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ABSTRACT
WiFi’s fine time measurement (FTM) based ranging protocol has
set the stage for mass adoption of location-aware applications and
services in WiFi-pervading enterprise and consumer ecosystems.
However, the lack of deployment of such commercial-scale local-
ization solutions has motivated us to conduct a comprehensive
experimental study that aims to verify whether WiFi’s FTM is indeed
ready for prime-time localization.

With heterogeneity in operation (devices, environments, and spec-
trum) being the fundamental essence of commercial deployments,
our study focuses on FTM’s ability to deliver useable localization
under such practical conditions. Being a first of its kind, our study
reveals several interesting insights for practical operation of FTM,
with the most critical of them being its inability to eliminate sub-
stantial offsets in estimated ranges between heterogeneous devices
and configurations that degrade performance significantly (up to
20 m error). Albeit a negative result for FTM’s readiness, we also
propose a simple but promising remedy – an over-the-top auto-
calibration solution that allows every WiFi device, when it enters
an enterprise environment, to self-calibrate its offsets on-demand,
thereby salvaging FTM to render it useful (median error of 2 m) for
localization.

CCS CONCEPTS
• Networks → Wireless local area networks; • Human-centered
computing → Ubiquitous and mobile devices.
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1 INTRODUCTION
WiFi localization solutions received a significant boost with the
introduction of the Fine TimeMeasurement (FTM) ranging protocol
in the IEEE 802.11–2016 standard (a.k.a 802.11mc standard) [8]. The
ability to orchestrate WiFi ranging (distance measurement between
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two devices through FTM) from user-space on commercial off-the-
shelf devices has opened the door for third-party service providers
to develop enterprise-grade solutions that leverage pre-deployed in-
frastructure (e.g., WiFi APs) and end-user devices like smartphones
and tablets, to localize both humans and assets in large indoor
spaces. Unlike other evolving RF technologies like Ultra Wide Band
(UWB) that also offer ranging capability, WiFi devices are omni-
present, have a larger coverage area and better penetrability (lower
operating frequency and higher power than UWBs), making WiFi
FTM more convenient and practical for enterprise-grade indoor
solutions. Further, most modern devices already implement WiFi
FTM [1, 10]. Indeed, the WiFi consortium envisions a much larger
scope and ecosystem for such location-aware WiFi services under
the umbrella of WiFi-aware networking [16]. However, we have
till date not seen compelling commercial solutions that leverage
WiFi FTM for localization. Consequently, it behooves us to under-
stand whether WiFi FTM is ready for prime-time localization at an
enterprise-scale.

Previous work [23] has conducted experimental studies to un-
derstand WiFi FTM in indoor environments. Being preliminary in
nature, it has largely focused on its ranging accuracy in limited
experimental settings between homogeneous WiFi devices (with
similar Intel WiFi NICs). To establish FTM’s viability in delivering
a practical localization solution, we need to understand the ability
of its ranging primitive to inter-operate seamlessly and accurately
with heterogeneous devices, lest there can be no “enterprise-grade”
solution. To this end, we present one of the first comprehensive
experimental studies that puts the spotlight on heterogeneity in
multiple dimensions (device, spectrum, environment) in answering
this key question.

Our extensive measurement study employs multiple off-the-shelf
commercial devices (6 WiFi APs and 3 WiFi clients from different
vendors) under different spectrum (ranging bandwidth and channel)
and environmental (LoS vs. NLoS; cluttered vs. open indoor settings)
conditions. Our key inferences from the study include:

• FTM ranging suffers from fixed (independent of the AP-client
distance) range offsets that vary significantly for different AP-
client pairs.

• The range offsets for a given AP-client pair can vary substan-
tially across different ranging channels (up to 3.6 m) and channel
bandwidths (up to 16.2 m).

• Ranging errors are largely amplified in NLoS conditions. Ad-
ditionally, unlike in LoS conditions, wider channels in NLoS
conditions do not always yield more accurate ranges.

