
ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.1 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 1

Computational Geometry••• (••••) •••–•••
o

-
es. The
olutions,

.com
.
468.

and ITR-
www.elsevier.com/locate/comge

Polygonal path simplification with angle constraints

Danny Z. Chena,1, Ovidiu Daescub,∗,2, John Hershbergerc, Peter M. Koggea,
Ningfang Mib, Jack Snoeyinkd,3

a Department of Comp. Sci. and Eng., University of Notre Dame, Notre Dame, IN 46556, USA
b Department of Comp. Sci., Univ. of Texas at Dallas, Richardson, TX 75083, USA

c Mentor Graphics, 8005 S.W. Boeckman Road, Wilsonville, OR 97070, USA
d Department of Comp. Sci., Univ. of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Received 7 April 2004; received in revised form 18 September 2004; accepted 18 September 2004

Communicated by T. Asano

Abstract

We present efficient geometric algorithms for simplifying polygonal paths inR
2 andR

3 that have angle con
straints, improving by nearly a linear factor over the graph-theoretic solutions based on known techniqu
algorithms we present match the time bounds for their unconstrained counterparts. As a key step in our s
we formulate and solve anoff-line ball exclusion searchproblem, which may be of interest in its own right.
 2004 Elsevier B.V. All rights reserved.

Keywords:Path simplification; Angle constraint; Computational geometry; Off-line search

* Corresponding author.
E-mail addresses:dchen@cse.nd.edu (D.Z. Chen), daescu@utdallas.edu (O. Daescu), john_hershberger@mentor

(J. Hershberger), kogge@cse.nd.edu (P.M. Kogge), nxm024100@utdallas.edu (N. Mi), snoeyink@cs.unc.edu (J. Snoeyink)
1 Chen’s research was supported in part by the National Science Foundation under Grants CCR-9623585 and CCR-9988
2 Daescu’s research was supported in part by the National Science Foundation under Grant CCF-0430366.
3 Snoeyink’s research was supported in part by the National Science Foundation under Grants CCF-9988742

0076984.

0925-7721/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2004.09.003

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.2 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 2

2 D.Z. Chen et al. / Computational Geometry••• (••••) •••–•••

1. Introduction

We consider a common problem of simplifying a polygonal path or chainP in R
2 or R

3 by another

e
that is
tting of
um

s with
e the

-
wed on

d

d

ll
line by
a given

h
ater on
lves the

5,7,8,
port a
polygonal pathP ′ formed by an ordered subsequence of the vertices ofP such thatP ′ remains “close
to” P . We add the additional constraint that any two consecutive line segments ofP ′ are subject to som
angle constraint. This constraint arises in general cartographic simplification, and in simplification
specific to applications of robotics and vehicle routing. The question was first raised to us in the se
airplane routing, in order to simplify flight paths without introducing sharp turns (limiting the maxim
turn angle). On the other hand, one of the general simplification heuristics is to eliminate vertice
gradual turns (limiting the minimum turn angle). Below in this section, we first precisely defin
problems considered, survey related work, and outline our results.

1.1. Problem definition

We define the turn angle for two consecutive segmentsphpi andpipk of P ′ as follows: letray(b|a)

be the ray that extends the line segmentab from b to infinity and does not containab. That is,ray(b|a)

is collinear withab but extends fromb away froma. The turn anglebetweenphpi andpipk is defined
as the minimum angle one needs to rotateray(pi |ph) aroundpi to overlap with the line segmentpipk .

For a line segmentab and a real numberε � 0, called thetolerance, we define theerror tolerance
region Rε(ab) as the set of points whose Euclidean distance fromab is at mostε. Based on these defi
nitions, we formulate two problems, depending on whether small or large turn angles are disallo
P ′.

Given an arbitrary polygonal pathP = (p1,p2, . . . , pn) of n vertices, inR
2 or R

3, where any two
consecutive verticespi,pi+1 on P are connected by the line segmentpipi+1, for 1 � i < n, find an-
other polygonal pathP ′ = (p1 = pi1,pi2, . . . , pim = pn) of m vertices (m < n), satisfying the following
conditions:

(1) The integer indices satisfy 1= i1 < i2 < · · · < im−1 < im = n.
(2) For everyj = 1,2, . . . ,m − 1, the subpathPij ,ij+1 = (pij , pij +1, . . . , pij+1) of P is entirely

contained in the error tolerance regionRε(pij pij+1), for a given toleranceε � 0.
(3.min) The turn angle for any two consecutive line segmentsphpi andpipk onP ′ is at least a specifie

valueδ, with 0� δ(phpi) < π/2. This is themin turn anglecase as illustrated in Fig. 1 forR2.
(3.max) The turn angle for any two consecutive line segmentsphpi andpipk onP ′ is at most a specifie

valueδ, with π/2� δ(phpi) < π . This is themax turn anglecase.

The problem version of limiting themin turn anglemodels the situation in which turns of sma
angles are eliminated—this gives simplifications that better preserve the character of the original
making sure that all turns are justified or make all course corrections for a vehicle be greater than
mechanical accuracy. The problem version of limiting themax turn anglemodels the situation in whic
a robot or vehicle cannot make a very sharp turn (e.g., a car or airplane). It will become clear l
that the two problem versions are related to each other so that the solution for one version also so
other. Hence, we mainly discuss the min turn angle problem.

