power consumption of the GPU
card also contains power consumption of the cooling fan, off-
chip memory, PCIE interface and many other auxiliary circuits.
These unrelated power consumptions further add to the noise
level.

Third, the ATX 12V output is not the only power supply
for the GPU card. The PCIE interface can supply power (at
most 75W) through its 12V and 3.3V power supply pins.

The last and most important issue is the parallel computing
behavior of the GPU, which as discussed in Section II,
may cause timing uncertainty in the power traces. The GPU
scheduler may switch one warp to another at any time, and
this behavior is not under programmer’s control. Moreover,
there are multiple streaming multiprocessors, each performing
encryption concurrently and independently. As a result, these
facts all pose great challenges for GPU side-channel power
analysis.

In Section IV-B, we propose strategies to deal with these
problems. The first and last problems are addressed by aver-
aging each power trace to produce a single value to represent
the power/energy consumption. The second problem is miti-
gated by eliminating the erroneous part of traces affected by
computation of irrelevant factors. For the third problem, we
have to collect more traces to increase the side-channel signal
to noise ratio.

Fig. 5 shows the difference between an FPGA power
trace [23] and a GPU power trace of an AES encryption. The
FPGA power trace is much cleaner, with little noise. The ten
rounds of AES can be clearly observed, identified by a steep
voltage drop. For the GPU power trace, the power data is rather
fuzzy because of the large amount of noise, and the voltage
drop at the beginning is not nearly as pronounced. There
is no sign of round operations from the GPU power trace.
The spikes are caused by the DC-DC converter’s switching
activities. The trace is almost flat during encryption due to the
GPU scheduler’s attempts to keep the hardware busy all the
time.

IV. OUR CPA ATTACK

To launch a correlation power analysis attack on the GPU,
we need to design a power model to predict power con-
sumption. The power model should capture the dependency of
the GPU’s power consumption on the secret key information.
Second, we need to sensitize the model to varying the input
and generate corresponding power traces during encryption.

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

−0.15

−0.1

−0.05

0

Time(ms)

V
ot

ag
el

(V
)

(a) Sample power trace of FPGA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

Time(ms)

V
ot

ag
el

(V
)

(b) Sample power trace of GPU

Fig. 5. Comparison of typical power traces between a FPGA and GPU.

Given the challenges presented in Section III, the power traces
need to be collected and processed carefully in order to launch
a successful side-channel power analysis attack.

A. Power Model Construction

In CMOS integrated circuits, the largest contributor to
power consumption comes from power dissipation during
switching, when an output transitions from a 0 to a 1 or from
a 1 to a 0. During these transitions, capacitors are charged
and discharged, which generates current flow, especially when
driving nodes with large parasitic capacitances. Since register
outputs need to be routed to many units, including ALUs,
memory load/store units, and inputs of the register file, they
can consume a large portion of the total dynamic power.
Registers are also the most frequently switched component
(besides the clock tree), making them a good target to build our
power model on. Based on these facts, the Hamming distance
between a register’s values before and after a transition is
chosen to drive our power model. The power model of our
GPU becomes:

W = aH + b (1)

where W is the instantaneous power consumption at any
time point during an encryption, H is the Hamming distance
of a selected register at that point in time, a is the unit
power consumption of one state switch, and b is the power
consumption due to other elements in the GPU (logic noises)
and other physical noises. b is normally treated as a Gaussian
distributed random variable, as has prior work [16].

For the attack, we choose the registers used in the last round
operation of AES to build the power model. Since there is no
MixColumns operation, every byte of the last round of the
secret key determines part of the power consumption, and so
is independent of other bytes. Since focus on the last round,

we only need the ciphertext and the key guess to predict the
power consumption.

The CUDA PTX assembly code of the AES kernel is used to
analyze the operations applied in the last round. The required
steps for one state byte operation are shown in Fig. 6. First, a
register is loaded with a byte of the input state. Based on the
state value, the register is then loaded with a 4-byte T-table
value, which are known constants. The T-table value is then
ANDed with a mask to leave one byte untouched and other
bytes zero, as shown in Fig. 3. Finally, the remaining byte is
XORed with one corresponding byte of the last round key
to produce one byte of the ciphertext. One thread processes
all four state bytes, each with a different mask value and key
byte position.

