
CWS: a Model-Driven Scheduling Policy for Correlated
Workloads

Giuliano Casale
Department of Computing
Imperial College London

180 Queen’s Gate
London SW7 2AZ

g.casale@imperial.ac.uk

Ningfang Mi
Department of Electrical and

Computer Engineering
Northeastern University

Boston, MA, 02115
ningfang@ece.neu.edu

Evgenia Smirni
Department of

Computer Science
College of William and Mary

Williamsburg, VA, 23187
esmirni@cs.wm.edu

ABSTRACT
We define CWS, a non-preemptive scheduling policy for workloads
with correlated job sizes. CWS tackles the scheduling problem by
inferring the expected sizes of upcoming jobs based on the structure
of correlations and on the outcome of past scheduling decisions.
Size prediction is achieved using a class of Hidden Markov Mod-
els (HMM) with continuous observation densities that describe job
sizes. We show how the forward-backward algorithm of HMMs ap-
plies effectively in scheduling applications and how it can be used
to derive closed-form expressions for size prediction. This is partic-
ularly simple to implement in the case of observation densities that
are phase-type (PH-type) distributed, where existing fitting meth-
ods for Markovian point processes may also simplify the parame-
terization of the HMM workload model.

Based on the job size predictions, CWS emulates size-based poli-
cies which favor short jobs, with accuracy depending mainly on
the HMM used to parametrize the scheduling algorithm. Exten-
sive simulation and analysis illustrate that CWS is competitive with
policies that assume exact information about the workload.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Sequencing and
Scheduling; C.4 [Performance of Systems]: Performance Attributes

General Terms
Algorithms, Performance, Theory

Keywords
Stochastic scheduling, response time, model-driven scheduling, cor-
related workload

1. INTRODUCTION
We introduce CWS a general-purpose non-preemptive correlated

workload scheduler. CWS uses the correlation structure of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’10, June 14–18, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0038-4/10/06 ...$10.00.

workload and the observed sizes of past completed tasks to em-
ulate size-based policies when only statistical information is avail-
able on upcoming jobs and on their relative order. This policy is
motivated by the presence in system workloads of correlations that
can strongly affect performance [7,18]. Scheduling such workloads
is challenging because it is not easy to develop policies that lever-
age on all the available information from past scheduling decisions
in an accurate and computationally efficient manner, while simul-
taneously estimating and leveraging the correlation structure of the
workload. This paper offers an approach to tackle this problem
based on Hidden Markov Model (HMM) theory [17]. CWS emu-
lates scheduling policies that favor short jobs [22] based on closed-
form expressions of expected job sizes that account for correla-
tions. These expressions are obtained using an approach similar to
the forward-backward algorithm of HMMs [17], which is used to
determine the probability of a particular observation sequence in a
HMM, and exactly account for the entire statistical characterization
of the workload that can be inferred from the input HMM. As a re-
sult, CWS is able to take the best-informed decisions with respect
to the available statistical model that describes the workload.

In general, existing scheduling techniques can be classified ac-
cording to the assumed knowledge on the size of jobs. In size-based
policies, such as SRPT [22] and its adaptive versions [12], the size
of each job is known in advance and the scheduler takes advan-
tage of this information to prioritize short jobs. On the other hand,
size-blind policies, such as FB or PBS [8], do not rely on this in-
formation and thus can be easier to implement in systems where
processing times are hard or impossible to determine in advance.
Policies such as SEPT and its weighted version WSEPT [15, 20]
know a priori only the class of each job in the queue. Each class
has known size expectation and the policy prioritizes the oldest ar-
rived job with smallest expected size. Conversely, methods such
as FCFS, LCFS, and the random policy RAND completely ig-
nore any information about job sizes or size class memberships.
CWS differs from these policies as it infers knowledge of size
class memberships based on the outcome of past scheduling deci-
sions and on a HMM model that approximate the stochastic behav-
ior of the workload. Although based on estimates, CWS greatly
improves response times compared to policies such as FCFS or
LCFS and often approaches the performance of SEPT that has ex-
act information about the workload and thus provides a bound on
the best performance achievable by CWS.

Summarizing, CWS uses the workload model to make schedul-
ing decisions and we show by simulations that the resulting per-
formance is highly competitive with that of SEPT which relies
on exact knowledge of job class memberships. CWS instead es-

251

timates the job class membership using the workload model and
conditional on the outcomes of past scheduling decisions.

The paper is organized as follows. Problem statement is given
in Section 2. The CWS algorithm is given in Section 3. Anal-
ysis of limiting cases is given in Section 4, while results of ex-
tensive simulation experiments are presented in Section 5 showing
CWS scheduling performance under different workloads. Related
work is summarized in Section 6. Finally, Section 7 concludes the
paper with remarks on future work.

2. PROBLEM STATEMENT
We consider the problem of scheduling the execution of a fixed

set of n jobs having service times represented by the random vari-
ables S1, . . . , Sn, where Sj > 0, 1 ≤ j ≤ n. The sequence of jobs
S1, . . . , Sn to be scheduled is referred to as the system workload.
We assume in the following sections that the workload has fixed
length n, meaning that the system does not accept new arrivals;
we discuss the implementation and performance of CWS in pres-
ence of an exogenous arrival process in Section 5. Without loss
of generality, Sj may equivalently be seen as the size of the jth
job. Throughout the paper we use the terms service time and job
size interchangeably. We take very broad assumptions about the
system:

(A1) the exact size of a job is known only when the job completes
execution (size-blind scheduling);

(A2) the job in execution is served without interruptions until com-
pletion (non-preemptive scheduling);

(A3) the server cannot become idle if there are jobs left to be pro-
cessed (work-conserving scheduling);

(A4) statistical correlations exist between job sizes

The target of our investigation in the next sections is to define
the CWS scheduling policy in such a way that its mean response
time E[RCWS] improves over the mean response times of similar
non-preemptive policies in presence of correlated workloads.

3. ALGORITHM
CWS is a model-based policy in which the scheduler uses a

continuous-time HMM workload model W to summarize the prop-
erties of past-observed job sizes and to predict sizes of jobs that
have not already been served. The static or dynamic fitting of such
model from historical data is out of the scope of present paper,
where we assume ideal conditions where W is always represen-
tative of the real workload. The hidden states of this HMM de-
scribe the job size classes. We consider an offline parameterization,
where the model W is assumed known and remains constant over
time. The scheduler treats the current workload as a sample path
of W initialized in stationary state. Resorting to an offline parame-
terization means, in practice, that the model W is always assumed
representative of the workload S1, . . . , Sn although this is not used
to parametrize W .

The remainder of this section is as follows. In Section 3.1, we
define the workload model W used by CWS. Section 3.2 explains
how CWS performs a scheduling decision based on W . Section 3.3
gives an algorithmic definition of CWS and discusses computa-
tional costs.

3.1 Workload Model
We describe correlated workloads using a HMM with the follow-

ing characteristics. We assume that the n job sizes are observations

Table 1: Summary of workload model notation
W workload model
Sj service time of jth job in queue (random variable)
tj service time of jth job in queue (observed)
Fk cumulative distribution function of class-k job sizes

X(j) index of jth job scheduled under policy X
n number of jobs composing the workload
m index of current scheduling decision, m = 1, . . . , n

RX(n) response time of X for a given workload of length n
E[S] mean job size

E[Sj |m] expected size of jth job at the time of the mth decision
εX mean number of scheduling errors under policy X

E[RX] mean RX(n) under random workloads S of length n
P DTMC embedded at jump times in W

Hj history matrix of job j
lj history vector of jobs before position j
rj history vector of jobs after position j

pk,c prob. that a job of class k is followed by a job of class c
Mi ith moment matrix of W
π steady-state class membership row vector

Q(t) semi-Markov kernel
1 column vector of all ones
σ correlation decay rate in two state workload models

of a HMM W with K hidden states, each modeling a workload
class. Each class k = 1, . . . , K, represents a group of jobs with
sizes that come from the same probability distribution. Throughout
this paper, differently from the most diffused classes of HMMs, we
focus on the case of general continuous observation densities for
each state that are used to describe a job size. With this assump-
tion, a class k is defined by two parameters:

• the observation density function, i.e., a cumulative distribu-
tion function Fk ≡ Fk(t) used to sample the size t of class-k
jobs, with the additional assumption that Fk(t) has no prob-
ability mass at t ≤ 0. The sample job size is the observation
associated to the hidden state k.