The problem is a generalization of a well-studied polygonal path simplification problem [2,4,
11–13,16,20–26], in which neither of the third condition above is considered. Our algorithms re

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.3 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 3

D.Z. Chen et al. / Computational Geometry••• (••••) •••–••• 3

e

lthough

we

error
t

, have
i and

rected
h in this
Fig. 1. Illustrating the angle constraint condition for themin turn anglecase inR2: (a) edgesphpi andpipk can be consecutiv
in the pathP ′, and (b) edgesphpi andpipk cannot be consecutive inP ′.

path satisfying the angle constraints, if one exists, or otherwise report that no such path exists. (A
the input pathP always satisfies the first two constraints, it need not satisfy the third one.)

A path simplification problem has two coupled parameters:m, the number of vertices ofP ′, andε,
the tolerance. Whenε is made smaller, thenm tends to become larger, andε tends to be larger whenm is
made smaller. This trade-off betweenm andε gives rise to two different optimization problems that
will consider:

(1) Min-# problem: Given a polygonal pathP and a real numberε > 0, find anε-simplification pathP ′
with the smallest number of vertices (givenε, minimizem).

(2) Min-ε problem: Given a polygonal pathP and an integerm < n, find a simplification pathP ′ with
at mostm vertices that minimizes the errorε betweenP ′ andP .

Different error criteria have been used for simplifying polygonal paths (e.g., see [7,8,11]). The
criterion used in [20,22,23] and this paper, called thetolerance zonecriterion [7], is one of the mos
natural definitions. Under this criterion, if a subpathPij ,ij+1 = (pij , pij +1, . . . , pij+1) of P is completely
contained in theε-tolerance region of the line segmentRε(pij pij+1), then we say thatpij pij+1 is anε-
simplifying line segment forPij ,ij+1. The pathP ′ is anε-simplification ofP if each line segmentpij pij+1

of P ′ is anε-simplifying line segment forPij ,ij+1, for j = 1,2, . . . ,m − 1.
Other commonly used error criteria include theinfinite beamcriterion [11,16,22,26] and theuniform

measurecriterion [4]. Under theinfinite beamcriterion, theε-tolerance zone of a line segmentpipj

is the region consisting of the set of points that are at distance no larger thanε from the lineL(pipj)

supportingpipj . In R
2, for monotone paths, under theuniform measurecriterion, the simplification

error between a line segmentpij pij+1 of P ′ and the corresponding subpathPij ,ij+1 of P is defined as
max{d(pk,pij pij+1) | ij � k � ij+1}, whered(pk,pij pij+1) denotes the vertical distance betweenpk and
pij pij+1.

1.2. Previous work

A number of results for the polygonal path simplification problem, under various error criteria
been presented by Imai and Iri [20–22], Melkman and O’Rourke [23], and Toussaint [26]. Ima
Iri [22] formulated the problem in terms of graph theory: construct a model of an unweighted di
acyclic graph for path simplification, and then use breadth-first search to compute a shortest pat

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.4 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 4

4 D.Z. Chen et al. / Computational Geometry••• (••••) •••–•••

graph. This has later been exploited by most of the algorithms devoted to the problem [4,7,8,11,16].
A notable exception, for the planar case, is the work of Agarwal and Varadarajan [4], which uses a divide
and conquer approach to achieve an O(n4/3+δ) time and space complexity, whereδ > 0 is an arbitrarily

to
cursive

to be a
te solu-
oposed
s

cation.

m
ithin a

f
eoretic

con-
thms
in the

certain

OLBES
BES
we

line
bjects
nctions
aths and

roblem
iscuss
small constant. However, their algorithms work only for theL1 distance metric and do not extend
higher dimensions. The most popular heuristic method that is used in path simplification, the re
simplification heuristic of Douglas and Peucker [14], can be implemented in O(n log∗ n) time inR

2 [19],
but does not guarantee an optimal solution. If the vertices of the simplifying path are not required
subset of the vertices of the input path, then faster algorithms are possible [17,18,21]. Approxima
tions for the min-# problem have also been considered. In [2], near-linear time algorithms are pr
for computing a simplifying path with vertices among those ofP . Other somewhat related problem
(e.g., off-line ball inclusion testing [7], off-line range searching [9]) have been studied recently.

Solutions to some subdivision simplification problems are also based on polygonal path simplifi
In [13], polygonal path simplification has been used to simplify a planar subdivisionS with N vertices
andM extra points in O(N(N +M) logN) time. If a minimum size simplification is sought, the proble
becomes NP-hard [17]. Unless P = NP, one cannot obtain in polynomial time a simplification w
factor ofn1/5−δ of an optimal solution, for anyδ > 0 [15].

1.3. Our results

While there are known results on polygonal path simplification inR
2 andR

3, withoutangle constraints
(e.g., [7,11]) or on curvature-constrained geometric paths (mainly inR

2, e.g., [1]), we are not aware o
any published work on the specific problems we consider. However, one may use known graph-th
techniques [21] to reduce the problem to that of computing shortest paths in a graph with O(n2) vertices
and O(n3) edges.

We present efficient algorithms for solving the polygonal path simplification problem with angle
straints inR

2 andR
3, with time bounds matching those of the best known path simplification algori

without angle constraints [7,8,11]. The algorithms we present improve by nearly a linear factor
time bound over the possible solutions based on graph-theoretic techniques mentioned above.

The running times of our min-# algorithms are O(n2) in R
2 and O(n2 logn) in R

3. The time bounds
of our min-# algorithms crucially depend on how fast we can solve some special instances of a
1-dimensional (forR2) or 2-dimensional (forR3) off-line search problem which we refer to as theoff-line
ball exclusion search(OLBES) problem (more on the OLBES problem in Section 2).