Load T-table
Reserve only

one byte +
XOR key byte

Rn

One state byte

Rn

Four byte T-table value

Rn Rm

One byte of key

Rm

One byte of cipher text

Fig. 6. Last round operation on registers for one state byte.

The pseudocode of these instructions for one AES state byte
is shown below. The “LOAD” instruction looks up in the T-
table and loads four bytes into register Rn. Rn is then ANDed
with a mask 0xFF (or 0xFF00, 0xFF0000, 0xFF000000, de-
pending the byte ordering). Finally, Rn is XORed with the
round key Rm, resulting in one byte of ciphertext in Rm.

LOAD Rn [Rn]

AND Rn Rn 0X000000FF

XOR Rm Rm Rn

The corresponding Hamming distances of the three registers
in these instructions can be calculated as below, where HW
denotes the Hamming weight of a number, rn0 denotes the
value of the selected state register before the “LOAD” instruc-
tion, and rn is the register value after the T-table lookup. rn[0]
holds the last byte of the 4-byte register value, and rn[3 : 1]
holds the first three bytes.

For Load : HW (rn ⊕ rn0)
For AND : HW (rn[3 : 1])

For XOR : HW (rn[0])

When ciphertext C is known (i.e., if we know the value
of register Rm after the XOR is executed), then the state
value before the XOR instruction (rn) can be calculated using
the ciphertext and a guessed key value. For one byte, this
can be written as rn[0] = c ⊕ kg , where the Hamming
distance for the XOR instruction can be calculated. If we have
ciphertext C and the guessed key byte, then the corresponding
input state byte can be calculated directly from the AES

algorithm (using an inverse of the substitution box operation,
i.e., rn0 = SBox−1(c⊕kg). rn = T (rn0)). Therefore the first
and second Hamming distances above can also be calculated.
All three Hamming distance expressions contain a key guess,
explicitly.

If the correct key guess is used to calculate the Hamming
distances, we should find significant correlation with the asso-
ciated power consumption measurement [16]. The correlation
power analysis (CPA) attack finds the correct key based on the
guess that yields the maximum Pearson correlation between
the power consumption trace and the predicted Hamming
distance, i.e., kc = argmax(ρg), where:

ρg =
cov(W,Hg)

σWσHg

=
aσHg

σW
=

σHg√
a2σ2

Hg
+ σ2

b

(2)

where σHg
is standard deviation of the selected register’s

Hamming distance at a time point for a key guess value kg , and
σW is the standard deviation of the corresponding measured
power consumption.

With the parallel programming model of GPU and the
uncertainty of warp scheduling, we choose to sum the three
Hamming distances for one byte encryption as Hg in Equation
(1). Accordingly, we take an average across all the sampling
points for each power trace as W . We will discuss more about
the power trace processing in the next section. This approach is
a key difference between our CPA on a GPU and the previous
CPA attacks on sequential computing platforms such as a CPU
or MCU, or even a parallel computing platform with a fixed
computing order such as a FPGA.

The secret round key length is 16-byte. We assume the
Hamming distance of different key bytes are independent and
have the same standard deviation. On the NVIDIA TESLA
GPU used in this study, each thread processes a 4 byte column,
independently, and therefore, the key bytes will be attacked
one by one.

B. Power Trace Processing

Another challenge of power analysis on the GPU is the col-
lection of clean power traces. During the development of our
strategy, our first observation was that the power traces varied
significantly across time at the beginning of our experiments.
We needed to acquire a large number of traces using different
plaintext inputs. The first few traces always had much lower
power consumption. As the experiments progressed, the power
consumption gradually grew, finally stabilizing at some point
for the rest of the experiment. We found that this trend was
caused by the GPU’s cooling fan. A secondary effect can be
that the rise in temperature increases leakage, but is less of a
factor. At the beginning of our measurements, the temperature
of the GPU is low, making the fan run slowly, which draws
less power. Since the workload of the GPU is high during
encryption, the GPU temperature rises, causing the fan to draw
more power to cool the GPU. The fan power consumption is
a substantial part of the measured power and contributes to

Sampling Point ×105
0 0.5 1 1.5 2 2.5

V
ol

ta
ge

 (
V

)

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
(b) Comparison of First and Refernce Trace

Reference Trace
Fisrt Trace

Trace Index
0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 V
ol

ta
ge

 (
V

)

-0.135

-0.13

-0.125

-0.12

-0.115

-0.11
(a) Average Voltage vs. Trace Index

Fig. 7. Average power trends and comparison of the first and a reference
trace.

variance (noise) in the power measurements. We need a way
to address this.

