50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.1 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 1

2 Available online at www.sciencedirect.com

5’@ SCIENCE@DIHECT“ compl’ltatlonal
Y Geometry
A 'ir.' i Theory and Applications
ELSEVIER Computational Geometryee (esee) soo—soe

www.elsevier.com/locate/comgeo

Polygonal path simplification with angle constraints

Danny Z. Chert?, Ovidiu Daescli*2, John HershbergéyPeter M. Koggé,
Ningfang Mi®, Jack Snoeyink?

@ Department of Comp. Sci. and Eng., University of Notre Dame, Notre Dame, IN 46556, USA
b Department of Comp. Sci., Univ. of Texas at Dallas, Richardson, TX 75083, USA
¢ Mentor Graphics, 8005 S.W. BoeckmRoad, Wilsorille, OR 97070, USA
d Department of Comp. Sci., Univ. of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Received 7 April 2004; received in revised form 18 September 2004; accepted 18 September 2004

Communicated by T. Asano

Abstract

We present efficient geometric algorithms for simplifying polygonal pattig3rmndR2 that have angle con-
straints, improving by nearly a linear factor over the graph-theoretic solutions based on known techniques. The
algorithms we present match the time bounds for their unconstrained counterparts. As a key step in our solutions,
we formulate and solve aoff-line ball exclusion searchroblem, which may be of interest in its own right.

0 2004 Elsevier B.V. All rights reserved.

Keywords:Path simplification; Angle constraint; Computational geometry; Off-line search

* Corresponding author.
E-mail addressesdchen@cse.nd.edu (D.Z. Chen), daescu@utdallas.edu (O. Daescu), john_hershberger@mentor.com
(J. Hershberger), kogge@cse.nd.edu (P.M. Kogge), nxm0241@a@@astedu (N. Mi), snoeyink@cs.unc.edu (J. Snoeyink).
1 Chen's research was supported in part by the NatiSoeence Foundation under Grants CCR-9623585 and CCR-9988468.
2 Daescu’s research was supported in part by the National Science Foundation under Grant CCF-0430366.
3 Snoeyink’s research was supported in part by the National Science Foundation under Grants CCF-9988742 and ITR-
0076984.

0925-7721/$ — see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo0.2004.09.003

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.2 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 2

2 D.Z. Chen et al. / Computational Geomewse (eooe) seo—see

1. Introduction

We consider a common problem of simplifying a polygonal path or ctain R? or R® by another
polygonal pathP’ formed by an ordered subsequence of the verticeB sfich thatP’ remains “close
to” P. We add the additional constraint that any two consecutive line segmeRtsaoé subject to some
angle constraint. This constraint arises in general cartographic simplification, and in simplification that is
specific to applications of robotics and vehicle routing. The question was first raised to us in the setting of
airplane routing, in order to simplify flight paths without introducing sharp turns (limiting the maximum
turn angle). On the other hand, one of the general simplification heuristics is to eliminate vertices with
gradual turns (limiting the minimum turn angle). Below in this section, we first precisely define the
problems considered, survey related work, and outline our results.

1.1. Problem definition

We define the turn angle for two consecutive segmeRis and p; p; of P’ as follows: letray(b|a)
be the ray that extends the line segmehirom b to infinity and does not contaimb. That is,ray(b|a)
is collinear withab but extends fronb away froma. Theturn anglebetweenp, p; and p; p; is defined
as the minimum angle one needs to rotaig p; | p,) aroundp; to overlap with the line segme p;.

For a line segmentb and a real numbes > 0, called thetolerance we define theerror tolerance
region R, (ab) as the set of points whose Euclidean distance fudnis at mosts. Based on these defi-
nitions, we formulate two problems, depending on whether small or large turn angles are disallowed on
P,

Given an arbitrary polygonal patR = (p1, pa, ..., p,) Of n vertices, inR? or R3, where any two
consecutive verticep;, p;+1 on P are connected by the line segmenp; 1, for 1 <i < n, find an-
other polygonal pattf’ = (p1 = py,, pi,, - .-, Pi,, = Pn) Of m vertices fn < n), satisfying the following
conditions:

(1) The integer indices satisfy2i; <io <+ <ip,_1 <i, =n.
(2) For everyj =1,2,...,m — 1, the subpath?;, ;,., = (pi;, pi;+1,---, pi;,,) Of P is entirely
contained in the error tolerance regiﬂg(m), for a given tolerance > 0.
(38.min) The turn angle for any two consecutive line segmgpis and p; p; on P’ is at least a specified
values, with 0< 8(p,p;) < /2. This is themin turn anglecase as illustrated in Fig. 1 f&2.
(3.max) The turn angle for any two consecutive line segmgnis and p; p; on P’ is at most a specified

valuesé, with /2 < 8(p, p;) < . This is themax turn anglecase.

The problem version of limiting thenin turn anglemodels the situation in which turns of small
angles are eliminated—this gives simplifications that better preserve the character of the original line by
making sure that all turns are justified or make all course corrections for a vehicle be greater than a given
mechanical accuracy. The problem version of limiting tiex turn anglemodels the situation in which
a robot or vehicle cannot make a very sharp turn (e.g., a car or airplane). It will become clear later on
that the two problem versions are related to each other so that the solution for one version also solves the
other. Hence, we mainly discuss the min turn angle problem.