We develop efficient data structures that solve the general 1-dimensional and 2-dimensional
problems in O(n logn) time. We also show that for the special instance of the 1-dimensional OL
problem that results from theR2 version of the path simplification problem with angle constraints,
can reduce the time bound from O(n logn) to O(n). Our OLBES data structures can also handle on-
point queries in O(logn) time each. Further, our solutions can be easily extended to other types of o
(such as bounded convex objects with boundary described by a constant number of polynomial fu
of maximum degree bounded by a small constant), and can be applied to a class of geometric p
other related problems.

Using techniques similar to those for the unconstrained case [7,11], the min-ε problem inR
2 andR

3

can be solved in time O(n2 logn) and O(n2 log3 n), respectively.
The rest of the paper is organized as follows. In Section 2 we show how to reduce the min-# p

to solving O(n) OLBES problems. In Sections 3 and 4 we develop efficient data structures and d

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.5 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 5

D.Z. Chen et al. / Computational Geometry••• (••••) •••–••• 5

our algorithms for solving theR2 andR
3 OLBES problems, respectively. In Section 5 we give some

remarks on the on-line query version. We conclude the paper in Section 6.

solve

st
e the

min-#

sts,

ncon-

This

in

).

e

2. Algorithmic paradigm: reduction to OLBES

In this section, we explain our algorithmic approach for angle-constrained path simplification. To
the unconstrained polygonal path simplification problems inR

2 andR
3, the known solutions [7,8] build

a directed acyclic graphGP = (VP ,EP) for P , whereVP is the vertex set ofP and the O(n2) edges
of EP are all valid simplifying segments for their corresponding subpaths ofP , and compute a shorte
path fromp1 to pn in GP . For the angle-constrained versions, the main difficulty is how to comput
desired shortest paths inGP .

2.1. Overview of the algorithmic approach

As the previous algorithms for the unconstrained min-# problem (e.g., [7,8]), we divide the
problem into two subproblems, as follows:

(1) Build an O(n2) size directed acyclic graphGP = (VP ,EP) for P , such thatEP consists of allε-
simplifying segments.

(2) Compute a shortest path fromp1 to pn in GP , satisfying the angle constraint, if such a path exi
or otherwise report that no solution exists.

We solve the first subproblem by applying the best known iterative min-# algorithms for the u
strained version. Those algorithms compute the set ofε-simplifying segments in O(n2) time inR

2 [8,11]
and O(n2 logn) time in R

3 [7].
To compute a shortestp1-to-pn path inGP , we use dynamic programming as the main technique.

enables us to formulate as a key subproblem a special off-line range search problem: Givenn weighted
balls of arbitrary radii andn points, for each pointp find the minimum-weight ball that does not conta
p. One can use standard circular range search techniques to solve this problem (e.g., inR

2 using range
search queries would result in O(n1+ε) time algorithms, whereε > 0 is an arbitrarily small constant [3]
We exploit the special properties of this range search problem to achieve better time bounds:

OLBES (Off-Line Ball Exclusion Search): Given a sequenceE = (e1, e2, . . . , en) such that eachei ,
i = 1,2, . . . , n, is either a ballBi of arbitrary radius or a pointpi , for every pointpk ∈ E , find the
smallest-index ballBj ∈ {e1, e2, . . . , ek−1} such thatpk /∈ Bj , or report no such ball exists.

As we will see later, for path simplification in two dimensions, the OLBES balls are arcs onS
1. For

path simplification in three dimensions, the balls are disks onS
2.

2.2. The reduction

Suppose we are given a polygonal pathP = (p1,p2, . . . , pn) in R
2 or R

3 and an error valueε > 0,
and we want to find a minimum size pathP ′ = (pi1 = p1,pi2, . . . , pim = pn) which satisfies the angl

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.6 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 6

6 D.Z. Chen et al. / Computational Geometry••• (••••) •••–•••

constraint condition under the tolerance zone criterion. As mentioned earlier, we first construct an O(n2)

size directed acyclic graphGP = (VP ,EP) for P that contains all valid simplifying segments for the
unconstrained problem, by using the algorithms in [7,11]. Note that it is fairly straightforward to compute

ing

le

ute
an angle-constrained shortest path inGP in O(n3) time by applying the same idea used in comput
shortest paths with turn penalties [6]: construct thedual graphG′

P of GP in which the edges ofGP

become nodes and two nodes ofG′
P are connected by an edge inG′

P if they correspond to a possib
turn in GP . It is easy to see that the dual graphG′

P is also a directed acyclic graph and that it has O(n2)

vertices and O(n3) edges. The dual graph has no turn penalties and shortest paths inG′
P can be computed

by standard techniques.
To obtain a faster solution, we compute an angle-constrained shortestp1-to-pn path inGP by a dy-

namic programming algorithm. LetACSPj (k) denote the angle-constrained shortest path fromp1 to pk

in GP , with 1 < k � n, such that the last edge ofACSPj (k) is pjpk . Suppose at the end of iterationi
(i � 1), ACSPj (k) is available for everyj = 1,2, . . . , i and everyk = 2,3, . . . , n such thatj < k. For
example, in Fig. 2, there are two available shortest pathsACSPj (k) andACSPj ′(k) with the last edges
pjpk andpj ′pk , respectively. At iterationi + 1, from the availableACSPj (i + 1)’s, j = 1,2, . . . , i, we
computeACSPi+1(k) for everyk = i + 2, i + 3, . . . , n. Dynamic programming enables us to comp
ACSPi+1(k), for k = i + 2, i + 3, . . . , n, using batched off-line computation.