• a probability vector (pk,1, pk,2, . . . , pk,K), which character-
izes job size correlations. The vector describes the probabil-
ity pk,c that, if the job size Sj has been sampled from class
k, then the job size Sj+1 will be sampled from class c.

A graphical explanation of the HMM workload model W is given
in Figure 1. The figure depicts a model with K = 3 classes where
job sizes are currently sampled from class 1. Note that the states are
hidden since one can only observe the size of the observed jobs, but
not the class of membership. Further, jobs of different classes may
be sampled with similar sizes, thus making inference of the class
membership for a given job difficult. We consider the model ini-
tialized using the state-steady class membership probabilities; after
generating n samples, the model has created a sample workload.

3.1.1 Equivalent Semi-Markov Process Description
Let Xj denote the class of the jth job and Sj be its size. Accord-

ing to the above definitions, the HMM description may be seen as
equivalent to modeling the workload as a sequence of holding times
h1, . . . , hn that occur between n consecutive state jumps, such that
Sj = hj , j = 1, . . . , n. The discrete-time Markov chain (DTMC)
embedded at jump times in this equivalent semi-Markov process is

P =

26664
p1,1 p1,2 . . . p1,K

p2,1 p2,2 . . . p2,K

...
...

. . .
...

pK,1 pK,2 . . . pK,K

37775 ,

252

F(t)
2

F(t)3 F(t)
3

1,1
p

1,3
p

F(t)1

F(t)
2

1,2
p

F(t)1

SELECTED JUMP

CLASS 2
(ACTIVE)

CLASS 3

CLASS 1CLASS 1
(ACTIVE)

CLASS 2

CLASS 3

SAMPLE F(t)1

JOB j+1JOB j

Figure 1: Sampling job sizes from a workload model W with K = 3

classes. The jth jump provides an estimate of the size of the jth job.

P 1 = 1, 1 = (1, 1, . . . , 1)T , and it describes the correlations
between job sizes. We denote by π = (π1, π2, . . . , πK), π = πP ,
the steady-state equilibrium vector of P . The term πk represents
the equilibrium probability that the next job is member of class k
when we look at the process immediately after the generation of a
sample; we call π the steady-state class membership vector.

According to the above definitions, the HMM W may be seen as
a semi-Markov process with kernel

Q(t) = diag(F1(t), F2(t), . . . , FK(t))P

=

26664
F1(t)p1,1 F1(t)p1,2 . . . F1(t)p1,K

F2(t)p2,1 F2(t)p2,2 . . . F2(t)p2,K

...
...

. . .
...

FK(t)pK,1 FK(t)pK,2 . . . FK(t)pK,K

37775 , (1)

where the element (i, j) of the kernel describes the conditional
probability that a job of size t and class i will be followed by a
job of class j. Note that holding times are independent of the des-
tination state, thus this is a special type of semi-Markov process.

Finally, we define the moment matrix

M1 =

Z ∞

0

tdQ(t) =

26664
M1p1,1 M1p1,2 . . . M1p1,K

M2p2,1 M2p2,2 . . . M2p2,K

...
...

. . .
...

MKpK,1 MKpK,2 . . . MKpK,K

37775 ,

where the terms Mk , 1 ≤ k ≤ K, denote the mean of the class-k
job sizes. According to this definition, the mean job size E[S] in
the workload model W is given immediately by E[S] = πM11.

3.1.2 Workload Model Generality
The HMM W is quite general since in the case where K = n

and each class has a deterministic distribution one may even de-
scribe exactly a given sequence of n job sizes. The most significant
assumption behind W is the Markovian transition probability ma-
trix P which limits the correlations between job sizes to the short-
range dependent (SRD) type [24]. This happens because the corre-
lations must decay geometrically as the powers of the eigenvalues
of P different from 1. In the rest of the paper, these eigenvalues
are referred to as correlation decay rates. Despite the geometric
decay, it is established that SRD processes with many states can
approximate well the performance of real workloads of long-range
dependent (LRD) type [1, 6]. Thus, the Markovian nature of the
state jumps does not appear very restrictive.

3.2 Scheduling Decisions
In this subsection, we describe how CWS uses effectively the

workload model W for scheduling decisions 1. We begin by con-
sidering the mth scheduling decision. CWS schedules for execu-
tion, among the n − m + 1 jobs left to be served, the job j with
minimum expected size. This is done in a way that accounts for
past scheduling history as explained in the following definition.

DEFINITION 1 (CWS SCHEDULING). At the time of the mth
decision, the CWS scheduling policy selects job j if and only if
job j minimizes the expectation

E[Sj |m] ≡ E[Sj |SCWS(1), . . . , SCWS(m−1)] (2)

among the n − m + 1 jobs left to be served and conditional on the
past decisions CWS(1), . . . , CWS(m − 1), where CWS(i) = k
denotes that job k has been selected by CWS at the time of the ith
decision. In case of tie, CWS selects the job with minimum index j
among the jobs with minimal value of E[Sj |m]2.

The fundamental difference of CWS with respect to policies with
exact class information like SEPT [20] is that CWS leverages on
past scheduling decisions to select the next job to serve and this
is done even if the class of membership of each job is unknown,
i.e., the HMM hidden state that generated a given job is not known
exactly.

To understand this concept, we first briefly summarize SEPT.
For each of the n jobs, SEPT knows deterministically their class
of membership, i.e., it knows that the job j is of class k with a job
size that is distributed according to a given distribution Fk. Then
the job having the minimum expected size is selected for execu-
tion. For instance, SEPT may know that job j is exponentially dis-
tributed with rate λk, while job l is exponentially distributed with
rate λh < λk; in this case, job j is selected for execution because
its expected size is less than for job l. Clearly, this is less accurate
than size-based methods like SRPT or SJF , which know exactly
the size of each job. The source of SEPT inaccuracies are essen-
tially that (a) jobs of the same classes are indistinguishable and thus
scheduled in FCFS order; (b) because of randomness, there is al-
ways some probability that a job belonging to a class with large
mean is sampled small and vice versa.

Although SEPT can take erroneous decisions compared to size-
based policies, its assumptions still provide an oversimplification
with respect to the problem considered in this paper: in absence of
externally provided information on the workload, only the correla-
tion structure of job sizes can be estimated and used by CWS to
estimate if job j may belong to class k. This implies a much harder
analysis than in SEPT, since CWS must evaluate and update effi-
ciently the conditional expectations E[Sj |m] during the scheduling
process. The fundamental property of the CWS workload model
W presented in the previous section is that we are able to compute
E[Sj |m] analytically without the need of numerical integration.
This is important because the existence of correlations between job
sizes would in general require the computation of several nested in-
tegrals to determine E[Sj |m]. For example, assume that job j = 1

1We remark that, although our Markovian model may appear simi-
lar to a Markov decision process (MDP), this is not the case because
we consider hidden states and the current state must be estimated
from the observed job sizes. This type of decision processes be-
longs to the class of partially observable MDPs (POMDPs) which
are known to be computationally intractable in most cases [14].
2This is an arbitrary decision in the case of a fixed-length workload.
However, in the case of a system with exogenous arrivals treated in
Section 5, this is desirable since it is the logical choice of serving
the “oldest” job.

253

is served first; then computing the expected size E[S3|2] of job
j = 3 at the time of the second scheduling decision requires to
evaluate the n − 1 dimensional integralZ

t3 · P[S2 = t2, S3 = t3, . . . , Sn = tn |S1] dt2 · · · dtn,

over the region t2 ≥ 0 ∧ t3 ≥ 0 ∧ · · · ∧ tn ≥ 0. In general, this
is impractical because, if the workload is correlated, the conditional
joint probabilities do not factor into a product-form, i.e.,

P[S2 = t2, S3 = t3, . . . , Sn = tn |S1] �=
nY

i=2

P[Si = ti|S1],

and thus the integral solution is usually not available in closed an-
alytical form. Multi-dimensional numerical integration is clearly
too expensive to be used in a scheduling algorithm. The HMM
workload model W has instead the key property of removing this
analytical intractability by a closed-form expression for the joint
probabilities which avoids numerical integration. This stems from
the analytical tractability of the considered class of HMMs.