While the presence of fixed offsets in estimated ranges was ob-
served before [23], their reasons were unknown and offsets were
addressed through a-priori calibration between a fixed set of de-
vices. However, our extensive study across multiple dimensions has
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exposed the scale and impact of these offsets, while also shedding
light on their potential causes. We find that to compensate for the
impact of wireless multi-path and direct-path detection delays, de-
vice vendors employ proprietary compensation algorithms. Indeed,
there is room in the standard for vendors to advertise for such com-
pensation [8]. While a common vendor for the AP and client can
have a synergistic compensation algorithm (as seen in our Google
AP and Pixel phones with small offsets), this is impossible to address
and scale across vendors, resulting in offsets that range from -12m
to 14m, resulting in localization errors as large as 20 m. Indeed, this
poses a fundamental issue in leveraging FTM for practical localiza-
tion in enterprises, since these offsets cannot be pre-calibrated and
accounted for. This overwhelmingly points to the conclusion that
WiFi FTM is not ready for prime-time enterprise-scale localization.

Albeit a negative result, we believe the door for leveraging FTM
is not completely closed. As a remedy, we propose a simple but
effective over-the-top (OTT) auto-calibration solution that allows
every WiFi device, when it enters an enterprise environment, to
self-calibrate its offsets, rendering WiFi FTM useful for localiza-
tion. Our approach follows the notion of simultaneous localization
and calibration1, whereby the mobility of the client device is used
to measure multiple ranges to the AP at different points on the
client’s trajectory, which are then combined with its own mobility
(informed by its inertial sensors) to jointly solve for its own location,
while compensating for the unknown offsets. This solution can be
easily deployed as an Android or iOS application on client devices,
enabling seamless integration.

Our contributions in this work are two-fold:

• We conduct an extensive measurement study of WiFi FTM to
assess its practical viability for enterprise-grade localization, with
heterogeneity across various operational parameters as the focus.

• We propose WiLoc, an OTT auto-calibration solution to rem-
edy the fundamental challenge in inaccurate range estimations,
demonstrating that it is still possible to deliver useful localization
(median accuracy of ∼2m) with WiFi FTM, notwithstanding its
large range offsets.

To the best of our knowledge, our work is the first to explore
the shortcomings of WiFi FTM in broader enterprise settings, and
discuss as well as remedy its implications towards a practical local-
ization solution.

2 BACKGROUND
2.1 802.11mc WiFi Ranging
The IEEE 802.11mc FTM ranging protocol enables twoWiFi devices
with asynchronous clocks to cooperatively estimate the distance
between them by measuring the Round Trip Time (RTT). To mea-
sure the RTT, a station (the initiator) and an AP (the responder)
exchange bursts of messages with each other (Fig. 1). Both the STA
and the AP record the Time-of-Departure (ToD), e.g., T1(k),T3(k)
in Fig. 1, and Time-of-Arrival (ToA), e.g., T2(k),T4(k), for the sent
and received FTM messages, respectively. Thereafter, the RTT (for
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Figure 1: FTM Ranging Protocol Message Sequence

k bursts) is calculated as:

RTT = 1/k((
k∑

n=1
T4(n) −

k∑
n=1

T1(n)) − (

k∑
n=1

T3(n) −
k∑

n=1
T2(n)))

Once RTT is calculated, distance can be computed as D = 1/2 ∗
RTT ∗C , where C is the speed of light.

2.2 Problem of Range-Offsets
The success of the FTM ranging protocol lies in the nodes’ ability
to accurately record the ToA and ToD. However, in practice, an
implementation may capture the ToD earlier or later than when the
signal actually arrives at the transmit antenna connector resulting
in an offset [8]. Similarly, a significant amount of time can elapse
from when the preamble arrives at the receive antenna (actual ToA)
to when the node detects the frame, synchronizes with its logical
structure, and computes the ToA. The standard requires devices to
compensate for this delay in ToA computation by subtracting an
offset from the computed ToA. However, the standard does not pro-
vide any guidance on how exactly this offset should be determined
leading vendors to implement their own proprietary algorithms to
correct the ToA/ToD estimations that often leads to over-or-under
compensation resulting in either an inflated or a deflated range.
The problem is further exacerbated when two different vendors’ de-
vices interact, with each device’s (incorrect) ToA/ToD estimations
(disproportionally) contributing to the eventual range offset.