At iterationi +1, we have (at most)i available shortest pathsACSPj (i +1), with the last edgepjpi+1,
wherej < i + 1 andpjpi+1 is an incoming edge topi+1 in GP . To decide if an outgoing edgepi+1pk

of pi+1, wherei + 1 < k, can succeedpjpi+1 to extend an angle-constrained path inGP , we should

Fig. 2. An example of two available shortest pathsACSPj (k) andACSPj ′ (k).

Fig. 3. The coneCone(j, i + 1) when (a)δ(pjpi+1) < π
2 and (b)δ(pj pi+1) � π

2 .

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.7 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 7

D.Z. Chen et al. / Computational Geometry••• (••••) •••–••• 7

e

osite
e a cone
ite

an
. Thus,

at most)
initially
ce
red
Fig. 4. Illustrating the reduction to the OLBES problem.

check if the turn angle betweenpjpi+1 andpi+1pk is no smaller (or no larger) than the specified valuδ.
Based on our definition of the angle constraint condition, the set of directions atpi+1 which make an
angleδ defines a cone of directions atpi+1. For themin turn angleconstraint, angleδ < π/2 is acute,
as depicted in Fig. 3(a). We define the coneCone(j, i + 1) as the cone of directions atpi+1, and then
pi+1pk can succeedpjpi+1 if and only if ray(pi+1pk) is not contained in the coneCone(j, i + 1). For the
max turn angleconstraint, angleδ � π/2 is obtuse, and we can derive the same constraint on an opp
ray. Consider the set of directions that do not satisfy the angle constraint. These directions defin
Cone′(j, i + 1) with an acute angle atpi+1. Cone(j, i + 1) is the cone of directions that are the oppos
of the directions inCone′(j, i + 1). Then,pi+1pk can succeedpjpi+1 if and only if ray(pi+1|pk) is
not contained in the coneCone(j, i + 1). It should be clear now that, after this slight modification,
algorithm for solving the min turn angle case also solves the max turn angle case of the problem
we discuss only the min turn angle case in what follows.

Let Si+1 denote the unit sphere (S
1 or S

2) with center atpi+1 and letDj denote the disk onSi+1

obtained by intersectingCone(j, i + 1) with Si+1. We associate withDj a weightwj equal to the length
of the shortest pathACSPj (i + 1) along the corresponding incoming edgepjpi+1 to pi+1. At iteration
i + 1, by intersecting each coneCone(j, i + 1) (j < i + 1) with Si+1, we have (at most)i weighted disks
Dh of different radii. Letqk be the intersection point ofSi+1 with ray(pi+1pk). At iteration i + 1, by
intersectingSi+1 with the ray corresponding to an outgoing edgepi+1pk of pi+1 (i + 1 < k), we have
(at most)n − i − 1 pointsqr on Si+1. For everyqr , we then find the minimum weight diskDh such that
qr /∈ Dh (see Fig. 4 for an example inR3).

The problem above can be reduced to a special case of the OLBES problem. We first sort the (
i disksDh in the order of nondecreasing weights and place the ordered disk sequence into an
empty setE . We then attach the (at most)n − i − 1 pointsqr at the end ofE . Thus, we obtain a sequen
E = (e1, e2, . . . , en) of disks and points such that the firsti objects of the sequence are disks orde
by their weights and the remaining objects of the sequence are points. For a pointqr ∈ E , finding the
minimum weight disk not containing that point corresponds to finding the smallest index diskDh ∈ E
such thatqr /∈ Dh.

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.8 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 8

8 D.Z. Chen et al. / Computational Geometry••• (••••) •••–•••

Lemma 1. For min or max turn angle constraints, an angle-constrainedp1-to-pn shortest path inGP

can be computed inO(nT (n)) time, whereT (n) is the time for solving a special OLBES problem of size
O(n).

ngle-
e a

con-
oblem.

ints to
this

n

rval

ciated
n

o
sion in

in
the
an

all

s

Proof. This is done by using the above dynamic programming algorithm for computing the a
constrainedp1-to-pn shortest path inGP . Since the algorithm has O(n) steps and in each step we hav
special OLBES problem, there are O(n) OLBES problems to solve, each of which is of size O(n). �

Thus, in order to obtain the claimed time bounds for the path simplification problem with angle
straints, it remains to show how to efficiently solve the corresponding instances of the OLBES pr

3. The 1-dimensional OLBES problem

In Section 2, we have reduced the problem of simplifying a polygonal path with angle constra
the problem of solvingn − 1 individual instances of the off-line ball exclusion search problem. In
section, we discuss the solution for the 1-dimensional OLBES problem.

Theorem 1. Given a sequenceE of n 1-dimensional disks andn query points on the real line, we ca
determine the OLBES answers for all the query points inE in O(n logn) time.

Proof. We build a complete binary treeT such that each leaf ofT is associated with a diskDj in E
(the first leaf forD1, the second leaf forD2 and so on). Note that each 1-dimensional disk is an inte
on the real line. We go up the treeT in a bottom-up fashion, and at each internal nodev we compute
and store the common intersection of the intervals associated with all leaf descendants ofv. Since the
common intersection atv can be computed in constant time from the common intersections asso
with v’s left and right children, the overall computation inT takes O(n) time. Obviously, the commo
intersection at the root ofT may be empty.