The problem is a generalization of a well-studied polygonal path simplification problem [2,4,5,7,8,
11-13,16,20-26], in which neither of the third condition above is considered. Our algorithms report a

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.3 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 3

D.Z. Chen et al. / Computational Geometuye (eeee) cee—see 3

(b)

Fig. 1. lllustrating the angle constraint condition for thn turn anglecase ifR?: (a) edgesp;, p; and p; px can be consecutive
in the pathP’, and (b) edge®;, p; and p; px cannot be consecutive iR’

path satisfying the angle constraints, if one exists, or otherwise report that no such path exists. (Although
the input pathP always satisfies the first two constraints, it need not satisfy the third one.)
A path simplification problem has two coupled parametersthe number of vertices aP’, ande,
the tolerance. Whenis made smaller, them tends to become larger, andends to be larger when is
made smaller. This trade-off betweenande gives rise to two different optimization problems that we
will consider:

(1) Min-# problem Given a polygonal pati® and a real number > 0, find ane-simplification pathP’
with the smallest number of vertices (givenminimizem).

(2) Min-¢ problem Given a polygonal patt? and an integem < n, find a simplification pathP’ with
at mostm vertices that minimizes the erretbetweenP’ and P.

Different error criteria have been used for simplifying polygonal paths (e.g., see [7,8,11]). The error
criterion used in [20,22,23] and this paper, called tiblerance zoneriterion [7], is one of the most
natural definitions. Under this criterion, if a subpath;.., = (pi;, pi;+1. - - -, pi;,,) Of P is completely
contained in thes-tolerance region of the line segmeRt(p; pi..,), then we say thap; p;.; is ane-
simplifying line segment foP;, ;. ., . The pathP’ is ane-simplification of P if each line segmeng; p;,;
of P’is ane-simplifying line segment fo#; ;. ,, for j =1,2,...,m — 1.

Other commonly used error criteria include thénite beamcriterion [11,16,22,26] and theniform
measurecriterion [4]. Under theinfinite beamcriterion, thee-tolerance zone of a line segmepip;
is the region consisting of the set of points that are at distance no largee tinam the line L(p;p;)
supporting p;p;. In R?, for monotone paths, under thmiform measureeriterion, the simplification
error between a line segmepf p;.; of P’ and the corresponding subpath ;. of P is defined as
max{d (px, pi; Pi,,1) | ij <k <ijpa}, Wwhered(py, pi; pi;,,) denotes the vertical distance betwggrand

pij Pi_/-+1-
1.2. Previous work

A number of results for the polygonal path simplification problem, under various error criteria, have
been presented by Imai and Iri [20—22], Melkman and O’Rourke [23], and Toussaint [26]. Imai and
Iri [22] formulated the problem in terms of graph theory: construct a model of an unweighted directed
acyclic graph for path simplification, and then use breadth-first search to compute a shortest path in this

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.4 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 4

4 D.Z. Chen et al. / Computational Geomewse (eooe) seo—see

graph. This has later been exploited by most of the algorithms devoted to the problem [4,7,8,11,16].
A notable exception, for the planar case, is the work of Agarwal and Varadarajan [4], which uses a divide
and conquer approach to achieve amt?+%) time and space complexity, whese- 0 is an arbitrarily
small constant. However, their algorithms work only for the distance metric and do not extend to
higher dimensions. The most popular heuristic method that is used in path simplification, the recursive
simplification heuristic of Douglas and Peucker [14], can be implementedito@* n) time inRR? [19],
but does not guarantee an optimal solution. If the vertices of the simplifying path are not required to be a
subset of the vertices of the input path, then faster algorithms are possible [17,18,21]. Approximate solu-
tions for the min-# problem have also been considered. In [2], near-linear time algorithms are proposed
for computing a simplifying path with vertices among thoseRofOther somewhat related problems
(e.g., off-line ball inclusion testing [7], off-line range searching [9]) have been studied recently.

Solutions to some subdivision simplification problems are also based on polygonal path simplification.
In [13], polygonal path simplification has been used to simplify a planar subdivisieith N vertices
andM extra points in QN (N + M) log N) time. If a minimum size simplification is sought, the problem
becomes NP-hard [17]. Unless P = NP, one cannot obtain in polynomial time a simplification within a
factor ofn'/>~% of an optimal solution, for any > 0 [15].

1.3. Our results

While there are known results on polygonal path simplificatioR3mandR?, withoutangle constraints
(e.g., [7,11]) or on curvature-constrained geometric paths (mairiR#jre.g., [1]), we are not aware of
any published work on the specific problems we consider. However, one may use known graph-theoretic
techniques [21] to reduce the problem to that of computing shortest paths in a graph(sAjhve@rtices
and Qn®) edges.

We present efficient algorithms for solving the polygonal path simplification problem with angle con-
straints inR? andR?, with time bounds matching those of the best known path simplification algorithms
without angle constraints [7,8,11]. The algorithms we present improve by nearly a linear factor in the
time bound over the possible solutions based on graph-theoretic techniques mentioned above.

The running times of our min-# algorithms argx®) in R? and Qn?logn) in R3. The time bounds
of our min-# algorithms crucially depend on how fast we can solve some special instances of a certain
1-dimensional (folR?) or 2-dimensional (foR?®) off-line search problem which we refer to as tféline
ball exclusion searcflOLBES) problem (more on the OLBES problem in Section 2).