3.2.1 Forward-Backward Algorithm
We show how job sizes are estimated from W without resorting

to numerical integration and based on the forward-backward algo-
rithm of HMMs [17]. Using the semi-Markov interpretation of the
HMM model given in Section 3.1.1, we define the history matrix
of job i as

H i(m) =

(
P if � m′ < m : CWS(m′) = i;

C(ti) otherwise,

for i = 1, . . . , n, where

C(ti) =
dQ(t)

dt

˛̨̨
t=ti

, (3)

and ti is the observed size of job i, which is H i(m) = P if and
only if job i has not been scheduled before the mth decision of
CWS. The element (i, j) of P gives the conditional probability
that, if i is the hidden state which generated the size of job m, then j
will be the state generating the size of job m+1. The corresponding
element of C(ti) accounts also for the condition that the ith job
size has been observed equal to ti.

From this, we can apply the forward-backward algorithm of HMMs
for computing the conditional expected job sizes in the workload
model W as follows.

PROPOSITION 1 (JOB SIZE EXPECTATION). If the workload
is characterized by the HMM W , the expected size of job j at the
instant of the m-th scheduling decision is

E[Sj |m] =
π

Qj−1
i=1 H i(m)M1

Qn
k=j+1 Hk(m)1

π
Qj−1

i=1 H i(m)P
Qn

k=j+1 Hk(m)1
, (4)

for all jobs j = 1, . . . , n and scheduling decisions m = 1, . . . , n.

PROOF. We derive the expected job size E[Sj |m] by first for-
mulating the conditional probability P[Sj = t |m] and then obtain-
ing the closed-form formula for

E[Sj |m] =

Z ∞

0

tP[Sj = t |m]dt.

We begin by rewriting the conditional probability P[Sj = t |m] as

P[Sj = t, SCWS(1) = tCWS(1), . . . , SCWS(m−1) = tCWS(m−1)]

P[SCWS(1) = tCWS(1), . . . , SCWS(m−1) = tCWS(m−1)]
.

This last expression is a ratio of joint probabilities which can be
evaluated efficiently using the workload model W . According to
these observation and using standard arguments of the forward-
backward algorithm we conclude that the joint probability is com-
puted from (3.2.1) as

π
Qj−1

i=1 H i(m)C(t)
Qn

i=j+1 H i(m)1

π
Qj−1

i=1 H i(m)P
Qn

i=j+1 H i(m)1
,

where the denominator normalizes over the probability of observ-
ing exactly the job sizes found in the first m − 1 served jobs (job
j has here the matrix P since it has not been served among the
first m − 1 jobs and the probability space is at the time of the mth
decision). The final result follows by evaluatingZ +∞

0

tP[Sj = t |m]dt

which gives the final expression for E[Sj |m] by noting thatZ +∞

0

tC(t)dt =

Z +∞

0

t

„
dQ(t)

dt

«
dt = M1.

The formula obtained in Proposition 1 is an expression for the
forward-backward algorithm for the workload model W and it is
the fundamental tool for evaluating the expected job sizes in cor-
related workloads. The expression is exact also if job sizes are
uncorrelated: in this case, it is not difficult to see by spectral de-
composition [19] that P = 1π and this correctly transforms (4)
into a product-form expression.

3.2.2 PH-type Job Sizes and HMM Fitting
A case of major interest in performance evaluation is when job

sizes are described by means of a PH-type distribution. As we show
below, this brings major benefits in terms of compactness of the
representation and provides a measurement-driven fitting approach
for the definition of HMM model from past observations.

It is interesting to note that if all distributions Fk(t) are PH-type,
then the HMM model presented is equivalent to Neuts’ Markovian
Arrival Process (MAP) with J states and representation (D0, D1),
where P = (−D0)−1D1. This equivalence can be easily verified
at the semi-Markov level, see [10] for an introduction. The matrix
D1 is square of order J and represents rates of transitions that lead
to absorption events; conversely, D1 describes non-absorbing tran-
sitions and has negative diagonal elements such that D0 + D1 is
the infinitesimal generator of the underlying CTMC that modulates
the active state.

Formulating the HMM as a MAP(J) has the advantage that one
can use a Markov model with a space of J < K states to jointly
describe all PH-type probability distributions Fk(t), whereas in the
general case discussed so far one may need to maintain a detailed
description of each of the K distributions Fk(t). This is because
one can associate class membership to activation of a certain transi-
tion of D1, thus the number of classes that can be represented with
a MAP grows quadratically with the state space size J . Even more
importantly, a MAP description allows to use existing fitting tech-
niques for MAPs to automatically derive the workload model [1].
This greatly widens the applicability of CWS by providing a way
to use existing results for Markovian workload fitting to define the
workload model W .

Within the MAP modeling description, we may reformulate the
forward-backward formula for job size expectations (4) as follows.
We have that the first moment matrix of a MAP is M1 = (−D0)−1

254

and we observe that the definition of history matrix immediately
implies that

H i(m) =

(
(−D0)−1D1, if � m′ < m : CWS(m′) = i;

eD0tiD1, otherwise,

that is equivalent to3

P = (−D0)−1D1 (5)

C(ti) = eD0tiD1 (6)

where the matrix exponential function is4

eD0ti =
∞X

k=0

(D0ti)
k

k!
(7)

The above expression allows a reformulation of (4) using an ef-
ficient implementation based on MAPs in the case of continuous
distributions with unbounded support. To the best of our knowl-
edge, such a case has been tackled in HMMs for Gaussian and log-
concave distributions [17], but has not been addressed for general
PH-type distributions.

3.3 CWS Scheduling Algorithm
As observed in Definition 1, for each scheduling decision CWS se-

lects the job with the minimum expected size as inferred from cor-
relations and observed sizes of past served jobs. This expectation
is computed by CWS using W and the formula in Proposition 1.
After completing the newly scheduled job j, the history matrix
H j(m) is changed from P to C(tj). Thus the next scheduling
decision is performed in a similar manner, but with different con-
ditional job size expectations because of the change in Hj(m).
When all n jobs have been served the algorithm completes exe-
cution. Details about the implementation of CWS are discussed
below.

For each of the n scheduling decisions, computing the expected
job sizes E[Sj |m] for a workload of size n with K classes has a
computational requirement of O(nK2) operations due to the ma-
trix products and O(nK2) space due to storing the Hj(m) ma-
trices in main memory. Thus the overall cost of scheduling is
O(n2K2) in time and O(nK2) in space. However, a more memory-
efficient implementation of (4) can be obtained by storing n vectors
lj and rj in place of the H j(n) matrices. Such vectors summarize
the history of jobs with indexes before and after job j. These vec-
tors have length K and are given by

lj = π
Qj−1

i=1 H i(m), rj =
Qn

i=j+1 H i(m)1,

for all j = 1, . . . , n. It is immediate to see from Proposition 1 that

E[Sj |m] =
ljM1rj

ljP rj
. (8)

Note also that both vectors can be computed on-the-fly without the
need of storing the H j(m) matrices.

A pseudo-code summarizing how CWS scheduling works based
on the vectors lj and rj is reported in Figure 2. Note that only the
vectors lj and rj affected by the last served job are updated in the
last two forall cycles. In our notation, if CWS(m) + 1 > n then
3Note that, if Fk(t) is not exponential, P and C(ti) account also
for the different phases that specify the Fk(t) distribution.
4The matrix exponential is implemented efficiently in several soft-
ware packages, e.g., as the expm function in MATLAB. In ad-
hoc implementations, it may be computed in several way, e.g., by
truncation of (7) or by spectral methods using the eigenvalues and
eigenvectors of D0ti.

the cycle for j = CWS(m) + 1, CWS(m) + 2, . . . , n is skipped,
the case where CWS(m) < 2 in the other cycle is treated similarly.
Note also that, for large K, storing the vectors lj and rj instead
of the Hj(m) matrices provides substantial memory savings since
the storage complexity grows in this way only as O(nK). We also
remark that, for large n and depending on the numerical values of
the matrices, numerical scaling may be needed to ensure that (8)
does not suffer floating-point range underflows or overflows. The
scaling factors used should be taken into account when comparing
the expected sizes of jobs. Additionally, it is often useful to ignore
the denominator of (8) that is identical for all values of j, thus it
does not really affect the CWS decision.