We sort the points (real values) inE increasingly and then search for the desired disks for all the O(n)

query pointsqk at once, starting at the root ofT . At the rootu of T , we select the query points that d
not fall in the interval stored at the root. We partition these points into two sets, based on inclu
the interval stored at the left childul of the root: the points that do not fall in this interval are placed
the subsetleft(u), for ul (the root of the left subtree); a point that falls in the interval is placed in
subsetright(u), for the right childur of the root (the root of the right subtree), if its index is larger th
the index of the rightmost leaf of the subtree rooted atul , otherwise it is dropped (since it is inside
disks inE preceding it). The index of the rightmost leaf of the subtree ofT rooted atv, for all v ∈ T , can
be computed in O(n) time by a simple traversal ofT . Obtainingright(u) (and thenleft(u)) reduces to
extracting a sorted subsequence from a sorted sequence. Thus, the computation at each level ofT can be
performed in O(n) time and the 1-D OLBES problem can be solved in O(n logn) time. �
Lemma 2. For a sequenceE of n 1-dimensional disks andn query points on the real line, such that(i) the
left and right endpoints of the disks form sorted sequences and(ii) the points appear after all the disk
in E and are sorted by their values, we can find the answers for all the points inE in O(n) time.

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.9 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 9

D.Z. Chen et al. / Computational Geometry••• (••••) •••–••• 9

Proof. We solve this special instance of the OLBES problem in a different way. To find the minimum
index disk that does not contain the pointqk , for each of the pointsqk ∈ E , we use the following trans-
formation to avalue-indexcoordinate system. Each endpoint of an intervalIj is mapped to a point with

n
et

s in
t

alue
nce.

hen we

nt

e

ely,

t
centers

oming
nt
at
left and
LBES
coordinates(xj ,wj) wherexj is the value of the endpoint on the real axis andwj is the index of the
interval inE . Each pointqk ∈ E is mapped to a point(xk,0) in the value-indexplane. Thus, we obtai
three sets of points invalue-indexcoordinates, each of which is sorted by the value coordinate: the sLj

for the left endpoints, the setRj for the right endpoints, and the setQj corresponding to the points inE .
For a pointqk ∈ Qj let min_right(qk) denote the minimum value of the indices of the endpoint

Rj which are on or to the left of the vertical line atqk . We setmin_right(qk) to zero if there is no righ
endpoint to the left ofqk . Then,min_right(qk), for eachqk ∈ Qj , can be computed in O(n) time by first
merging the two sequences corresponding to the value coordinates of the points inRj andQj and then
performing a left-to-right scan on the resulting sequence. Similarly, letmin_left(qk) denote the minimum
value of the indices of the endpoints inLj which are on or to the right side of the vertical line atqk .
We setmin_left(qk) to zero if there is no left endpoint to the right ofqk . Then,min_left(qk), for each
qk ∈ Qj , can be computed in O(n) time by first merging the two sequences corresponding to the v
coordinates of the points inLj andQj and then performing a right-to-left scan on the resulting seque
A minimum index disk that does not containqk corresponds to min{min_left(qk),min_right(qk)}. If the
value is zero then there is no disk.�

We next outline some properties of the reduction to the OLBES problem for the special case w
have the same angle constraint for all incoming edges atpi+1, which gives equal-radius disks onSi+1.

Lemma 3. Consider the iterationi + 1 of the dynamic programming algorithm, for anyi such that
1 � i < n − 1, and assume that the incoming edges and the outgoing edges ofGP at pi+1 form two
sorted sets, respectively. Assume also that all incoming edges atpi+1 have the same angle constrai
with respect to the outgoing edges. Then:

(1) the points corresponding to the outgoing edges appear in sorted order on the boundary ofSi+1, and
(2) the endpoints of the disks onSi+1 form two sorted sequences.

Proof. Since the outgoing edges atpi+1 are sorted, their intersections withSi+1 appear in the sam
sorted order. The 1-dimensional disks onSi+1 have centers at the intersection points ofSi+1 with the
rays throughpi+1 corresponding to incoming edges. Since these edges are sorted aroundpi+1, the center
points are also sorted on the boundary ofSi+1. Then, the left and right endpoints of the disks, respectiv
form two sorted sequences onSi+1. �

From Lemma 3, it follows that by requiring the same angle constraint for all incoming edges api+1,
the sorted order of the left and right endpoints of the disks corresponds to the sorted order of the
of the disks. SinceGP can be viewed as a planar geometric graph, the sorted order of the inc
and outgoing edges for all vertices inGP can be obtained in O(n2) time by standard line arrangeme
traversal (of the dual line arrangement of the pointspi , i = 1,2, . . . , n). Once the incoming edges
pi+1 are sorted, the sorted order of the centers of the disks (and thus the sorted order of their
right endpoints, respectively) can be obtained in linear time. For the rest of this section, for the O

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.10 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 10

10 D.Z. Chen et al. / Computational Geometry••• (••••) •••–•••

problem atpi+1, we assume that the incoming and outgoing edges are available in sorted order around
pi+1.

In what follows, we describe our solution for the special instance of the 1-dimensional OLBES prob-

e

of

t.

ery

rc
arc is
sists of
rch
e
is
re
in

e

lable
tion at the

y

orm

pend
lem. Suppose that at iterationi + 1, we havei conesCone(j, i + 1) andn − i − 1 pointspk , where each
coneCone(j, i + 1) is defined by two rays emanating frompi+1 and it is weighted by the length of th
corresponding shortest pathACSPj (i + 1). For each coneCone(j, i + 1), we obtain a circular arcAj by
intersectingCone(j, i + 1) with the circleCi+1 with the center pointpi+1 (the planar correspondent
Si+1). The circular arcAj is associated with the weightACSPj (i + 1). For each pointpk , we obtain a
query pointqk by intersecting the ray emanating frompi and going throughpk with the circleCi+1. As
discussed above, these circular arcs and points form the sequenceE . We sort the circular arcs by weigh
Since there are at mosti weight values, each of which is an integer no larger thani, the circular arcs
can be sorted by weight in O(i) time. The circular arcs, in sorted order of weight, followed by the qu
points (sorted by the angle atpi+1) form the sequenceE .