We develop efficient data structures that solve the general 1-dimensional and 2-dimensional OLBES
problems in @nlogn) time. We also show that for the special instance of the 1-dimensional OLBES
problem that results from th&? version of the path simplification problem with angle constraints, we
can reduce the time bound from#logn) to O(n). Our OLBES data structures can also handle on-line
point queries in @ogn) time each. Further, our solutions can be easily extended to other types of objects
(such as bounded convex objects with boundary described by a constant number of polynomial functions
of maximum degree bounded by a small constant), and can be applied to a class of geometric paths anc
other related problems.

Using techniques similar to those for the unconstrained case [7,11], the pnoblem inR? andR3
can be solved in time @2logn) and Qn?log®n), respectively.

The rest of the paper is organized as follows. In Section 2 we show how to reduce the min-# problem
to solving Qn) OLBES problems. In Sections 3 and 4 we develop efficient data structures and discuss

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.5 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 5

D.Z. Chen et al. / Computational Geometuye (eeee) cee—see 5

our algorithms for solving th&? and R® OLBES problems, respectively. In Section 5 we give some
remarks on the on-line query version. We conclude the paper in Section 6.

2. Algorithmic paradigm: reduction to OLBES

In this section, we explain our algorithmic approach for angle-constrained path simplification. To solve
the unconstrained polygonal path simplification problemR3randRR3, the known solutions [7,8] build
a directed acyclic grapls » = (Vp, Ep) for P, whereV, is the vertex set o and the @n?) edges
of Ep are all valid simplifying segments for their corresponding subpath®,@nd compute a shortest
path fromp; to p, in Gp. For the angle-constrained versions, the main difficulty is how to compute the
desired shortest paths p.

2.1. Overview of the algorithmic approach

As the previous algorithms for the unconstrained min-# problem (e.g., [7,8]), we divide the min-#
problem into two subproblems, as follows:

(1) Build an Qn?) size directed acyclic grap » = (Vp, Ep) for P, such thatE, consists of alls-
simplifying segments.

(2) Compute a shortest path from to p, in G p, satisfying the angle constraint, if such a path exists,
or otherwise report that no solution exists.

We solve the first subproblem by applying the best known iterative min-# algorithms for the uncon-
strained version. Those algorithms compute the setsifplifying segments in @?) time inR? [8,11]
and Qn?logn) time inIR3 [7].

To compute a shortegh-to-p, path inG p, we use dynamic programming as the main technique. This
enables us to formulate as a key subproblem a special off-line range search problemm @righted
balls of arbitrary radii an@ points, for each poinp find the minimum-weight ball that does not contain
p. One can use standard circular range search techniques to solve this problem R.gisiimg range
search queries would result if@*¢) time algorithms, where > 0 is an arbitrarily small constant [3]).
We exploit the special properties of this range search problem to achieve better time bounds:

OLBES (Off-Line Ball Exclusion Sear¢hGiven a sequencé = (eq, ey, ..., ¢,) such that eacle;,
i=12...,n,is either a ballB; of arbitrary radius or a poinp;, for every pointp, € &, find the
smallest-index balB; € {e1, ez, ..., ex_1} such thatp, ¢ B;, or report no such ball exists.

As we will see later, for path simplification in two dimensions, the OLBES balls are ar§8.dfor
path simplification in three dimensions, the balls are disk§%n

2.2. The reduction

Suppose we are given a polygonal p&h= (p1, po, ..., p,) in R? or R® and an error value > 0,
and we want to find a minimum size path = (p;, = p1, piy. - - -, pi,, = pn) Which satisfies the angle

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.6 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 6

6 D.Z. Chen et al. / Computational Geomewse (eooe) seo—see

constraint condition under the tolerance zone criterion. As mentioned earlier, we first constryg€an O
size directed acyclic grapt» = (Vp, Ep) for P that contains all valid simplifying segments for the
unconstrained problem, by using the algorithms in [7,11]. Note that it is fairly straightforward to compute
an angle-constrained shortest pathdp in O(r%) time by applying the same idea used in computing
shortest paths with turn penalties [6]: construct thel graphG’, of Gp in which the edges o6 »
become nodes and two nodes®f, are connected by an edge @, if they correspond to a possible
turn in G». It is easy to see that the dual gra@h is also a directed acyclic graph and that it haa?p
vertices and @:®) edges. The dual graph has no turn penalties and shortest pathscian be computed
by standard techniques.

To obtain a faster solution, we compute an angle-constrained shpitéstp, path inGp by a dy-
namic programming algorithm. L&CSP, (k) denote the angle-constrained shortest path frarto py
in Gp, with 1 < k£ < n, such that the last edge 8ICSP, (k) is p; pr. Suppose at the end of iteration
(i > 1), ACSP (k) is available for everyj =1,2,...,i and everyk = 2,3, ...,n such thatj < k. For
example, in Fig. 2, there are two available shortest pA®SP, (k) and ACSP, (k) with the last edges
P;Px and pj pi, respectively. At iteratiori + 1, from the availableACSP,(i +1)’s, j =1,2,...,i, we
computeACSR. 1 (k) for everyk =i + 2,i + 3, ..., n. Dynamic programming enables us to compute
ACSR.1(k),fork=i+2,i 4+ 3,...,n, using batched off-line computation.