Within a queueing environment, the implementation of CWS is
slightly different from the one described above because of the pres-
ence of an arrival process. In this case, the number of jobs n in
the system varies over time. CWS uses an estimation window of
W jobs such that only the expected sizes of unserved jobs between
position j0 and j0 + W − 1 are considered for scheduling, where
j0 is the index of the oldest unserved job in the system. If all jobs
in position i < j0 have been served, CWS computes and keeps in
memory the membership vector πj0 for position j0, which is used
in place of the vector π in the formula of Proposition 1. The history
matrices before position j0 are all discarded since πj0 completely
summarizes past system history. When the oldest unserved job in
the system is scheduled for service, j0 is updated to the position of
the second-oldest unserved job and thus the window slides forward.

There are several reasons for adopting a sliding window. On
the one hand, it seems reasonable that practical implementations
of CWS would need to limit the policy’s computational effort: a
window immediately controls the number of times the conditional
expectation in Proposition 1 is evaluated and bounds the maximum
memory occupation. Another reason is that a sliding window W re-
duces the maximum starvation of large jobs in CWS. Finally, when
the distance between the occurrences of jobs increases beyond a
certain point, the correlation between job sizes becomes infinites-
imal, so job sizes may be treated as independent for any practical
use.

3.4 Illustrative Example
We illustrate the CWS scheduling algorithm using a case study.

We consider a synthetic workload consisting of 65 jobs with sizes
randomly generated using the model W , see Figure 4(a). The work-
load model consists of K = 3 job size classes with transition prob-
abilities

P =

0@0.90 0.10 0
0 0.80 0.20

0.10 0 0.90

1A .

For simplicity, the job size distributions are all deterministic such
that the job sizes are Sj = 0.5 for jobs of class 1, Sj = 1 for class
2, and Sj = 2 for jobs of class 3. According to these values and the
transition probabilities in P , the workload model W has jobs sizes
with mean E[S] = 1.2 and coefficient-of-variation CV = 1.28.
Because of the randomness of the sampling process, some dis-
crepancy exists between the sample workload and the workload
model W : the empirical class membership probabilities for a job
are (0.35, 0.40, 0.25) against the stationary value (0.40, 0.20, 0.40)
of W . As we show in the example, since CWS cannot antici-
pate the empirical distribution, it is slightly more aggressive than
needed because it expects in the workload 0.40 percent of class 3
jobs which have large size. As a result, it makes some precaution-
ary scheduling decisions that differ from a FCFS rule in order to
avoid serving the large jobs. We henceforth refer to these changes
of scheduling order with respect to FCFS as “jumps”. Concerning

255

CWS Scheduling Algorithm
/* initialize */
l1 = π;
rn = 1;
forall jobs j = 2, . . . , n − 1

lj = lj−1P ;
forall jobs j = n, . . . , 2

rj−1 = P rj ;
/* start scheduling */
forall scheduling decisions m = 1, . . . , n

/* compute expected job sizes */
forall jobs j = 1, . . . , n

E[Sj |m] = +∞;
if job j has not been served

compute E[Sj |m] according to (8);
/* scheduling decision */
mth decision: CWS(m) = minj E[Sj |m]
serve job CWS(m) and call its size tCWS(m);
/* update conditional prob. based on observed size */
forall jobs j = CWS(m) + 1, CWS(m) + 2, . . . , n

lj = lj−1C(tCWS(m));
forall jobs j = CWS(m),CWS(m) − 1, . . . , 2

rj−1 = C(tCWS(m))rj ;

Figure 2: CWS scheduling algorithm.

the empirical transition probabilities, these are as follows

eP =

0@0.86 0.14 0
0 0.88 0.12

0.25 0 0.75

1A ,

which for the first two classes are close to the values in P , while
they have an error of about 15% on the transition probabilities of
the third class. By showing that CWS performs well in this exam-
ple, we provide intuition that it can leverage in an effective way the
correlation information that is available from W and correlation
estimates do not need to be extremely accurate to achieve good
scheduling results.

The execution of the CWS algorithm is illustrated in Figure 3.
The figure is a collection of four diagrams illustrating the value of
the expected (white) and observed (black) job sizes as a function of
the scheduling decision number m ∈ {3, 15, 30, 45}. The white
bars represent size estimates of jobs that have still to be served,
black bars summarize past history. The white bars are the values of
the expected job sizes E[Sj |m] at the time of the mth scheduling
decision; the black bars, instead, are the exact job sizes observed
after the job in the corresponding position has been served. Note
that the heights of the white bars change over time because the
estimate E[Sj |m] is updated after each decision. Each diagram in
Figure 3 includes a horizontal line, jobs bigger than this threshold
belong all to the large class 3.

The top Figure 3(a) represents the first two scheduling decisions
of CWS. At the time of the first scheduling decision, CWS has
no specific information about the jobs in the system and thus de-
cides to serve the first job. This is completed after S1 = 2 units
of time and hence it is recognized to be a long job of class 3. The
second decision is to schedule the job j = 19. It can be shown
that this position minimizes the expectation E[Sj |S1 = 2] since
there is minimal correlation with the last served job that is large.
Moreover, it is an effective decision because, from P , the num-
ber of consecutive large jobs in W follows a geometric distribution
with mean 9 and standard deviation about 9, thus after 18 jobs the

job index

jo
b

si
ze

(a) job size estimates at the time of the 3rd decision

0 10 20 30 40 50 60
0
1
2

job index

jo
b

si
ze

(b) job size estimates at the time of the 15th decision

0 10 20 30 40 50 60
0
1
2

job index

jo
b

si
ze

(c) job size estimates at the time of the 30th decision

0 10 20 30 40 50 60
0
1
2

job index

jo
b

si
ze

(d) job size estimates at the time of the 45th decision

0 10 20 30 40 50 60
0
1
2

Figure 3: Intermediate steps of CWS execution on the case study.
Legend: � = expected job size (i.e., E[Sj |m]), � = observed job size
(i.e., Sj), − is the mean job size (i.e., E[S] = 1.2).

median behavior is to be out of the long burst. Note that the ex-
pectation E[Sj |S1 = 2] is not the one shown in Figure 3(a) which
refers to the third decision, but is the expectation after the first de-
cision, which is indeed different from Figure 3(a) because it is not
yet known that the job j = 19 is small.

In Figure 3(b), after scheduling the job in position j = 19, this
is found to be a small job and the algorithm performs the next 15
scheduling decisions by first exploring the area j < 19 surrounding
the small job found and then jumping away when a large job is
found in position j = 8. Here, the algorithm does not evaluate
positions j < 8, which should contain large jobs, and decides not
to explore further the surroundings of j = 20 which may contain a
large job of class 3 too. In addition, the size minimization is more
effective if class 1 jobs can be found rather then continuing to serve
class 2 jobs near j = 20. Thus, a jump is done to j = 49 which
again minimizes the job size expectation. Note that the jump is
longer than in the early selection of the job j = 19 because a larger
jump is needed to avoid the upcoming class 2 and class 3 jobs in
the surroundings of j = 20, whereas for the initial jump to j = 19
only the class 3 jobs had to be avoided.