Lemma 4. At iteration i, 1 � i < n, we can find an angle-constrained shortest path ACSPi(k) for every
k > i in O(n) time.

Proof. We build a complete binary treeTa such that each leaf ofTa is associated with a circular a
Aj in E , as in the proof of Theorem 1. Since by the definition of the angle constraint no circular
larger than an open semicircle, the common intersection of any two arcs is either empty or con
one circular arc. Then, the computation inTa requires O(n) time. We also build a balanced binary sea
treeTq on the set of points inE , based on their angle value aroundpi . In the query procedure, we us
an arc inTa as a query input. We start with the arc stored at the root ofTa and use the endpoints of th
arc to form two search paths inTq that isolate the pointsqk ∈ Tq that are on the arc. These points a
eliminated fromTq . Since each search path has length O(logn), this computation can be performed
O(logn) time. We next partition the points inTq into two subtrees, based on inclusion in the intervalAl

stored at the left childul of the root. The points that do not fall in the intervalAl are placed in the tre
Tul

, for ul . The other points are placed in the treeTur
, for the right childur of the root.Tul

andTur
are

obtained fromTq in O(logn) time. Note that the points in one of these two trees may be initially avai
in two subtrees (see Fig. 5). To obtain a single tree we treat this case as a standard delete opera
root of a balanced binary search tree.

Let k be the number of points inTul
and letn−k be the number of points inTur

. We proceed recursivel
by querying the points inTul

with the arc stored at the left child oful and querying the points inTur
with

the arc stored at the left child ofur . We now analyze the running time of this procedure. We perf
O(n) queries, corresponding to the arcs inTa. A query can be performed in O(log(|Tq |)) time, where|Tq |
denotes the number of points inTq . After the first query, the points are placed inTul

andTur
, of sizek

andn − k, respectively. Then, the time to queryTul
andTur

is logk + log(n − k) which is maximized
whenk = n

2 . This gives the recurrenceT (n) = 2T (n
2) + O(logn) whose solution isT (n) = O(n). �

Theorem 2. The min-# problem with angle constraints inR
2 can be solved inO(n2) time usingO(n2)

storage.

Proof. There are O(n) iterations in the dynamic programming algorithm and in each iteration we s
O(n) time to computeACSPj (i + 1)’s, as specified in Lemma 4, resulting in a total of O(n2) time. �

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.11 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 11

D.Z. Chen et al. / Computational Geometry••• (••••) •••–••• 11

in-# al-

blem
special

e
at the

e

t
ll leaf

s to
f
intained
Fig. 5. (a) QueryingTq with an arcAj ∈ Ta and (b) the resulting treesTul andTur .

Theorem 3. The min-ε problem with angle constraints inR2 can be solved inO(n2 logn) time using
O(n2) storage.

Proof. The solution is similar to that for the unconstrained version. The set of O(n2) possible simplifica-
tion errors can be computed in O(n2 logn) time [11]. By using binary search on the set of O(n2) possible
simplification errors, at each step of the search running the (angle-constrained version of the) m
gorithm, the min-ε problem with angle constraint inR2 can be solved in O(n2 logn) time, matching the
best bound for the unconstrained version.�

4. The 2-dimensional OLBES problem

Recall that the 2-dimensional OLBES problem that results from our modeling of the min-# pro
with angle constraints is a special case of the general 2-dimensional OLBES problem. In this
instance the points inE appear after all the disks inE . Specifically, ifE hask disks andn− k points, then
the firstk elements ofE are disks and the remainingn − k elements ofE are points. Also, recall that th
disks ofE are spherical disks onS2. However, since each disk is less than a semi-sphere we can tre
problem as one on disks inR2 (details on this treatment are provided in [7]).

Clearly, the min-# problem with angle constraints inR
3 can be solved in O(n2 logn) time if we can

solve the 2-dimensional OLBES problem in O(n logn) time. In what follows we first prove how to solv
this special case and then show how to modify the solution to handle the general case.

We build a complete binary treeT such that each leaf ofT is associated with a diskDj in E (the
first leaf forD1, the second leaf forD2 and so on). We go up the treeT in a bottom-up fashion, and a
each internal nodev we compute and store the common intersection of the disks associated with a
descendants of the subtree ofT rooted atv. Using the algorithm in [7], we can computeI (v) for each
nodev in T in a total of O(n logn) time. Essentially, the algorithm in [7] uses merge-like operation
compute the common intersection atv from the common intersections stored at the two children ov.
Clearly, since the intersection of disks is a convex region, the upper and lower chains can be ma
in sorted order and the merging at each level can be performed in linear time, resulting in O(n logn) time

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.12 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 12

12 D.Z. Chen et al. / Computational Geometry••• (••••) •••–•••

ternal

ted

points
points
of the

vel of
n be
d the

en

ers

ction 2
Fig. 6. IllustratingT andI (v
j
i) for the 2-D OLBES problem.

over the O(logn) levels. If I (v
j

i) denotes a representation of the common intersection stored at in
nodev

j

i , e.g.,I (vi
1) represents the common intersection of{D1,D2, . . . ,Di} andI (vn

i+1) represents the
common intersection of{Di+1,Di+2, . . . ,Dn}, then the common intersection of all the disks is deno
by I (vn

1) and it is stored at the root of the treeT (see Fig. 6). Obviously,I (vn
1) may be empty.