Atiterationi 4 1, we have (at most)available shortest pati#®CSP, (i 4 1), with the last edg®; pi;1,
wherej <i + 1 andp;p;;1 is an incoming edge tp;,1 in Gp. To decide if an outgoing edge 1 p«
of pi11, wherei 4+ 1 < k, can succeeg;p;;1 to extend an angle-constrained pathGmp, we should

ACSP,(k)

4 p

N

p. ACSP.(k)

Fig. 2. An example of two available shortest pagtSSF; (k) andACSF}/(k).

ACSP, i+1) p,

\\ \\\
; \ oY
; ray(pn,)

(a) (b)

Fig. 3. The con€Cone(j, i + 1) when (a)s(p; pi+1) < % and (b)3(p;pi+1) =

B

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.7 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 7

D.Z. Chen et al. / Computational Geometuye (eeee) cee—see 7

Pj ,

Fig. 4. lllustrating the reduction to the OLBES problem.

check if the turn angle betwegfy p; ;1 andp;;1px is no smaller (or no larger) than the specified value
Based on our definition of the angle constraint condition, the set of directiops atvhich make an
angles defines a cone of directions at,;. For themin turn angleconstraint, anglé < /2 is acute,
as depicted in Fig. 3(a). We define the cabendj, i + 1) as the cone of directions at_.;, and then
Pi+1Pk can succee®; p; 1 if and only if ray(p; 11 px) is not contained in the cor@ongj, i 4+ 1). For the
max turn angleconstraint, anglé > /2 is obtuse, and we can derive the same constraint on an opposite
ray. Consider the set of directions that do not satisfy the angle constraint. These directions define a cone
Coné(j,i + 1) with an acute angle af;, ;. Congj, i + 1) is the cone of directions that are the opposite
of the directions inConé(j, i + 1). Then, p;;1px can succeed; p;11 if and only if ray(p; 1|px) is
not contained in the con€ongj,i + 1). It should be clear now that, after this slight modification, an
algorithm for solving the min turn angle case also solves the max turn angle case of the problem. Thus,
we discuss only the min turn angle case in what follows.

Let S;41 denote the unit spher&s{ or S?) with center atp;,; and letD; denote the disk o1$; 1
obtained by intersectinGongj, i 4+ 1) with S; 1. We associate witlD; a weightw; equal to the length
of the shortest patACSP, (i 4+ 1) along the corresponding incoming edggp; 1 to p;1. At iteration
i + 1, by intersecting each cof@ongj,i + 1) (j <i + 1) with S;, 1, we have (at most) weighted disks
D,, of different radii. Letg, be the intersection point of; ;1 with ray(p;;1pr). At iterationi + 1, by
intersectings;,; with the ray corresponding to an outgoing edge;px of p;+1 (i +1 < k), we have
(at most)n —i — 1 pointsg, on S; ;1. For everyg,, we then find the minimum weight disk,, such that
qr ¢ Dy, (see Fig. 4 for an example R3).

The problem above can be reduced to a special case of the OLBES problem. We first sort the (at most)
i disks D, in the order of nondecreasing weights and place the ordered disk sequence into an initially
empty set. We then attach the (at most)- i — 1 pointsg, at the end of. Thus, we obtain a sequence
E = (ey,e2,...,¢,) Of disks and points such that the fiisbbjects of the sequence are disks ordered
by their weights and the remaining objects of the sequence are points. For a,peiét finding the
minimum weight disk not containing that point corresponds to finding the smallest indexDgliskE
such thay, ¢ Dy,.

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.8 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 8

8 D.Z. Chen et al. / Computational Geomewse (eooe) seo—see

Lemma 1. For min or max turn angle constraints, an angle-constraingdto-p, shortest path inG
can be computed i@ T (n)) time, whereT (n) is the time for solving a special OLBES problem of size
On).

Proof. This is done by using the above dynamic programming algorithm for computing the angle-
constrainedp;-to-p, shortest path irt; . Since the algorithm has@) steps and in each step we have a
special OLBES problem, there arg#®) OLBES problems to solve, each of which is of sizé:0 O

Thus, in order to obtain the claimed time bounds for the path simplification problem with angle con-
straints, it remains to show how to efficiently solve the corresponding instances of the OLBES problem.

3. The 1-dimensional OLBES problem

In Section 2, we have reduced the problem of simplifying a polygonal path with angle constraints to
the problem of solving: — 1 individual instances of the off-line ball exclusion search problem. In this
section, we discuss the solution for the 1-dimensional OLBES problem.

Theorem 1. Given a sequencé of n 1-dimensional disks and query points on the real line, we can
determine the OLBES answers for all the query points in O(n logn) time.

Proof. We build a complete binary treE such that each leaf df is associated with a disk; in £
(the first leaf forD,, the second leaf foD, and so on). Note that each 1-dimensional disk is an interval
on the real line. We go up the tréein a bottom-up fashion, and at each internal nedee compute
and store the common intersection of the intervals associated with all leaf descendan&rmfe the
common intersection at can be computed in constant time from the common intersections associated
with v’s left and right children, the overall computation Thtakes Q) time. Obviously, the common
intersection at the root &f may be empty.