The 802.11mc frame has specific fields for devices (both STAs
and APs) to indicate to their ranging peer any potential error in
ToA and ToD estimations (ToA Error, ToD Error fields – see Fig. 2).
The standard provides this option to precisely capture a device’s
confidence in offset-prediction. However, in our measurement study
we found that none of the commercial devices actually uses these
options.
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Interestingly, we observe that the range offsets for a pair of de-
vices is constant for a particular central frequency (channel) and
channel bandwidth (e.g., 20/40/80 MHz) combination used during
the FTM protocol (§3). We believe that the devices use constant
offset values depending on the channel and bandwidth used (to ac-
count for the difference in processing overheads in wider channels)
to compensate for the incorrect ToA/ToD estimations. To under-
stand the scale of the range offsets problem, we conduct a detailed
measurement study with multiple off-the-shelf devices.

3 WIFI FTM RANGING PERFORMANCE
Our measurement study utilizes 6 different WiFi APs – ASUS RT-
ACRH13 [3], Linksys Velop [9], Google Nest’s Mesh AP system
(consisting of 3 APs in a mesh network, which we refer to as Google
1, Google 2 and Google 3) [6] and a Compulab Fitlet AP [4] – and 3
different STAs – Google Pixel 5 [7], Xiaomi Mi Note 10 [12], and
a Compulab Fitlet acting as a STA. The WiFi chipset, OS, and the
wireless configurations supported by each of these devices for FTM
operation are shown in Table 1. The WiFi chipsets employed by
each of these devices are different from each other and all devices
support channel widths up to 80 MHz. Note that certain vendors
(e.g., Google) do not allow manual channel and bandwidth selection.
Hence, for these devices, we only use the channel and bandwidth
configuration chosen by the device for FTM ranging.
Data Collection. To enable seamless FTM ranging on the Fitlet
devices, we modified the Linux OS’s iw utility using the patch
provided in [5]. For the Android smartphones, we wrote an app
that uses the WiFi Ranging Android API [2] to send FTM requests
periodically (e.g., every 30 ms). We collected data in both LoS and
NLoS scenarios, in diverse indoor environments inside an office
building and a university campus: a large carpeted area, a lab with
benches and equipment, a building lobby with furniture, and a large
empty open area with tall glass windows.

3.1 LoS Conditions
We begin by studying the WiFi FTM ranging performance with
static STAs in LoS scenarios. For each AP-STA pair, we place a static
STA at various distances from 1 m to 50 m, and record the FTM
ranges for a channel and bandwidth (channel 36 / 80 MHz) that is
supported by all the AP-STA pairs. We physically measure the true
distance between the client and the AP for Ground Truth (GT). We
use the GT range to calculate the range offsets. Fig. 3 shows the

measured ranges (mean and standard deviation across 100 readings)
for different STAs connected to the same AP for 3 of our APs. We
make two observations: (i) There is a fixed range offset, independent
of the distance between the AP and the STA, confirming the finding
from [23]. (ii) Range offsets vary significantly for different AP-client
pairs, extending the results from [23], thus showing how extreme
and disparate the offset problem is across heterogeneous devices.
Impact of Operating Frequency.We next study how range off-
sets vary based on the operating channel (for a fixed channel band-
width). Fig. 4a shows the range offsets measured for the Pixel 5
client when ranging with all our APs across all possible (20 MHz
bandwidth) channels (we show results for only one client due to
space limitations). We observe that devices implement a frequency
dependent offset (for ToA/ToD correction). However, the variance
in these offsets for a given AP-client pair is not very large; the
maximum offset difference across different channels, observed with
a Xiaomi client and ASUS AP, is 3.6 m.
Impact of Channel Bandwidth.Next, we show how range offsets
vary for different channel bandwidths (same central frequency), for
a given AP-STA pair. Fig. 4 shows the range offsets across 20 MHz,
40 MHz, and 80 MHz channel bandwidths, for the Pixel 5 client
when ranging with all our APs. The range offsets for the same pair
of devices can vary by as much as 16.2 m (for ASUS AP-Fitlet Client)
or as little as 1.2 m (for Fitlet AP-Pixel 5 Client) as shown in Fig. 4.
Accuracy of FTM ranges with offset correction. Lastly, we
show the accuracy of the FTM ranges, with (manual) offset cor-
rection. For the data previously collected, we estimate the offset
as the mean difference between the measured range and the GT
range and use that as an offset value. Subtracting this offset from
the measured range gives the range error. We observe that across
device pairs, in the median case, the range errors are ∼50 cm, ∼30
cm, and ∼10 cm, suggesting that FTM ranges in LoS are highly
accurate and can definitely aid in accurate localization, provided
that the disparate range offsets are resolved.