We sort the points inE by x-coordinate and then search for the desired disks for all the O(n) query
pointsqr at once, starting at the root ofT . Observe that the searching for the smallest-index diskDh

that does not contain a query pointqr traverses a root-to-leaf path inT . At the root ofT , we select the
query points that do not fall inside the common intersection stored at the root. We partition those
into two sets, based on inclusion in the common intersection at the left child of the root. With the
that are not in the common intersection at the left child of root we proceed on the left subtree
root; with the remaining points we proceed on the right subtree. Since the computation at each leT

can be done altogether in O(n) time, by merge-like operations, this special 2-D OLBES problem ca
solved in O(n logn) time. To solve the general 2-D OLBES problem we observe that we only nee
following simple change. For each internal nodev ∈ T , store the index inE of the rightmost leaf of the
subtree rooted atv, which can be done in O(n) time by a bottom-up traversal ofT . If a point in the set
for the right subtree has its index smaller than the index inE of the rightmost leaf in the left subtree, th
we drop this point (since it is inside all disks preceding it).

Theorem 4. Given a sequenceE of n disks andn query points, we can determine the OLBES answ
for all query points inE in O(n logn) time.

Combining the dynamic programming approach and the reduction to 2-D OLBES problem in Se
with the solution for the 2-D OLBES problem, we obtain:

Theorem 5. The min-# problem with angle constraints inR3 can be solved inO(n2 logn) time using
O(n2) storage.

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.13 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 13

D.Z. Chen et al. / Computational Geometry••• (••••) •••–••• 13

Proof. There are O(n) iterations in the dynamic programming algorithm and in each iteration we spend
O(n logn) time to computeACSPj (i + 1)’s, as it follows from Theorem 4, for a total of O(n2 logn)

time. �

search
p of the
that for

btain the

ven a

x

af path

g

from
f

th
Theorem 6. The min-ε problem with angle constraints inR3 can be solved inO(n2 log3 n) time using
O(n2) storage.

Proof. The solution is again similar to that for the unconstrained version. We apply the parametric
approach used in [7] for the unconstrained version. The only difference is that, in the decision ste
parametric search, the sequential algorithm for the unconstrained min-# problem is replaced with
the angle-constrained version. Since the two min-# algorithms have the same time bounds we o
claimed time. �

5. Remarks

We can modify our solutions for the OLBES problem to solve the on-line (query) version: gi
sequenceE = (e1, e2, . . . , en) of balls in R

1 or R
2, preprocessE such that for a query pointq, one can

efficiently find the smallest index ball inE that does not containq.
We have the following results.

Theorem 7. A sequenceE ofn 1-dimensional balls can be preprocessed inO(n) time into a data structure
of sizeO(n), so that for a query pointq, one can find inO(logn) time the smallest index ball inE that
does not containq.

Proof. Follows from the proof of Theorem 1.�
Theorem 8. A sequenceE of n 2-dimensional balls can be preprocessed inO(n logn) time into a data
structure of sizeO(n logn), such that for a query pointq, one can find inO(logn) time the smallest inde
ball in E that does not containq.

Proof. Consider the data structure designed for the 2-D OLBES problem. Traversing a root-to-le
in the treeT to identify the leftmost disk that does not contain the pointq seemingly would take O(log2 n)

time: there are O(logn) levels and at each visited nodev on the path we spend O(logn) time to decide if
q lies or not in the disk intersectionI (v) stored atv.

To reduce the query time to O(logn), we use thefractional cascadingtechnique [10] onT . Given
a directed graphG = (V ,E) such that each nodev contains a sorted listL(v), the fractional cascadin
problem is to construct an O(n) space data structure, wheren = |V |+|E|+∑

v∈V |L(v)|, such that given
a path{v1, v2, . . . , vm} in G and an arbitrary elementx, one can locatex efficiently in eachL(vi). In [10],
Chazelle and Guibas give an O(n) time algorithm to construct a fractional cascading data structure,
a graphG as above, with a search time of O(logn +m logd(G)), whered(G) is the maximum degree o
any node inG.

In our case, we letT correspond to the graphG. We maintain eachI (v) like in [7]. An internal node
v can be described as a vertical visibility map: a collection of intervals on thex-axis, each enhanced wi
pointers to the two circles that contribute the arcs boundingI (v) above and below.

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.14 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 14

14 D.Z. Chen et al. / Computational Geometry••• (••••) •••–•••

Consider first the location structureL(v) for the map at nodev. We build a simple balanced tree on the
endpoints of the (x-axis) intervals atv; at a leaf of this tree, we know the interval and we can compare
the point with the two arcs associated with the interval to decide if it is in the intersectionI (v).

ily

the first

d

with
ation
in the

lem re-
that
s of

stions.

convex

on, in:

345.
om. 23

g. and

) (1996)

ree and

error,
Fractional cascading is performed only on comparisons withx-coordinates, which allows us to eas
pass subsets ofx-coordinates up the treeT and insert them in the structuresL(v). This is the easiest form
of fractional cascading (there is a single comparison in a single linearly ordered space), so that
lookup takes O(logn) time to get the interval, but each lookup afterwards takes O(1) time apiece, for a
total of another O(logn) time.