We sort the points (real values) éhincreasingly and then search for the desired disks for all g O
guery pointsg, at once, starting at the root @f. At the rootu of T, we select the query points that do
not fall in the interval stored at the root. We partition these points into two sets, based on inclusion in
the interval stored at the left chilg of the root: the points that do not fall in this interval are placed in
the subseteft(u), for u; (the root of the left subtree); a point that falls in the interval is placed in the
subsetright(u), for the right childu, of the root (the root of the right subtree), if its index is larger than
the index of the rightmost leaf of the subtree rooted,aibtherwise it is dropped (since it is inside all
disks in& preceding it). The index of the rightmost leaf of the subtre® oboted atv, for all v € T, can
be computed in Or) time by a simple traversal df. Obtainingright(x) (and thenleft(x)) reduces to
extracting a sorted subsequence from a sorted sequence. Thus, the computation at each avebef
performed in @r) time and the 1-D OLBES problem can be solved ik @gn) time. O

Lemma 2. For a sequencé€ of n 1-dimensional disks andquery points on the real line, such th@kthe
left and right endpoints of the disks form sorted sequenceqignithe points appear after all the disks
in £ and are sorted by their values, we can find the answers for all the poidtsnrO(n) time.

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.9 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 9

D.Z. Chen et al. / Computational Geometuye (eeee) cee—see 9

Proof. We solve this special instance of the OLBES problem in a different way. To find the minimum
index disk that does not contain the point for each of the pointg, € £, we use the following trans-
formation to avalue-indexcoordinate system. Each endpoint of an inteffais mapped to a point with
coordinates(x;, w;) wherex; is the value of the endpoint on the real axis andis the index of the
interval in£. Each pointg, € £ is mapped to a pointx, 0) in the value-indexplane. Thus, we obtain
three sets of points ivalue-indexcoordinates, each of which is sorted by the value coordinate: thg; set
for the left endpoints, the s&; for the right endpoints, and the s@t: corresponding to the points &

For a pointg, € Q; let min_right(g,) denote the minimum value of the indices of the endpoints in
R; which are on or to the left of the vertical line @t. We setmin_right(g,) to zero if there is no right
endpoint to the left ofy,. Then,min_right(gy), for eachg, € Q;, can be computed in @) time by first
merging the two sequences corresponding to the value coordinates of the patitand O ; and then
performing a left-to-right scan on the resulting sequence. Similarlyietleft(q,) denote the minimum
value of the indices of the endpoints In; which are on or to the right side of the vertical linegt
We setmin_left(g,) to zero if there is no left endpoint to the right gf. Then,min_left(g,), for each
qr € Q;, can be computed in @) time by first merging the two sequences corresponding to the value
coordinates of the points ih; and Q ; and then performing a right-to-left scan on the resulting sequence.
A minimum index disk that does not contajip corresponds to mimin_left(g,), min_right(g,)}. If the
value is zero then there is no diskx

We next outline some properties of the reduction to the OLBES problem for the special case when we
have the same angle constraint for all incoming edges.at which gives equal-radius disks ¢, ;.

Lemma 3. Consider the iteration’ + 1 of the dynamic programming algorithm, for amysuch that
1<i <n—1, and assume that the incoming edges and the outgoing edgés at p;,; form two
sorted sets, respectively. Assume also that all incoming edges ahave the same angle constraint
with respect to the outgoing edges. Then

(1) the points corresponding to the outgoing edges appear in sorted order on the boundary, @nd
(2) the endpoints of the disks ¢h,; form two sorted sequences.

Proof. Since the outgoing edges at,; are sorted, their intersections witfa,; appear in the same
sorted order. The 1-dimensional disks 8§n; have centers at the intersection pointsSof; with the
rays throughp, 1 corresponding to incoming edges. Since these edges are sorted arourtie center
points are also sorted on the boundan$of,. Then, the left and right endpoints of the disks, respectively,
form two sorted sequences 6p.;. O

From Lemma 3, it follows that by requiring the same angle constraint for all incoming edges at
the sorted order of the left and right endpoints of the disks corresponds to the sorted order of the centers
of the disks. Since&5p, can be viewed as a planar geometric graph, the sorted order of the incoming
and outgoing edges for all vertices @, can be obtained in @?) time by standard line arrangement
traversal (of the dual line arrangement of the poiptsi = 1,2, ...,n). Once the incoming edges at
pi+1 are sorted, the sorted order of the centers of the disks (and thus the sorted order of their left and
right endpoints, respectively) can be obtained in linear time. For the rest of this section, for the OLBES

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.10 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 10

10 D.Z. Chen et al. / Computational Geomede (eeee) ecoe—see

problem atp;.;, we assume that the incoming and outgoing edges are available in sorted order around

Pi+1-
In what follows, we describe our solution for the special instance of the 1-dimensional OLBES prob-
lem. Suppose that at iteration+ 1, we have conesCondj, i + 1) andn — i — 1 pointsp,, where each

coneCongj,i + 1) is defined by two rays emanating fropa,; and it is weighted by the length of the
corresponding shortest padCSP (i 4 1). For each con€on€j, i 4+ 1), we obtain a circular arel; by
intersectingCongj, i + 1) with the circleC;, 1 with the center poinp;,; (the planar correspondent of
Si+1). The circular arc4; is associated with the weigltCSP, (i 4 1). For each poinp,, we obtain a
query pointg; by intersecting the ray emanating frgpp and going throughp, with the circleC;.;. As
discussed above, these circular arcs and points form the segfieWesort the circular arcs by weight.
Since there are at mostweight values, each of which is an integer no larger thathe circular arcs
can be sorted by weight in@© time. The circular arcs, in sorted order of weight, followed by the query
points (sorted by the angle at, 1) form the sequencé.