In Figure 3(c), CWS has performed fifteen additional decisions,
which have involved initially the area around j = 50. When a
large job is found in position j = 47, CWS jumps back to j = 20
and proceeds up to position j = 31. In Figure 3(d), after reaching
position j = 35, another large job is found and CWS jumps back to
the area of j = 50 from which, after finding at j = 55 another long
job, it jumps again to the end of the sequence where a sequence
of small jobs is served. Finally, the residual areas unexplored in
Figure 3(d) are evaluated with several jumps. As we can see from
Figure 4(a), these areas have the highest density of large jobs and
it is a good outcome of the CWS scheduling that these areas are
served last. It is also interesting to note that existing scheduling
policies such as FCFS, LCFS, or RAND would have all failed in

256

job index

jo
b

si
ze

(a) case study workload (65 jobs)

0 10 20 30 40 50 60
0
1
2

scheduling decision

jo
b

si
ze

(b) result

0 10 20 30 40 50 60
0
1
2

Figure 4: Case study of a workload with 65 jobs sampled from three
classes with deterministic distribution and means 0.5, 1, and 2. The
horizontal line in figure (a) is the mean job size E[S] = 1.2.

completing early the area 9 ≤ j ≤ 33 which contains the largest
amount of jobs with size less than the mean. Instead, CWS has
been able to perform the useful first jump to the position j = 19 by
evaluation of the transition probabilities P and, additionally, has
leveraged this good position to serve the local group of small jobs.

The figures should be related to the two diagrams in Figure 4
which show the original job size sequence in Figure 4(a) and the
same sequence reordered after CWS scheduling in Figure 4(b).
Note immediately from Figure 4(b) that CWS is extremely effec-
tive, since most of the large jobs are served at the end of the se-
quence. It is also important to see that occasional mistakes, where
a long job is scheduled before a small job, are not followed imme-
diately by another error. Thus, the example illustrates the ability of
CWS of detecting and serving small jobs in the workload.

4. LIMITING CASES
To investigate the behavior of CWS, we first consider a simple

set of limiting cases that illustrate if CWS meets some basic fea-
tures that are desirable under correlated workloads. In particular,
we give a theoretical treatment, whereas in Section 5 we analyze
CWS by simulations over a variety of workloads. Note that the
limiting cases considered here are sufficiently simple to enable an-
alytical tractability which is generally unfeasible for history-based
methods, since the number of possible system histories that affect
the present decisions grows exponentially with the workload size.

Methodology
For ease of interpretation, we consider workloads with jobs of two
classes: small (s) and large (l). In addition, we assume that the
two classes are fully disjoint, i.e., a job size t is uniquely mapped
either to the small or to the large class; fully disjoint classes may
be defined by cutting the cumulative distribution function of the
measured job sizes in two halves and assigning each part to a dif-
ferent class. Given this constraint, the distribution function Fk(t),
k ∈ {s, l}, of each class can be arbitrary. We provide a character-
ization based on the following three limiting cases which illustrate
desirable features of scheduling under correlated workloads.
Avoidance Test. The test considers a group of nl consecutive large
jobs inserted in a workload of ns = n − nl small jobs. Thus
this benchmark estimates if a scheduling policy can avoid serving
large jobs when these appear in groups. The large jobs occupy the
positions l +1, l +2, . . . , l +nl, where the location parameter l is
a discrete uniform random variable taking values in 0, 1, . . . , ns.
Seeking Test. The test is dual to the avoidance test: large jobs are
replaced by small jobs and vice versa. Thus this benchmark esti-

mates if a scheduling policy can find quickly groups of ns contigu-
ous small jobs immersed in a workload of nl = n − ns large jobs.
Note that for ns = nl the seeking test is still different from the
avoidance test because in the former there is always a single con-
tiguous group of long jobs, while in the latter long jobs are in two
groups spaced by the ns short jobs.
Pattern Test. The benchmark evaluates how a policy leverages on
patterns in the workload. The workload includes nl large jobs
which appear deterministically with frequency 1/T . The first large
job appears in position l equilikely in 0, . . . , ns, where ns = n−nl

is the number of small jobs.
Average performance is evaluated using the mean number of

errors ε and compared with the results of SEPT, FCFS, LCFS,
and RAND. We point to Section 3.2 for a compact description of
SEPT. The mean number of errors stands for the number of large
jobs scheduled when one or more jobs belonging to the short class
remain in the system and provides clear evidence of the accuracy
of the scheduling in a way that is insensitive to the variability of
the workload, thus it is representative of workloads with different
levels of variability.

Avoidance Test
Consistently with the test assumptions, we consider for CWS a
basic workload model W2 with two job size classes where

P =

»
ps 1 − ps

1 − pl pl

–
, Q(t) = diag(Fs(t), Fl(t))P .

The distribution of the small and large states is fully disjoint and has
means Ms and Ml, respectively. Since in the avoidance test long
jobs appear in groups, we assume a parameterization of CWS with
positive correlations between job sizes, which can be shown to be
equal to imposing pl + ps > 1.

THEOREM 1. In the avoidance test, for a workload of n jobs
among which ns small and nl large, CWS makes on average

εCWS =
ns

1 + ns
< 1, (9)

errors, where the metric is averaged on all possible values of the
location parameter l.

PROOF. We analyze the chain of decisions using spectral de-
composition on the P matrix, see [19] for an overview. In the case
of a model with two states, we recall that, P being a transition prob-
ability matrix, it is P j = (1−σj)1π+σjI , where σ = ps+pl−1
is the smallest eigenvalue of P and I is the identity matrix of order
two. Since CWS has positive correlations, it is 0 < σ < 1.
Analysis of decision m = 1. The expected job sizes are clearly
E[Sj |1] = E[S], for all indexes j.Thus, all jobs have initially the
same expected size and CWS selects j = 1 by Definition 1.
Analysis of decision m = 2. We have

E[Sj |2] =
π2P

j−2M1P n−j1

π2P
n−11

,

where π2 = πC(t1).

π2 = πC(t1) =

»
πsps πl(1 − psl)

0 0

–
if the first job is small and

π2 = πC(t1) =

»
0 0

πlpl πl(1 − pl)

–

257

otherwise. By spectral decomposition on P j−2 it is

E[Sj |2] =
π2(1π + σj−2(I − 1π))M11

π21

= (1 − σj−2)E[S] + σj−2 π2M11

π21
,

where we used that π21 = 1, π2 being a conditional distribution.
Observing that π(1− σ) = ((1− pl), (1− ps)), we conclude that
if the size of the first job t1 is small then

π2M11

π21
= psMs + (1 − ps)Ml,

which is less than E[S] whenever σ > 0. Thus E[Sj |2] is mini-
mized for j = 2 which is the second decision. For t1 large, instead,

π2M11

π21
= (1 − pl)Ms + plMl.

which is larger than E[S] whenever σ > 0. Thus, if t1 is large
E[Sj |2] is minimized for j = n which is the second decision.

Analysis of the decisions m = 3, . . . , l+1 when t1 is small. The
intermediate steps of the recursion proceed similarly since, after
serving the mth small job, m ≤ l, it is always the case that

E[Sj |m] = (1 − σj−m)E[S] + σj−m(psMs + (1 − ps)Ml)

which makes E[Sj |m] minimal by the choice j = m.
Analysis of the decision m = l + 2 when t1 is small. When

CWS finds a large job in position l + 1, the following decision
leverages on the information carried by the error. In this case it is
easy to verify that

πmM11

πm1
=

πm−1C(tm)M11

πm−1C(tm)1
= (1 − pl)Ms + plMl,

which makes E[Sj |m] minimal by the choice j = n. Thus, CWS jumps
to the farthest position j = n.