3.2 NLoS Conditions
We now study the FTM ranging accuracy in NLoS conditions. To
determine the FTM ranging errors, we (manually) discount the
range offset, which we calculated from the LoS measurements, from
the measured range, and estimate the accuracy of the measured
ranges. Fig. 5 plots the CDF of the ranging errors in NLoS for
different AP-STA combinations. Unlike in LoS, the range errors (for
a given channel and bandwidth) are amplified in NLoS conditions.
The drop in channel quality, combined by the devices’ inability to
exactly identify the Channel Impulse Response peaks (a common
problem for multipath signals) further degrades the ToA estimations
leading to large range errors. The 80 MHz channel bandwidth,
which had the most accurate range estimations in LoS, suffers the
most in NLoS due to fact that a signal using wider bandwidth
(e.g., 80 MHz) attenuates faster than the same signal spread over a
narrower bandwidth (e.g., 20 MHz). More importantly, we conclude
that for localization solutions implementing FTM ranging, a wider
channel does not always yield accurate ranges.
LoS vs. NLoS FTM ranging – Impact on Localization: Given
the high inaccuracy of NLoS range estimations, any localization



Table 1: Device Description.

Device Role Chipset
Operating
System

Channel Widths
Supported

5 GHz Channels
Supported

ASUS RT-ACRH13 AP Qualcomm IPQ4018 - 20/80 MHz 36-161
Linksys Velop WHW03 AP Qualcomm QCA9986 - 20/40/80 MHz 36-48

Google Nest WiFi AP
Qualcomm QCS405 (Router)
Qualcomm QCS404 (Point)

- 80 MHz 149

Compulab Fitlet AP/STA Intel Wireless-AC 8260 Linux Mint 18 20/40/80 MHz 36-48
Google Pixel 5 STA Qualcomm Snapdragon 765G Android 11 20/40/80 MHz 36-161

Xiaomi Mi 10 Note STA Qualcomm Snapdragon 730G Android 11 20/40/80 MHz 36-161
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Figure 3: Ranging across distances with different AP-client pairs.
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Figure 4: Offset changes with varying channel.

system that uses FTM ranges needs to be able to distinguish LoS
ranges from NLoS ranges, so that it can filter out the NLoS ranges.

Tomake that classification, we employ a simplemachine learning
model, Random Forest, and using 3 inputs – last n ranges, last n
RSSI values, and variance in last n ranges – we try to accurately
classify whether the ranges are with an AP in LoS or NLoS. Table 2
shows the classification accuracy for different n values and time
interval t between consecutive range and RSSI samples. Even using
only 5 range samples obtained every 30 ms, the model can correctly
classify LoS and NLoS ranges in 83.5% of the cases. Furthermore,
assuming the user stays in LoS/NLoS for longer, taking a larger

number of range/RSSI samples spaced further apart leads to even
higher accuracy, up to 99.5% when considering the previous 20
range/RSSI values obtained every second.

Table 2: LoS-NLoS Classification Accuracy.

t = 30 ms t = 200 ms t = 500 ms t = 1000 ms
n = 5 83.5% 84.9% 86.4% 88.8%
n = 10 84.7% 86.7% 90.3% 94.6%
n = 20 85.6% 89.7% 95.5% 99.5%
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Figure 5: Ranging error in NLoS conditions.
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3.3 Summary
To summarize, we find the range offsets depends on 1) the AP-STA
pair, 2) the channel width, and 3) the channel (frequency). Given
the plethora of different vendors for WiFi devices and the fact that
the devices’ spectrum configurations change frequently, it becomes
practically impossible to have an offline solution to this problem.
The only way to address this challenge is via an on-demand, real-
time, online solution.