Lemma 4. At iterationi, 1 <i < n, we can find an angle-constrained shortest path ACSHor every
k > i in O(n) time.

Proof. We build a complete binary treg, such that each leaf df, is associated with a circular arc
A; in &, as in the proof of Theorem 1. Since by the definition of the angle constraint no circular arc is
larger than an open semicircle, the common intersection of any two arcs is either empty or consists of
one circular arc. Then, the computationZinrequires @r) time. We also build a balanced binary search
tree T, on the set of points i&, based on their angle value aroupd In the query procedure, we use
an arc in7, as a query input. We start with the arc stored at the rodf,aind use the endpoints of this
arc to form two search paths ifj, that isolate the pointg, e 7, that are on the arc. These points are
eliminated from7,. Since each search path has lengitho@n), this computation can be performed in
O(logn) time. We next partition the points ifj, into two subtrees, based on inclusion in the intexdal
stored at the left child; of the root. The points that do not fall in the intervd) are placed in the tree
T,,, for u;. The other points are placed in the trEg, for the right childx, of the root.7,, and7,, are
obtained from7, in O(logn) time. Note that the points in one of these two trees may be initially available
in two subtrees (see Fig. 5). To obtain a single tree we treat this case as a standard delete operation at th
root of a balanced binary search tree.

Letk be the number of points ifi,, and let: — k be the number of points ifi,, . We proceed recursively
by querying the points iff,, with the arc stored at the left child af and querying the points ifi,, with
the arc stored at the left child of.. We now analyze the running time of this procedure. We perform
O(n) queries, corresponding to the arcgjn A query can be performed in(@g(|7, 1)) time, where| T, |
denotes the number of points T). After the first query, the points are placedZ) and7,,, of sizek
andn — k, respectively. Then, the time to quefy, and7,, is logk + log(n — k) which is maximized
whenk = 7. This gives the recurrenc®(n) = 2T (3) + O(logn) whose solution ig"(n) = O(n). O

Theorem 2. The min-# problem with angle constraintsIif can be solved iD(z?) time usingO(n?)
storage.

Proof. There are @) iterations in the dynamic programming algorithm and in each iteration we spend
O(n) time to computeACSP, (i 4 1)’s, as specified in Lemma 4, resulting in a total ad time. O

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.11 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 11

D.Z. Chen et al. / Computational Geometuye (eeee) cee—see 11

Tu,

a4y q;
@ (b)

Fig. 5. (a) Queryindl; with an arcA; € T, and (b) the resulting tree,;, and7,,, .

Theorem 3. The mine problem with angle constraints iR? can be solved ifO(n?logn) time using
O(n?) storage.

Proof. The solution is similar to that for the unconstrained version. The setot)@ossible simplifica-

tion errors can be computed in(&¥ logn) time [11]. By using binary search on the set af®) possible
simplification errors, at each step of the search running the (angle-constrained version of the) min-# al-
gorithm, the mine problem with angle constraint iR? can be solved in &:?logn) time, matching the

best bound for the unconstrained versiom

4. The 2-dimensional OLBES problem

Recall that the 2-dimensional OLBES problem that results from our modeling of the min-# problem
with angle constraints is a special case of the general 2-dimensional OLBES problem. In this special
instance the points iéi appear after all the disks &. Specifically, if€ hask disks and: — k points, then
the firstk elements of are disks and the remaining— k elements of are points. Also, recall that the
disks of€ are spherical disks d&’. However, since each disk is less than a semi-sphere we can treat the
problem as one on disks R? (details on this treatment are provided in [7]).

Clearly, the min-# problem with angle constraintsRiA can be solved in @:2logn) time if we can
solve the 2-dimensional OLBES problem irifdogn) time. In what follows we first prove how to solve
this special case and then show how to modify the solution to handle the general case.

We build a complete binary treg such that each leaf df is associated with a disk; in £ (the
first leaf for D4, the second leaf fob, and so on). We go up the trgein a bottom-up fashion, and at
each internal node we compute and store the common intersection of the disks associated with all leaf
descendants of the subtree®frooted atv. Using the algorithm in [7], we can compulév) for each
nodev in T in a total of Qnlogn) time. Essentially, the algorithm in [7] uses merge-like operations to
compute the common intersectionwafrom the common intersections stored at the two children. of
Clearly, since the intersection of disks is a convex region, the upper and lower chains can be maintained
in sorted order and the merging at each level can be performed in linear time, resultiGglay@) time

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.12 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 12

12 D.Z. Chen et al. / Computational Geomede (eeee) ecoe—see

v

pr ARG R ()

D

N
’ \
’ N
/ N
/ N
’ N
’ \
/ N
/ N
’ N
/ N
. N
Dl . D. Dl’l
1 J

Fig. 6. lllustratingT andl(vl.j) for the 2-D OLBES problem.

over the Qlogn) levels. Ifl(v,.j) denotes a representation of the common intersection stored at internal
nodevij, e.g.,I (v)) represents the common intersection{ bk, D, ..., D;} and/ (v}’ ,) represents the
common intersection ofD; 1, D;.2, ..., D,}, then the common intersection of all the disks is denoted
by I (v7) and it is stored at the root of the trée(see Fig. 6). Obviously] (v]) may be empty.