To understand the effects of the cooling fan, we simply
calculated the average power (presented in volts) of each
power trace and present these in Fig. 7(a). The average voltage
starts from -0.115V and drops to -0.13V after trace 1000, and
stays at that level for the rest of the traces. Fig.7(b) shows the
first measured voltage trace and a later reference trace. The
voltages in the first trace are clearly higher than the reference
trace. Note here, we measure the voltage after the resistor, so
we get negative voltage values. The more negative the voltage
value, the higher the power consumption. Since traces before
trace 1000 are much more heavily influenced by the cooling
fan (i.e., they have much wider variations), this data will be
excluded when computing correlations in our attack approach.

In a serial AES encryption implementation, plaintext blocks
are processed sequentially, and the timing of leakage points
in the power trace (under a specific power model) can be
precisely identified. However, the GPU accelerates the en-
cryption by processing multiple plaintext blocks in parallel,
and given our lack of control over warp scheduling, leakage
points for each block occur at different times in the traces.
As shown in Fig. 4, an FPGA power trace exhibits round
operations clearly [23], and the leakage points can be easily
determined. However, for the GPU power trace, nothing about
the encryption details can be told at this point.

Our assumption is that when one thread on the GPU is
executing the leaky instructions of the last round, the power
consumption caused by the thread at that time correlates
with the Hamming distances of the registers. However, the
measured power consumption contains a lot of noise, both
spatially and temporarily, due to the fact that a number of
threads are executing other instructions, and that the threads
are not necessarily synchronized. In our experiments, we
measured N power traces, and each trace is sampled into T
time points. Assuming for each trace that there are Q threads
performing AES encryption. We model the power of one
thread corresponding with its last round operations in one trace
as:

Pthread i(t) = h(t− Li)×Hi + bi(t)

where 1 ≤ t ≤ T is the sampling point, 1 ≤ i ≤ Q is the index
of threads, Hi is the Hamming distance of registers in the last

round for one thread, function h(t) is the power consumption
of a thread with unit Hamming distance starting at time “0”.
Since threads are scheduled to run at different time, Li is the
delay time relative with time “0”. Then the power trace can
be modeled as:

Ptrace(t) =

Q∑
i=1

Pthread i(t)

=

Q∑
i=1

h(t− Li)×Hi +B(t)

Because Li is random and unknown to us, we compute the
average power of each trace to represent the corresponding
energy/average power consumption as:

W =

∑T
t=1 Ptrace(t)

T
= a×

Q∑
i=1

Hi + b

where b is the average of B(t), and a is the average of h(t).
This matches the power model we built in Sec IV-A, in which:

H =

Q∑
i=1

Hi. (3)

Based on this analysis, we average each trace to represent its
corresponding energy consumption. This processing method
also solves the problems caused by DC-DC power manage-
ment units, because the noise is also reduced significantly by
averaging the trace.

C. Attack Results

First, to reduce the overhead of calculating multiple Ham-
ming distances, we use a single value for the plaintext block
data. Therefore, the Hamming distances for every thread are
the same. Thus:

H = Q×Hi.

σH = QσHi

For the attack to succeed, a sufficient number of traces are
needed so we can differentiate the right key byte from the
wrong ones. For each byte of the key, we try all 256 possible
candidates. With each value, we calculate the corresponding
Hamming distances based on the power model described in
Section IV-A for each trace, and then the correlation coefficient
is computed for the average power and the Hamming distances.
As a result, we have 256 correlation coefficients for all of the
key byte guesses. The candidate with the highest correlation
coefficient is our hypothetical key byte value. Fig. 8 shows
the correlation coefficients of the 256 key byte candidates
versus the number of traces used. Because a lower voltage
value translates to higher power consumption, the correlation
coefficient of the right key is negative. After analyzing about
10,000 traces, the right key stands out with the maximum
correlation coefficient (the absolute value).