Analysis of the decisions m = l + 3, . . . , n when t1 is small.
If n − nl − l ≤ nl then only large jobs are left to be served and
the algorithm has served the workload without errors. Otherwise,
another small job is found and we have the job size expectation

E[Sj |m] =
π

Ql
i=1 C(ti)C(tl+1)P

j−l−2M1P n−j−1C(tn)1

π
Ql

i=1 C(ti)C(t2)P
n−l−2C(tn)1

Using again spectral decomposition we get

E[Sj |m] = (1 − σj−l−2)(1 − σn−j−1)A + σn−l−3D

+ (1 − σj−l−2)σn−j−1B + σj−l−2(1 − σn−j−1)C,

where the terms A, B, C, and D are immediately given by the inter-
mediate products of the matrices 1π and I in the spectral decompo-
sition and from the expressions of C(·), M1, and P . In particular,
it is easy to show from these expressions that A > C > B ≥ 0.
Let now f(j) be the continuous version of E[Sj |m] for real values
of j ∈ [l + 2, n − 1]. Taking the second derivative it is found that
this lies in

f ′′(j) ∈ [(A − B)f∗, (A − C)f∗],

where f∗ = −(log σ)2(σn−j−1 + σj−l−2), where both extremes
are negative values if 0 < σ < 1. Thus, f ′′(j) < 0 for all js and
noting that on the extremes of the range of definition of E[Sj |m] is

f(l + 2) − f(n − 1) = (1 − σn−l−3)(C − B) > 0

we conclude that f(l + 2) > f(n − 1) and the minimum expected
job size is located always on j = n − 1; since this is an integer

Avoid. SEPT CWS FCFS/LCFS RAND
n nl ε E[R] ε E[R] ε E[R] ε E[R]
10 2 0.0 35 0.9 75 1.8 114 1.8 115
10 5 0.0 154 0.8 179 4.2 278 4.3 278
10 8 0.0 362 0.7 372 5.3 441 3.0 440
100 20 0.0 258 1.0 298 19.8 1050 19.7 1050
100 50 0.0 1313 1.0 1338 49.0 2550 49.1 2550
100 80 0.0 3258 1.0 3268 76.2 4050 76.9 4050

Table 2: Avoidance test results for different values of the workload
length n and of the number of large jobs nl. The number of errors
ε and the mean response time E[R] are averaged on different values
of the location parameter l which are assumed equilikely. In the ex-
periments, the mean value of job sizes are Ms = 1 for small jobs
and Ml = 100 for large jobs and class distributions are determinis-
tic. RAND results are averaged over one thousand experiments.

value, the same consideration applies also to E[Sj |m]: thus, the
decision m = l + 3 is to select the job j = n − 1.

The same approach applies identically to the remaining deci-
sions, since the above quantities A, B, C, and D are all subse-
quently scaled by a πs constant after each scheduling decision and
thus CWS always continues to serve the remaining job from the tail
of the workload. This proves that the small jobs left are all served
before the large ones and concludes the case where t1 is small.

Analysis of the decisions m = 3, . . . , l+1 when t1 is large. The
proof is identical to the case m = l + 2, . . . , n when t1 is small.

Average number of errors. According to the above observations,
it is immediately found that the number of errors is 0 if l = ns,
which has probability (1 + ns)

−1, and 1 otherwise; this gives the
expectation εCWS = ns/(1 + ns).

A quantitative example of the avoidance test is given in Table 2
on models with Ms = 1, Ml = 100, and workload length n =
10, 100. Results are obtained by running the different algorithms
on the avoidance test workloads, results for FCFS and LCFS are
identical and therefore shown in a single column. The exact formu-
las in Theorem 1 correctly predict the CWS results.

There are two considerations that arise from this test: (a) as
shown in the proof of Theorem 1, CWS makes at most 1 error to
detect exactly the position of the long jobs (zero errors are commit-
ted only if l = ns), which confirms that CWS can react perfectly to
the scheduling error by jumping away and without being explicitly
instructed to do so, i.e., the decision is taken only on a statistical
basis. In comparison, the performance of blind methods degrades
remarkably for larger values of n; (b) thanks to the low number of
errors, the response times of CWS are approximately the same as
SEPT. This suggests near-optimality and provides intuition about
the fact that CWS can react effectively to scheduling errors.

Seeking Test
We consider the more challenging seeking test that estimates the
capability of CWS of finding regions with short jobs. While the
avoidance test is used to show that the algorithm reacts quickly
to erroneous scheduling of long jobs, the seeking test shows how
quickly the reaction takes to find short jobs. Intuitively, this is a
much more difficult test because it is a measure of the cumulative
knowledge of the algorithm on the entire workload. To help com-
parison, we use the same workload model W2 considered in the
avoidance test.

THEOREM 2. In the seeking test, the number of errors made by
CWS grows as O(n/ns).

258

Seeking SEPT CWS FCFS/LCFS RAND
n nl ε E[R] ε E[R] ε E[R] ε E[R]
10 2 0.0 35 1.0 114 1.0 114 1.3 114
10 5 0.0 154 2.0 238 2.5 278 3.5 278
10 8 0.0 362 3.0 418 4.0 441 5.2 442
100 20 0.0 258 2.7 414 10.0 1050 19.7 1051
100 50 0.0 1313 2.9 1432 25.0 2550 48.9 2550
100 80 0.0 3258 4.6 3340 40.0 4050 76.2 4050

Table 3: Seeking test results for different values of the workload length
n and of the number of small jobs ns. The experimental methodology
is similar to the avoidance test.

Pattern SEPT CWS FCFS/LCFS RAND
n T ε E[R] ε E[R] ε E[R] ε E[R]
10 2 0.0 154 0.5 179 4.5 278 5.0 278
10 5 0.0 362 2.0 402 6.0 441 5.6 441
10 8 0.0 429 3.5 465 5.3 482 6.5 482
100 20 0.0 4565 9.5 4612 85.5 4800 69.6 4802
100 50 0.0 4853 24.5 4902 73.5 4950 74.8 4950
100 80 0.0 4926 39.5 4968 59.3 4988 48.4 4987

Table 4: Pattern test results for different values of the workload length
n and of the period T . The experimental methodology is similar to the
avoidance test.

PROOF. The proof is reported in the technical report [4].

Results for the same examples considered in the avoidance test
are given in Table 3. The results shown are again computed by ex-
ecuting the different algorithms on the seeking test workloads: it is
easy to verify that the growth in the number of errors in Table 2 fol-
lows the theoretical O(n/ns). Similarly to the avoidance test, the
number of errors scales much better in CWS than in the other size-
blind policies as the number of jobs increases, yet it is interesting
to note that CWS is not very different from the other algorithms
if the number of jobs is small (n = 10). It seems possible to ex-
plain this fact by arguing that if there are few large jobs, then the
performance gain can be limited, as confirmed by the fact that for
nl = 8 the CWS results are better than for nl = 2. Consistently
with this observation, in the harder case n = 100, both the num-
ber of errors and the response time are very good approximations of
SEPT performance and much better than size-blind methods. Note
in particular that n/ns is roughly equal to the mean number of er-
rors that RAND makes before finding the first small jobs, but is also
approximately the total number of errors of CWS. This illustrates
that CWS does not perform a scheduling decision randomly, but in-
stead operates smartly according to information collected from the
correlations. From the proof of the approximation in Theorem 2 it
also emerges that CWS performs essentially a divide-and-conquer
search that at each step divides by two the maximum size of an
undetected region of small jobs. This approach is intuitively very
effective for early detection of large groups of small jobs.

Pattern Test
The performance of CWS in the pattern test shows a case where the
algorithm is extremely efficient in exploiting the dependence struc-
ture, but inferring the actual structure of the flow is much harder
than exploiting the correlations.

THEOREM 3. If large jobs are spaced by T small jobs, there ex-
ists a non-fully-disjoint workload model WT such that CWS makes
on average εCWS = (T − 1)/2 errors.

PROOF. Consider a workload model WT with T classes, where
the first T −1 classes have identical large job distribution Fl(t) and
the last class has the small job distribution Fs(t). Define a prob-
ability matrix P such that pk,1+mod(k,T) = 1.0, then it is trivial
to see from Proposition 1 that, after the first small job is found by
CWS, then the algorithm knows deterministically from P where
the other small jobs are located and hence schedules them first with-
out errors because their expectation is always smaller than the other
jobs. However, if the first scheduled job is large, the algorithm has
still to determine the currently active state in WT when the first job
was generated. Noting that any job in position j > 1 cannot be
more probable of being small than the job in position j = 2 due
to the identical values of the probabilities in P , we conclude easily
that CWS works in a FCFS-like fashion until the first small job is
found which takes exactly l decisions. Thus the number of errors
is always l and averaged on l = 0, . . . , ns gives immediately the
formulas of εCWS.

The results in Table 4 compare the pattern test performance of
the different scheduling policies. The table is given as a function
of T which is proportional to the number of large jobs nl. The
number of errors ε grows in the pattern test with a linear trend with
respect to the period T . This increased difficulty with respect to
the other tests is given by the fact that the workload model WT

defined in the proof of Theorem 3 has T states which make the
estimation of the state from which a job has been sampled harder
than in W2. This is because the model is not fully disjoint as W2 and
illustrates the increased difficulty of defining the job size classes
as overlapping in terms of job size distribution. However, from
the proof of Theorem 3 it still emerges clearly that CWS has no
difficulty in dealing with the correlations.