We sort the points i€ by x-coordinate and then search for the desired disks for all the Query
points g, at once, starting at the root @f. Observe that the searching for the smallest-index digk
that does not contain a query poipttraverses a root-to-leaf path . At the root of 7, we select the
guery points that do not fall inside the common intersection stored at the root. We partition those points
into two sets, based on inclusion in the common intersection at the left child of the root. With the points
that are not in the common intersection at the left child of root we proceed on the left subtree of the
root; with the remaining points we proceed on the right subtree. Since the computation at eachZevel of
can be done altogether in(@ time, by merge-like operations, this special 2-D OLBES problem can be
solved in Qnlogn) time. To solve the general 2-D OLBES problem we observe that we only need the
following simple change. For each internal nade T, store the index i€ of the rightmost leaf of the
subtree rooted at, which can be done in @) time by a bottom-up traversal @f. If a point in the set
for the right subtree has its index smaller than the indeX @f the rightmost leaf in the left subtree, then
we drop this point (since it is inside all disks preceding it).

Theorem 4. Given a sequencé of n disks ands query points, we can determine the OLBES answers
for all query points in€ in O(n logn) time.

Combining the dynamic programming approach and the reduction to 2-D OLBES problem in Section 2
with the solution for the 2-D OLBES problem, we obtain:

Theorem 5. The min-# problem with angle constraints k¥ can be solved ifO(n?logn) time using
O(n?) storage.

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.13 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 13

D.Z. Chen et al. / Computational Geometuye (eeee) cee—see 13

Proof. There are @) iterations in the dynamic programming algorithm and in each iteration we spend
O(nlogn) time to computeACSP (i 4 1)'s, as it follows from Theorem 4, for a total of @ logn)
time. O

Theorem 6. The mine problem with angle constraints iR® can be solved ifD(n?log®n) time using
O(n?) storage.

Proof. The solution is again similar to that for the unconstrained version. We apply the parametric search
approach used in [7] for the unconstrained version. The only difference is that, in the decision step of the
parametric search, the sequential algorithm for the unconstrained min-# problem is replaced with that for
the angle-constrained version. Since the two min-# algorithms have the same time bounds we obtain the
claimed time. O

5. Remarks

We can modify our solutions for the OLBES problem to solve the on-line (query) version: given a
sequence = (e1, e, ..., e,) Of balls inR* or R?, preprocess such that for a query point, one can
efficiently find the smallest index ball i that does not contaig.

We have the following results.

Theorem 7. A sequencé€ of n 1-dimensional balls can be preprocesse®ii) time into a data structure
of sizeO(n), so that for a query poing, one can find irO(logn) time the smallest index ball iéi that
does not contailg.

Proof. Follows from the proof of Theorem 1.0

Theorem 8. A sequencé& of n 2-dimensional balls can be preprocesseddi(z logn) time into a data
structure of siz&(n logn), such that for a query point, one can find irO(logn) time the smallest index
ball in £ that does not contaig.

Proof. Consider the data structure designed for the 2-D OLBES problem. Traversing a root-to-leaf path
in the treeT to identify the leftmost disk that does not contain the pgiseemingly would take Qog? n)
time: there are Qogn) levels and at each visited noden the path we spend@gn) time to decide if
g lies or not in the disk intersectiof(v) stored at.

To reduce the query time to{@gn), we use thdractional cascadingechnique [10] onl". Given
a directed graplt; = (V, E) such that each nodecontains a sorted list (v), the fractional cascading
problem is to construct an@) space data structure, where= |V |+|E|+) _, |L(v)|, such that given
a path{vy, v,, ..., v,} in G and an arbitrary element one can locate efficiently in eachl (v;). In [10],
Chazelle and Guibas give an#) time algorithm to construct a fractional cascading data structure, from
a graphG as above, with a search time ofl@gn + mlogd(G)), whered(G) is the maximum degree of
any node inG.

In our case, we lel’” correspond to the grapti. We maintain eacli (v) like in [7]. An internal node
v can be described as a vertical visibility map: a collection of intervals on-#vds, each enhanced with
pointers to the two circles that contribute the arcs boundinng above and below.

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.14 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 14

14 D.Z. Chen et al. / Computational Geomewse (eooe) seo—see

Consider first the location structufgv) for the map at node. We build a simple balanced tree on the
endpoints of thex-axis) intervals ab; at a leaf of this tree, we know the interval and we can compare
the point with the two arcs associated with the interval to decide if it is in the intersdation

Fractional cascading is performed only on comparisons witloordinates, which allows us to easily
pass subsets afcoordinates up the treée and insert them in the structurésv). This is the easiest form
of fractional cascading (there is a single comparison in a single linearly ordered space), so that the first
lookup takes @ogn) time to get the interval, but each lookup afterwards takées) @me apiece, for a
total of another @ogn) time.

We have) _,|L(v)| = O(nlogn), m = O(logn) andd(T) = O(1). Thus, we obtain the claimed
space and preprocessing and query times.

6. Conclusions

We have presented efficient algorithms for solving the polygonal path simplification problem with
angle constraints ifR? andR*, whose time bounds match those of the best known path simplification
algorithms without angle constraints [7,8,11]. Our algorithms improve by nearly a linear factor in the
time bound over the possible solutions based on standard graph-theoretic techniques.