In addition, we see that the ranging accuracy deteriorates sig-
nificantly as the user moves from LoS to NLoS conditions. Thus,
it becomes imperative to design a system that can distinguish be-
tween LoS and NLoS ranges, so that it can filter out the NLoS ranges
and use only the LoS ranges.

4 WILOC DESIGN
To address the range offset problem in a practical manner, we pro-
poseWiLoc, a novel OTT solution that can be deployed as an ap-
plication on end-user devices like smartphones and enables these
devices to self-calibrate their range offsets with multiple APs when
they enter an enterprise environment, without any human input.
At a high level, WiLoc follows the notion of simultaneous local-
ization and calibration. It employs Euclidean geometry leveraging
the user’s mobility – computed using onboard inertial sensors – to
measure the ranges at various points of its trajectory and combines
both trajectory and range information to solve for the range offset.

WiLoc assumes an AP to be statically placed at (xAP ,yAP ), (as
shown in Fig. 7), and the user to start at (xC ,yC ) and move con-
tinuously in a random direction with respect to the AP. At each
time-interval t (e.g., t=1 s), the STA performs FTM ranging to mea-
sure a range Rp , where Rp = rp + δ with δ being the range offset.
To solve for δ , WiLoc employs two approaches – WiLocl in and
WiLocquad . While WiLocl in uses a system of linear equations to
solve for δ ,WiLocquad employs a quadratic solver. The linear ap-
proach is less complex, but results in a less accurate estimation of
δ , while the quadratic approach is more complex, but offers more
accurate estimation (§5).

4.1 WiLocl in : A Linear Solver
The first approach,WiLocl in , formulates the problem of solving for
δ using a series of linear equations.WiLocl in assumes (xAP ,yAP ) =
(0,0) for the AP location. Given the STA’s initial position (xC ,yC ),

R 1
= 

(r 1
+ 
𝜹)

R
2

= 
(r 2

+ 
𝜹)

R
3 = (r3 + 𝜹)

R
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d1
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d 2
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(xC,yC)

(xAP,yAP)

Figure 7:WiLoc Scenario.

we have:
x2C + y

2
C = (R1 − δ )2 (1)

As the user moves, at each time interval t , the STA reaches a
new position p, resulting in a an additional equation:(

xC +
T∑
i=1

dicos(αi )

)2
+

(
yC +

T∑
i=1

disin(αi )

)2
= (Rp − δ )2 (2)

where, αi is computed by measuring the heading (magnetometer)
information, anddi (displacement) is estimated via the STA’s inertial
sensors (accelerometer, magnetometer).

Now, for each new equation (2) obtained at every time interval
t , we subtract equation (1) from it. This linearizes the system of
equations with 3 unknown variables (xC , yC , and δ ). Solving for
the 3 unknowns requires at-least 3 equations (3 seconds if t = 1),
with additional equations increasing the accuracy of the solution
(δ ).

4.2 WiLocquad : A Quadratic Solver
The second approach,WiLocquad , employs a quadratic solver.

WiLocquad assumes (xC ,yC ) = (0,0) for the STA’s initial position
and given the AP is at (xAP ,yAP ), the Euclidean distance between
the AP and STA is: √

x2AP + y
2
AP = R1 − δ (3)



Figure 8: Experiment Setup.

At each time t , with the user at position p, the new Euclidean
distance is:√√√(

xAP −

T∑
i=1

dicos(αi )

)2
+

(
yAP −

T∑
i=1

disin(αi )

)2
= Rp − δ (4)

For each new equation (4) we obtain at every time interval t ,
we subtract equation (3) from it (i.e., (4)-(3)). This cancels out δ
leaving 2 unknowns, i.e., xAP and yAP . WiLocquad requires only
2 equations to solve for the unknowns, with additional equations
increasing the accuracy of the solution.

Once WiLocquad solves for xAP and yAP , the range-offset δ is
given by:

δ = R1 −
√
x2AP + y

2
AP (5)

where R1 is the range when user (STA) was at (0,0).