5. SIMULATION RESULTS
We have also studied the performance of CWS in queueing en-

vironments using simulation with an estimation window size of
length W = 104. We compare the following policies: CWS,
FCFS, LCFS, and SEPT. FCFS and LCFS are expected to be
pessimistic bounds on the average performance of CWS. SEPT is
instead an optimistic bound on the achievable performance because
of its exact a priori knowledge of job class memberships which are
instead inferred probabilistically by CWS. The purpose of the ex-
periments in this section is to evaluate whether CWS can approach
the performance of a method like SEPT, which relies on exact in-
formation about the workload.

We simulate a M/G/1 queue using no less than two million
samples in each experiment, in heavy load experiments we increase
the sample space up to ten million values. For each simulation, the
service process is drawn from a K state workload model where the
job size distribution of each state is exponential. In order to con-
sider the problem in its full generality, the classes are not fully dis-
joint, i.e., an observed job size t is not uniquely assigned to a single
class, thus job size tracking is harder than in Section 4. Through-
out the experiments, we vary the squared coefficient-of-variation
of service times in SCV = 3, 9, 20; mean inter-arrival and service
times are scaled in order to examine the system performance under
different utilization levels, i.e., ρ = 0.5 and ρ = 0.8 which rep-
resent medium and heavy loads, respectively. We have also tested
with ρ = 0.2, but in such light load conditions the gap between
FCFS, LCFS, and SEPT is often very small which makes it dif-
ficult to motivate the need for specialized policies for correlated
workloads.

To study the sensitivity of the different scheduling techniques to
the workload structure, which in addition to the moments depends

259

on the number of workload classes K and on the type of correla-
tion considered (e.g., positive or negative decay rates), we consider
two illustrative case studies. In the first case study, the workload
has K = 2 classes and we assume a geometric decay rate of cor-
relations denoted by σ. For K = 2 it can be shown that σ is the
second largest eigenvalue of P . In the experiments, such decay
rate is varied in σ = 0, 0.1, . . . , 0.9; we do not consider σ = 1
or close values because these are often degenerate cases where all
job sizes in the queue are for extended period of time only large
or only small which makes scheduling ineffective. Note also that
σ = 0 corresponds to the case where there are no correlations in
the workload, thus CWS is expected to behave as FCFS.

In the second case study, we set K = 3 and thus consider three
different workload classes. This choice provides a much more ex-
pressive family of correlation structures, where the autocorrelation
function simultaneously depends on two decay rates σ1 and σ2,
which are eigenvalues of P . This is important because it allows to
describe processes with high variability and both positive and neg-
ative decay rates which are found in real systems, see for instance
the game console READ workload in [18, Fig. 7]. To simplify
comparison with the case K = 2, we set σ = σ1 = −σ2, and
explore the same range of values σ = 0, 0.1, . . . , 0.9 considered
in the first case study. Note that mixtures of negative and positive
correlations provide a much harder stress case than K = 2 which
for high correlations is often close to a workload with ON/OFF be-
havior.

Experimental Results: K = 2 Workload Classes
Figure 5 depicts the speedup of CWS, SEPT, and LCFS relatively
to FCFS, i.e., the ratio of mean response times under FCFS to
the mean response time under the policy being evaluated. We use
FCFS as a baseline since in all considered experiments FCFS per-
formance is worse than for the other disciplines. Mean response
times are simulated for different utilization, correlation, and vari-
ability levels. Our results indicate that increasingly large correla-
tions tend to degrade the system performance under all policies, es-
pecially under high-variability and heavy-load utilization. Details
about the relative performance of the different methods are given
below.

SEPT provides speedups less than 1.6 for SCV = 3, however
as the variability increases the speedup grows considerably to more
than 7.0 for SCV = 20 and utilization 0.8. Furthermore, SEPT
is much better than the other methods for low correlation values,
where CWS and LCFS converge to FCFS average performance
(speedup 1.0).

LCFS provides remarkably good improvement over FCFS in
many cases. In particular, it is observed that LCFS performance is
maximized when the correlation decay rate is 0.9, although small
deviations are observed for SCV = 3, where nevertheless the three
scheduling techniques perform quite closely in the high-correlation
case. This seems to suggest that LCFS may be effective for traces
with long burst durations, i.e., with ON/OFF behavior, but its per-
formance rapidly degrades in absence of large bursts in the work-
load. In spite of the good performance of LCFS compared to
FCFS, it is found that CWS can be even 200% faster than LCFS
under medium/high correlations.

CWS provides very good results under medium and high corre-
lations. In such cases, CWS is extremely close to SEPT under high
correlations and it is by far the best technique also under medium
correlations, showing that inference can be effective also without
the need of strong burstiness. Clearly, low correlations make the
inference from observed job sizes progressively more difficult and

less informative, thus the reduced performance of CWS in such
cases appears unavoidable.

We further investigate in Figure 6 the complementary cumula-
tive distribution function (CCDF) of the response times for differ-
ent variability levels and for fixed correlation decay rate σ = 0.6.
The graphs show that for most jobs the smallest response time tail is
under FCFS and SEPT scheduling. In particular, SEPT provides
the best response times for the distribution body and it does not
show a significantly different distribution tail compared to FCFS.
This effect is consistent across all three experiments in Figure 6.
CWS and LCFS have instead longer tails of response times than
FCFS and SEPT. The results indicate that LCFS is far more ag-
gressive than CWS in delaying jobs. Note that in this experiment
the average response time of LCFS is about 40% slower than for
CWS, thus this increased unfairness is not justified by better mean
performance.

Experimental Results: K = 3 Workload Classes
Figure 7 illustrates experimental results for the workload with K =
3 classes and positive and negative decay rates. Similarly to the
high-variability cases for K = 2, SEPT has a large speedup over
FCFS that is again maximized for the largest absolute decay rate
value σ. CWS performs slightly less accurately than for K = 2,
in particular for medium/high values of σ. This is expected due to
the increased workload complexity that makes inference of class
memberships harder than with 2 classes. However, the results in-
dicate that CWS provides strong performance across a wide range
of correlations and it is again the method of choice in absence of
exact a priori information. The performance of LCFS appears de-
graded for SCV = 20 compared to the case K = 2 and indicates
that LCFS performance may decrease as the structure of the corre-
lations becomes more complex.

6. RELATED WORK
CWS prioritizes jobs that are expected to be short based on in-

formation obtained from past scheduling history and on the HMM
workload model W . Policies which possess features similar to
CWS have been investigated in recent work, both within the scope
of independent and correlated workloads, this section gives a com-
parative analysis of these methods with respect to CWS.
Policies for independent workloads. Scheduling policies that fa-
vor short jobs, such as SRPT, have been found not to penalize
large jobs too much [22] and are very effective because large jobs
significantly degrade the tail of response times in queueing envi-
ronments [2]. Starting from these observations, new scheduling
approaches which prioritize short jobs based on exact job size in-
formation have been recently investigated, such as the fair share
protocol (FSP) [9]. However, because exact information can be
hard to obtain in certain settings, current research is trying to de-
fine new classes of policies that do not need exact values. These in-
clude the recently-defined ε-SMART policies [23], the class-based
SRPT approximation in [12], or SEPT and WSEPT which sched-
ule jobs based on size class expectations [15, 20]. Compared to
these policies, CWS shares the goal of favoring short jobs based
on partial information about job sizes. Because of the use of ex-
pectations, CWS may be seen as a broad generalization of SEPT
where conditional job size distributions are inferred. A limitation
is that CWS is non-preemptive, thus it is not possible to consider
remaining processing times.
Policies for correlated workloads. To the best of our knowledge,
very few general scheduling results exist for correlated workloads.
Some authors have explicitly attributed this lack to the extreme
difficulty in developing effective policies for models with depen-