To solve the problem, we have formulated an interesting (more general) off-line search problem re-
ferred to as theff-line ball exclusion searcfOLBES), and have developed efficient data structures that
solve the OLBES problem in @ logn) time. Our solutions can be easily extended to other types of
objects, and can be applied to a class of geometric paths and other related problems.

Acknowledgement

The authors would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

[1] P.K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, S. Whitesides, Curvature constrained shortest paths in a convex
polygon, in: Proc. 14th ACM Symp. on Comp. Geom., 1998, pp. 392—401.

[2] P.K. Agarwal, S. Har-Peled, N. Mustafa, Y. Wang, Near-linear time approximation algorithms for curve simplification, in:
Proc. of 10th Annual European Sympos. Algorithms, 2002, pp. 29-41.

[3] P.K. Agarwal, J. Matousek, Dynamic half-space range reporting and its applications, Algorithmica 13 (1995) 325—-345.

[4] P.K. Agarwal, K.R. Varadarajan, Efficient algorithms for approximating polygonal chains, Discrete Comput. Geom. 23
(2000) 273-291.

[5] H. Alt, J. Blomer, M. Godau, H. Wagener, Approximation of convex polygons, in: Proc. 10th Coll. on Autom., Lang. and
Prog. (ICALP), 1990, pp. 703-716.

[6] J. Anez, T. De La Barra, B. Perez, Dual graph representation of transport networks, Transportation Res. B 30 (3) (1996)
209-216.

[7] G. Barequet, D.Z. Chen, O. Daescu, M.T. Goodrich, J. Snoeyink, Efficiently approximating polygonal paths in three and
higher dimensions, Algorithmica 33 (2) (2002) 150-167.

[8] W.S. Chan, F. Chin, Approximation of polygonal curves with minimum number of line segments or minimum error,
Internat. J. Comput. Geom. Appl. 6 (1) (1996) 59-77.

50925-7721(04)00139-7/FLA AID:777 Vol.eee(eee) t777 [DTD5] P.15 (1-15)
COMGEQ:m2 v 1.32 Prn:21/01/2005; 13:33 Cg by:Gi p. 15

D.Z. Chen et al. / Computational Geometuye (eeee) cee—see 15

[9] B. Chazelle, Lower bounds for off-line range searching, Discrete Comput. Geom. 17 (1997) 53-65.

[10] B. Chazelle, L.J. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica 1 (3) (1986) 133-162.

[11] D.Z. Chen, O. Daescu, Space-efficient algorithms for approximating polygonal curves in two dimensional space, Internat.
J. Comput. Geom. Appl. 13 (2) (2003) 95-112.

[12] L.P. Cordella, G. Dettori, An Q) algorithm for polygonal approximation, Pattern Recogn. Lett. 3 (1985) 93-97.

[13] M. de Berg, M. van Kreveld, S. Schirra, Topologically correct subdivision simplification using the bandwidth criterion,
Cartography and GIS 25 (1998) 243-257.

[14] D.H. Douglas, T.K. Peucker, Algoriths for the reduction of the number of points required to represent a digitized line or
its caricature, Canadian Cartographer 10 (2) (1973) 112-122.

[15] R. Estkowski, J.S.B. Mitchell, Simplifying a polygonal subdivision while keeping it simple, in: Proc. 17th ACM Sympo-
sium on Computational Geometry, 2001, pp. 40-49.

[16] D. Eu, G.T. Toussaint, On approximation polygonal curves in two and three dimensions, CVGIP: Graphical Models and
Image Processing 56 (3) (1994) 231-246.

[17] L.J. Guibas, J.E. Hershberger, J.S.B. Mitchell, J.S. Snoeyink, Approximating polygons and subdivisions with minimum
link paths, Internat. J. Comput. Geom. Appl. 3 (4) (1993) 383-415.

[18] S.L. Hakimi, E.F. Schmeichel,ifting polygonal functions to a set of points in theapke, CVGIP: Graphical Models and
Image Processing 53 (2) (1991) 132-136.

[19] J. Hershberger, J. Snoeyink, Cartographic line simplification and polygon CSG formuléelog®n) time, in: Proc. 5th
International Workshop on Algorithms and Data Structures, 1997, pp. 93—103.

[20] H. Imai, M. Iri, Computational-geometric methods for polygonal approximations of a curve, Computer Vision, Graphics
and Image Processing 36 (1986) 31-41.

[21] H. Imai, M. Iri, An optimal algorithm for approximating a piecewise linear function, J. Inform. Process. 9 (3) (1986)
159-162.

[22] H. Imai, M. Iri, Polygonal approximations of a curve-formulations and algorithms, in: Computational Morphology, North-
Holland, Amsterdam, 1988, pp. 71-86.

[23] A. Melkman, J. O’'Rourke, On polygonal chain approximation, in: Computational Morphology, North-Holland, Amster-
dam, 1988, pp. 87-95.

[24] B.K. Natarajan, On comparing and compressing piecewise linear curves, Technical Report, Hewlett Packard, 1991.

[25] B.K. Natarajan, J. Ruppert, On sparse approximations of curves and functions, in: Proc. 4th Canadian Conference on
Computational Geometry, 1992, pp. 250-256.

[26] G.T. Toussaint, On the complexity of approximating polygonal curves in the plane, in: Proc. IASTED International Symp.
on Robotics and Automation, Lugano, Switzerland, 1985.