We have
∑

v∈T |L(v)| = O(n logn), m = O(logn) and d(T) = O(1). Thus, we obtain the claime
space and preprocessing and query times.�

6. Conclusions

We have presented efficient algorithms for solving the polygonal path simplification problem
angle constraints inR2 andR

3, whose time bounds match those of the best known path simplific
algorithms without angle constraints [7,8,11]. Our algorithms improve by nearly a linear factor
time bound over the possible solutions based on standard graph-theoretic techniques.

To solve the problem, we have formulated an interesting (more general) off-line search prob
ferred to as theoff-line ball exclusion search(OLBES), and have developed efficient data structures
solve the OLBES problem in O(n logn) time. Our solutions can be easily extended to other type
objects, and can be applied to a class of geometric paths and other related problems.

Acknowledgement

The authors would like to thank the anonymous reviewers for their helpful comments and sugge

References

[1] P.K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, S. Whitesides, Curvature constrained shortest paths in a
polygon, in: Proc. 14th ACM Symp. on Comp. Geom., 1998, pp. 392–401.

[2] P.K. Agarwal, S. Har-Peled, N. Mustafa, Y. Wang, Near-linear time approximation algorithms for curve simplificati
Proc. of 10th Annual European Sympos. Algorithms, 2002, pp. 29–41.

[3] P.K. Agarwal, J. Matoušek, Dynamic half-space range reporting and its applications, Algorithmica 13 (1995) 325–
[4] P.K. Agarwal, K.R. Varadarajan, Efficient algorithms for approximating polygonal chains, Discrete Comput. Ge

(2000) 273–291.
[5] H. Alt, J. Blomer, M. Godau, H. Wagener, Approximation of convex polygons, in: Proc. 10th Coll. on Autom., Lan

Prog. (ICALP), 1990, pp. 703–716.
[6] J. Anez, T. De La Barra, B. Perez, Dual graph representation of transport networks, Transportation Res. B 30 (3

209–216.
[7] G. Barequet, D.Z. Chen, O. Daescu, M.T. Goodrich, J. Snoeyink, Efficiently approximating polygonal paths in th

higher dimensions, Algorithmica 33 (2) (2002) 150–167.
[8] W.S. Chan, F. Chin, Approximation of polygonal curves with minimum number of line segments or minimum

Internat. J. Comput. Geom. Appl. 6 (1) (1996) 59–77.

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.15 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 15

D.Z. Chen et al. / Computational Geometry••• (••••) •••–••• 15

[9] B. Chazelle, Lower bounds for off-line range searching, Discrete Comput. Geom. 17 (1997) 53–65.
[10] B. Chazelle, L.J. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica 1 (3) (1986) 133–162.
[11] D.Z. Chen, O. Daescu, Space-efficient algorithms for approximating polygonal curves in two dimensional space, Internat.

erion,

ne or

mpo-

els and

inimum

d

aphics

986)

orth-

ster-

1.
rence on

Symp.
J. Comput. Geom. Appl. 13 (2) (2003) 95–112.
[12] L.P. Cordella, G. Dettori, An O(n) algorithm for polygonal approximation, Pattern Recogn. Lett. 3 (1985) 93–97.
[13] M. de Berg, M. van Kreveld, S. Schirra, Topologically correct subdivision simplification using the bandwidth crit

Cartography and GIS 25 (1998) 243–257.
[14] D.H. Douglas, T.K. Peucker, Algorithms for the reduction of the number of points required to represent a digitized li

its caricature, Canadian Cartographer 10 (2) (1973) 112–122.
[15] R. Estkowski, J.S.B. Mitchell, Simplifying a polygonal subdivision while keeping it simple, in: Proc. 17th ACM Sy

sium on Computational Geometry, 2001, pp. 40–49.
[16] D. Eu, G.T. Toussaint, On approximation polygonal curves in two and three dimensions, CVGIP: Graphical Mod

Image Processing 56 (3) (1994) 231–246.
[17] L.J. Guibas, J.E. Hershberger, J.S.B. Mitchell, J.S. Snoeyink, Approximating polygons and subdivisions with m

link paths, Internat. J. Comput. Geom. Appl. 3 (4) (1993) 383–415.
[18] S.L. Hakimi, E.F. Schmeichel, Fitting polygonal functions to a set of points in the plane, CVGIP: Graphical Models an

Image Processing 53 (2) (1991) 132–136.
[19] J. Hershberger, J. Snoeyink, Cartographic line simplification and polygon CSG formulae in O(n log∗ n) time, in: Proc. 5th

International Workshop on Algorithms and Data Structures, 1997, pp. 93–103.
[20] H. Imai, M. Iri, Computational-geometric methods for polygonal approximations of a curve, Computer Vision, Gr

and Image Processing 36 (1986) 31–41.
[21] H. Imai, M. Iri, An optimal algorithm for approximating a piecewise linear function, J. Inform. Process. 9 (3) (1

159–162.
[22] H. Imai, M. Iri, Polygonal approximations of a curve-formulations and algorithms, in: Computational Morphology, N

Holland, Amsterdam, 1988, pp. 71–86.
[23] A. Melkman, J. O’Rourke, On polygonal chain approximation, in: Computational Morphology, North-Holland, Am

dam, 1988, pp. 87–95.
[24] B.K. Natarajan, On comparing and compressing piecewise linear curves, Technical Report, Hewlett Packard, 199
[25] B.K. Natarajan, J. Ruppert, On sparse approximations of curves and functions, in: Proc. 4th Canadian Confe

Computational Geometry, 1992, pp. 250–256.
[26] G.T. Toussaint, On the complexity of approximating polygonal curves in the plane, in: Proc. IASTED International

on Robotics and Automation, Lugano, Switzerland, 1985.