To extract the whole last round key, we use a brute-force
approach, working byte by byte. We repeat the procedure

Number of Traces ×104
0 0.5 1 1.5 2 2.5 3 3.5 4

C
or

re
la

tio
n

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Right key
Wrong keys

Fig. 8. Correlation between power traces and Hamming distances for all of
the key candidates

above 16 times and obtain the complete last-round key. Fig. 9
shows the results from using 160,000 traces. For each trace,
49,152 blocks of plaintext are encrypted, and every plaintext
block holds the same value to reduce the intermediate value
computation complexity. For different traces, the plaintexts are
set differently. In Fig. 9, the correlation coefficient of the right
key byte value is marked with ‘*’, and the largest correlation
coefficient is marked with ‘o’. For all the 16 bytes, the right
key bytes have the highest correlation. However, we found
that the highest correlation is still small, around -0.05, and the
difference between the highest correlation coefficient value and
the second highest coefficient value (for a wrong key guess)
is not very large. The low correlation value is due to the fact
that our power model only correlates with a small part of the
average power consumption, and therefore the signal-to-noise
ratio is really low. The small correlation difference is because
the main component of the power model is linearly dependent
on the key’s Hamming weight. Those wrong key bytes that
have similar Hamming weights as the right key also result in
similar correlation coefficients. However, the right key can still
be discerned with the given number of traces.

We next experiment with multiple different blocks of plain-
text in one encryption. The results show that the last round
key can still be retrieved in such cases. The power model will
be scaled, accordingly. For example, for S different blocks
of plaintext, 49,152 blocks are grouped into S equal-sized
sets, and each set is designated a different plaintext block. To
compute the correlation coefficients, the Hamming distances
of the last round for the S plaintext blocks are computed
independently, and then summed up as the final Hamming
distance.

H =
Q

S
(

S∑
k=1

Hsetk)

σH =
Q

S

√
SσHsetk

=
Q√
S

√
σHsetk

where Hsetk is the last round registers’ Hamming distances for
one thread in the plaintext block set k, 1 ≤ k ≤ S. We assume

that each Hsetk is independent, and has the same standard
deviation. The standard deviation of the Hamming distances
σH then becomes

√
S times smaller. From Equation (2), since

σb will remain the same, the correlation coefficient ρ should be
lower, and more traces would need to be captured to recover
the right key.

Our results show that all 16 bytes of the last round key can
be extracted when there are 1-to-4 sets of plaintext blocks,
when equipped with 160,000 traces. When the number of sets
increases to 8, only 15 bytes are recovered; and 14 bytes for
16 sets. We conclude that in one encryption, when there is
variation in the data values in different blocks of plaintext,
many more traces are needed, and thus the attack is more
challenging.

By processing the GPU power traces and constructing the
appropriate power models, our attack succeeds in cracking the
AES GPU implementation and obtains the last round key. With
key scheduling, the entire AES key will be recovered.

In addition to power measurements, electromagnetic emis-
sion could be a more practical alternative which does not
require physical contact with the targeted system. An attack
analysis based on EM signals, however, will be very similar
to the power analysis procedure presented in this work. There-
fore, our method is readily applicable to EM side channels.
Our work on side-channel attacks for GPUs can also be
extended to other parallel computing platform such as multi-
core CPUs and DSPs. The timing uncertainty and parallelism
of instruction execution can be addressed by averaging the
power trace and building the corresponding power model
presented in this paper.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present the first side-channel power
analysis on a GPU AES implementation. The setup of the
power consumption measurement of a GPU is described in
details. The various challenges of power analysis on a GPU are
highlighted. To overcome these difficulties, we have proposed
different strategies to process the power traces for a successful
correlation power analysis. The corresponding power model
is built based on the CUDA PTX assembly code. The attack
results show that a GPU, a representative complex parallel
computing system, is vulnerable to a side-channel power
analysis attack.

As the first side-channel power analysis of GPU crypto-
graphic implementation, this work will pave the way for a rich
set of future work. We plan to extend our work to measure
a GPU’s electromagnetic emission signals in a non-invasive
fashion, and evaluate our current work equipped with EM
signals. We will also experiment with different GPU devices
and multi-core CPUs. We plan to further study the statistical
characteristics of the attack, including the relationship between
the attack success rate and the implementation details, like the
number of blocks and the underlying GPU models. The attack
method can also be further improved, and countermeasures
on GPUs against side-channel power analysis attacks will be
investigated.