4.3 WiLoc: Localization
WiLoc schedules a STA to sequentially range with multiple APs
(at least 3) at each time interval t , and solves for δAP to compute
the true range from each AP. LoS APs are selected by the Random
Forest classifier discussed in §3.2. Subsequently,WiLoc employs a
simple least-square multilateration solver to localize the STA, with
the offset-corrected ranges from LoS APs as input to the solver.

5 IMPLEMENTATION AND EVALUATION
We conduct a two-part evaluation of the proposed WiLoc solution.
In the first part, we run a trace-based evaluation of WiLoc’s
ability to correctly deduce the range offsets in practical indoor
environments. Next, we employ WiLoc’s range resolution to

localize (multilaterate) a user in real-time and evaluate the accuracy
of the localization with respect to the Ground Truth (GT).

Ground Truth and Data Collection: To obtain the Ground Truth
location during user mobility, we deploy pre-designed tracks (of
different trajectories) of RFID tags 10 cm apart. Each RFID tag’s
location is pre-recorded manually with respect to the WiFi AP lo-
cations. We built a contraption (shown in Fig. 8), which has an
RFID scanner at the bottom (connected to a Raspberry Pi) and the
smartphone that implements WiLoc is attached to the stick. We
time-sync the smartphone and the Raspberry Pi using a local NTP
server, ensuring no time drift occurs between the two devices. A
user walks along the tracks holding the stick in hand such that
the RFID scanner is right above the RFID tag. As the RFID scan-
ner moves on top of the tag, it records the RFID’s unique EPC ID
along with its scanned time. Meanwhile, the smartphone runs the
FTM ranging protocol, sequentially ranging with each of the 6
APs, recording the measured range and time of measurement. In
addition, the smartphone records its inertial data (for Fitlet STA,
we use an external IMU) with a timestamp. Since both devices are
time-synced, for each measured range (and inertial data), we get
a corresponding RFID location. Furthermore, we interpolate the
scanned RFID locations to get a real-time ground truth user location
with errors < 10 cm.
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Figure 9: Offset Resolution Error.

To evaluate WiLoc, we collect data involving user mobility at
diverse indoor locations with narrow corridors, large open spaces,
and locations with a lot of clutter (NLoS). During each run, we
place the 6 WiFi APs at random locations, while recording their
locations (in the Euclidean space) with respect to the GT’s starting
point. We record data with the user walking at normal pace (1-2m/s).
We restrict WiLoc’s range offset resolution evaluation to only LoS
AP-STA data due to the highly erroneous NLoS ranges which need
to be filtered (§3.2).
WiLoc: Range Offset Resolution: We test the efficacy of both
versions of WiLoc – WiLocl in and WiLocquad – in resolving the
range offsets, using the data we collected. Due to space constraints,
we show results of evaluations run with data collected for 80 MHz
bandwidth only. Fig. 9a plots the CDF of the offset resolution error
across all the environments. ForWiLocl in , we observe that the offset
resolution error is 4.45 m in the median case. On the other hand,
WiLocquad , as expected, with a better least-square approximation
has a median resolution error of 1.81 m.
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Figure 10: Errors observed in our evaluation dataset.

Impact of Data Errors: Data errors (range and inertial errors) im-
pact the ability of WiLoc solvers to accurately determine the range
offset. Fig. 10 plots the range, displacement, and heading errors
that we observe in our dataset. The median range and displacement
errors are ∼25 cm and ∼12 cm, respectively, and the median heading
error (magnetometer) is ∼10°.