−0.05

0

0.05 Byte0 Byte1 Byte2 Byte3

−0.05

0

0.05 Byte4 Byte5 Byte6 Byte7

−0.05

0

0.05 Byte8 Byte9 Byte10 Byte11

1 64 128 192 256
−0.05

0

0.05 Byte12

1 64 128 192

Byte13

64 128 192 256

Byte14

1 64 128 192 256

Byte15

Key values

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 9. Our CPA attack results.

REFERENCES

[1] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Heteroge-
neous Computing with OpenCL: Revised OpenCL 1.2 Edition, 2nd ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2013.

[2] W.-m. Hwu, GPU Computing Gems Emerald Edition, 1st ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.

[3] K. Iwai, T. Kurokawa, and N. Nisikawa, “AES encryption implementa-
tion on CUDA GPU and its analysis,” in Int. Conf. on Networking &
Computing, Nov. 2010, pp. 209–214.

[4] S. Manavski, “CUDA compatible GPU as an efficient hardware accel-
erator for AES cryptography,” in IEEE Int. Conf. on Signal Processing
& Communications, Nov. 2007, pp. 65–68.

[5] A. Cohen and K. Parhi, “GPU accelerated elliptic curve cryptography
in GF(2m),” in IEEE Int. Midwest Symp. on Circuits & Systems, Aug.
2010, pp. 57–60.

[6] R. Di Pietro, F. Lombardi, and A. Villani, “CUDA leaks: information
leakage in GPU architectures,” preprint arXiv:1305.7383, July 2013.

[7] M. J. Patterson, “Vulnerability analysis of GPU computing,” Ph.D.
dissertation, Iowa State University, 2013.

[8] J. Danisevskis, M. Piekarska, and J.-P. Seifert, “Dark side of the
shader: Mobile GPU-Aided malware delivery,” in Information Security
& Cryptology, Oct. 2014, vol. 8565, pp. 483–495.

[9] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered on
your browser by exploiting gpu vulnerabilities,” in IEEE Int. Symp. on
Security & Privacy, May 2014, pp. 19–33.

[10] A. Moradi and G. Hinterwälder, “Side-Channel security analysis of
ultra-low-power FRAM-based MCUs,” Proc. Int. WkShp on Constructive
Side-channel Analysis & Secure Design, Mar. 2015.

[11] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis attacks
of modular exponentiation in smartcards,” in Cryptographic Hardware
& Embedded Systems, 1999, pp. 144–157.

[12] S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-Analysis
attack on an ASIC AES implementation,” in Int. Conf. on Info. Tech.:
Coding & Computing, vol. 2, Apr. 2004, pp. 546–552.

[13] P. Luo, Y. Fei, X. Fang, A. A. Ding, M. Leeser, and D. R. Kaeli,
“Power analysis attack on hardware implementation of MAC-Keccak
on FPGAs,” in Int. Conf. on ReConFigurable Computing and FPGAs
(ReConFig), Dec. 2014, pp. 1–7.

[14] S. B. Örs, E. Oswald, and B. Preneel, “Power-analysis attacks on
an FPGA–first experimental results,” in Cryptographic Hardware &
Embedded Systems, 2003, pp. 35–50.

[15] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology, Dec. 1999, pp. 388–397.

[16] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with
a leakage model,” in Cryptographic Hardware & Embedded Systems,
2004, vol. 3156, pp. 16–29.

[17] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, “Mutual information
analysis,” in Cryptographic Hardware & Embedded Systems, 2008, pp.
426–442.

[18] T. NVIDIA, “C2050/C2070 gpu computing processor,” 2010.
[19] C. Cuda, “Programming guide,” NVIDIA Corporation, July, 2012.
[20] N. Leischner, V. Osipov, and P. Sanders, “Nvidia fermi architecture white

paper,” 2009.
[21] P. Margara, “engine-cuda, a cryptographic engine for cuda supported

devices,” 2015. [Online]. Available: https://code.google.com/p/engine-
cuda/

[22] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1998.
[23] T. Swamy, N. Shah, P. Luo, Y. Fei, and D. Kaeli, “Scalable and

efficient implementation of correlation power analysis using (GPUs),”
in Workshop on Hard. & Arch. Support for Sec. and Priv., 2014, p. 10.