While the range errors are inherent to the workings of the FTM
ranging protocol and unavoidable, the errors in inertial estimates
are mainly due to implementation and environment. Improving
inertial estimations is out of the scope of this work and there al-
ready exist other works that propose ways to improve these esti-
mations [17]. However, in order to analyzeWiLoc performance in
isolation, without the influence of incorrect inertial estimations, we
run WiLocl in and WiLocquad using the measured ranges but with
GT displacement and heading information. Fig. 9b shows that in
this case, the range offset resolution error improves to 3.62 m and
1.22 m forWiLocl in andWiLocquad respectively.
Localization Accuracy: To understand the localization accuracy
one can expect with the offset-free ranges (provided by WiLoc), we
implement a least-squares multilateration solver to continuously
localize the user. The CDF in Fig. 11 shows the localization errors
when the measured inertial data are used for offset resolution. We
observe the median localization error to be 5.42 m for ranges re-
solved byWiLocl in and 2.91 m for ranges resolved byWiLocquad .
On the other hand, if we assume a better inertial estimation in-play
(i.e., assuming GT inertial data), the localization errors forWiLocl in
andWiLocquad resolved ranges are shown in Fig. 11a In this case,
we observe that the median localization error drops to 4.53 m for
WiLocl in and 2.28 m forWiLocquad respectively.
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(a) Measured Inertial data.
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Figure 11: Localization Error.

6 DISCUSSION AND FUTUREWORK
Localization using WiFi FTM ranging can leverage existing ubiq-
uitous WiFi infrastructure, and thus is more viable to be deployed
at-scale compared to other localization systems that use additional
hardware, such as ultra-wideband (UWB) anchors [21, 28, 29], Blue-
tooth LowEnergy (BLE) beacons [19, 37], and video cameras [18, 22].
However, using the WiFi spectrum for localization comes at a cost,
as APs cannot transmit data frames while responding to FTM rang-
ing requests. Hence, it is imperative to find the right balance be-
tween using WiFi spectrum for localization and communication.
One potential solution is to opportunistically schedule ranging on
low-traffic channels. Another approach would be to leverage P2P
(e.g., WiFi Aware [11, 16]) FTM ranging and use the WiFi APs se-
lectively to reduce their communication overhead. Each of these
approaches is promising but poses several challenges.

7 RELATEDWORK
802.11mc FTM Ranging. The work in [23] conducted the first
study of 802.11mc Fine Time Measurement and evaluated its perfor-
mance in various scenarios with a limited set of devices. This study
also observed the range offset problem and addressed it a-priori
calibration between a fixed set of devices. In this work, we expand
on this study by considering a much larger set of AP and client
devices (including smartphones) and showing that this range offset
problem exists at a wide scale and poses a fundamental issue in
leveraging FTM for practical localization in enterprises.

Further, while previous works [15, 24, 31, 33] have proposed lo-
calization solutions based onWiFi FTM ranging, they largely ignore
these range offsets or simply evaluate their solutions over a single
set of devices, after manually removing the offsets. Such a manual
calibration cannot work in practice, as different users may have
different devices resulting in largely diverse offsets. In contrast to
these works, we propose a simple yet effective OTT auto-calibration
solution to the range offset problem that has the potential to enable
useful localization in real-world enterprise environments.
WiFi-based Localization. There has been a large body of work
on WiFi-based localization, e.g., [13, 14, 20, 25–27, 30, 32, 34–36].
Several works [13, 26, 27, 32, 35] leverage RSSI values, as they are
easily available in APs and client devices. However, RSSI-based
approaches require extensive fingerprinting of the environment
before being deployed. The works in [25, 34] utilize CSI from a
commodity 802.11n chipset to enable accurate indoor localization
without the need for labor-intensive fingerprinting. However, none
of today’s WiFi chipsets makes that information readily available.
On the other hand, the FTM protocol is standardized [8] and is
already available in several commercial devices.

8 CONCLUSION
In this paper, we conducted an extensive experimental study, em-
ploying multiple commercial WiFi devices under different spectrum
and environmental conditions, that aimed to verify whether WiFi’s
FTM is indeed ready for prime-time localization. The most critical
finding of our study is the presence of substantial offsets in esti-
mated ranges between heterogeneous devices and configurations
that significantly degrade localization. Albeit a negative result for



FTM’s readiness, we also proposed WiLoc– a simple but promis-
ing OTT auto-calibration solution that allows every WiFi device,
when it enters an enterprise environment, to self-calibrate its off-
sets on-demand. ViaWiLoc, we demonstrated that it is still possible
to deliver useful localization (median accuracy of ≈2m) with WiFi
FTM,despite its large range offsets.
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