260

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.2

1.4

1.6

correlation decay rate

sp
ee

du
p

(b
as

el
in

e
F

C
F

S
)

scv = 3, utilization = 0.50

LCFS
CWS
SEPT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.5

2

2.5

correlation decay rate

sp
ee

du
p

(b
as

el
in

e
F

C
F

S
)

scv = 9, utilization = 0.50

lcfs
cws
sept

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

correlation decay rate

sp
ee

du
p

(b
as

el
in

e
F

C
F

S
)

scv = 20, utilization = 0.50

lcfs
cws
sept

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.2

1.4

1.6

1.8

correlation decay rate

sp
ee

du
p

(b
as

el
in

e
F

C
F

S
)

scv = 3, utilization = 0.80

lcfs
cws
sept

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

4

correlation decay rate

sp
ee

du
p

(b
as

el
in

e
F

C
F

S
)

scv = 9, utilization = 0.80

lcfs
cws
sept

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

correlation decay rate

sp
ee

du
p

(b
as

el
in

e
F

C
F

S
)

scv = 20, utilization = 0.80

lcfs
cws
sept

Figure 5: K = 2 workload classes: comparison of CWS, LCFS, and SEPT speedup over FCFS for different utilizations, autocorre-
lation decay rates, and variability levels. The estimation window size is W = 104.

dence [3]. In [3], the authors also prove sub-optimality bounds
for normally distributed job sizes under equicorrelation conditions.
Dependence among jobs in scheduling has been mostly explored
in a deterministic setting focusing on graph-based precedence con-
straints [5]. From a practical perspective, however, correlations are
accounted in several applications. The approach in [21] defines
a scheduling strategy for broadcast systems which uses first-order
correlations between data items. In [13], a frame-level model of
variable bit rate (VBR) streams is obtained which describes correla-
tions by the recursive TES method [11]. In [25] an online real-time
energy-aware scheduling model is presented which can account for
job covariances and is solved by optimization methods. Compared
to these works, CWS can be cheaper computationally, but most
importantly it is application-independent.

7. CONCLUSION
We have presented CWS, a scheduling technique that favors

short jobs based on job size predictions obtained from a HMM
workload model and past scheduling history. We have shown by
simulation that CWS can often approximate effectively SEPT, which
assumes exact a priori knowledge about the workload. Further,
in presence of correlated workloads CWS performance is signif-
icantly better than for policies such as FCFS or LCFS. Simulation
results show that there exist several correlation levels where the
CWS algorithm is very effective and occasionally nearly optimal.
Such results are also confirmed on fixed-size workloads where we
have characterized CWS performance using analytical expressions.

Several extensions of this work are possible. A generalization
of CWS to the preemptive case appears possible, although the im-
pact on computational costs should be assessed. Further work is
also needed to establish if metrics other than size expectation exist

that can help in scheduling correlated workloads. Finally, it would
be useful to develop techniques for online adaptation of the HMM
workload model.

Acknowledgement
This work was supported by NSF grants CCF-0811417 and CCF-
0937925 and by the Imperial College Junior Research Fellowship.
The authors thank the anonymous referees for helpful suggestions
that improved the experimental part of this paper.

8. REFERENCES
[1] A. T. Andersen and B. F. Nielsen. A Markovian approach for

modeling packet traffic with long-range dependence. IEEE JSAC,
16(5):719–732, 1998.

[2] S. C. Borst, O. J. Boxma, R. Núñez Queija, and A. P. Zwart. The
impact of the service discipline on delay asymptotics. Performance
Evaluation, 54(2):175–206, 2003.

[3] R.J. Boys, K.D. Glazebrook, and C.M. McCrone. Single machine
scheduling when processing times are correlated normal random
variables. European Journal of Operational Research, 102:111–123,
1997.

[4] G. Casale, N. Mi, E. Smirni. CWS: a Model-Drivel Correlated
Workload Scheduler. Technical Report WM-CS-2010-05, College of
William and Mary, Department of Computer Science, 2010.

[5] J. R. Correa and A. S. Schulz. Single machine scheduling with
precedence constraints. Technical Report MIT Sloan Working Paper
No. 4499-04, Massachusetts Institute of Technology (MIT) - Sloan
School of Management, August 2004.

[6] A. Erramilli. Performance impacts of self-similarity in traffic. In
Proc. of joint ACM SIGMETRICS/IFIP Performance, pages
265–266, New York, NY, USA, 1995. ACM.

[7] D. G. Feitelson. Workload Modeling for Computer Systems
Performance Evaluation. Online preprint, Jun 2008.

261

10
−2

10
0

10
2

10
4

10
−6

10
−4

10
−2

10
0

response time − x

co
m

pl
em

en
ta

ry
 c

df
 :

1−
F

(x
)

scv=3, utilization = 0.8

cws
fcfs
sept
lcfs

10
−2

10
0

10
2

10
4

10
−6

10
−4

10
−2

10
0

response time − x

co
m

pl
em

en
ta

ry
 c

df
 :

1−
F

(x
)

scv=9, utilization = 0.8

cws
fcfs
sept
lcfs

10
−2

10
0

10
2

10
4

10
−6

10
−4

10
−2

10
0

response time − x

co
m

pl
em

en
ta

ry
 c

df
 :

1−
F

(x
)

scv=20, utilization = 0.8

cws
fcfs
sept
lcfs

Figure 6: CCDF of response times for a network with σ = 0.6 and same utilization and variability levels in Figure 5. The estimation
window size is W = 104.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

correlation decay rate σ

sp
ee

du
p

(b
as

el
in

e
F

C
F

S
)

scv = 3, utilization = 0.80

lcfs
cws
sept

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

correlation decay rate σ

sp
ee

du
p

(b
as

el
in

e
F

C
F

S
)

scv = 9, utilization = 0.80

lcfs
cws
sept

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

correlation decay rate σ

sp
ee

du
p

(b
as

el
in

e
F

C
F

S
)

scv = 20, utilization = 0.80

lcfs
cws
sept

Figure 7: K = 3 workload classes: comparison of CWS, LCFS, and SEPT speedups over FCFS, window size W = 104.

[8] H. Feng, V. Misra, and D. Rubenstein. PBS: a unified priority-based
scheduler. In Proc. of ACM SIGMETRICS, pages 203–214, 2007.

[9] E. J. Friedman and S. G. Henderson. Fairness and efficiency in web
server protocols. In Proc. of ACM SIGMETRICS, pages 229–237,
2003.

[10] A. Heindl. Traffic-Based Decomposition of General Queueing
Networks with Correlated Input Processes. Ph.D. Thesis, Shaker
Verlag, Aachen, 2001.

[11] D. L. Jagerman and B. Melamed. The transition and autocorrelations
structure of TES processes. Stochastic Models, 8:193–219, 1992.

[12] P. R. Jelenkovic, X. Kang, and J. Tan. Adaptive and scalable
comparison scheduling. In Proc. of ACM SIGMETRICS, pages
215–226, 2007.

[13] A. A. Lazar, G. Pacifici, and D. E. Pendarakis. Modeling video
sources for real-time scheduling. Multimedia Systems, 1:835–839,
1993.

[14] W. S. Lovejoy. Computationally feasible bounds for partially
observed Markov decision processes. Operations Research,
39(1):162–175, 1991.

[15] R. H. Möhring, A. S. Schulz, and M. Uetz. Approximation in
stochastic scheduling: the power of lp-based priority policies.
Journal of the ACM, 46(6):924–942, 1999.

[16] R. D. Nelson. The mathematics of product form queuing networks.
ACM Computing Surveys, 25(3):339–369, 1993.

[17] L. R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proc. of the IEEE,
77(2):257–286, 1989.

[18] A. Riska, E. Riedel. Long-Range Dependence at the Disk Drive
Level. Proc. of QEST, 41–50, 2006.

[19] Y. Saad. Numerical Methods for Large Eigenvalue Problems.
Manchester University Press, 1992.

[20] M. Scharbrodt, T. Schickinger, and A. Steger. A new average case
analysis for completion time scheduling. Journal of the ACM,
53(1):121–146, 2006.

[21] W. Uchida, T. Hara, and S. Nishio. Scheduling correlated broadcast
data considering access frequencies with temporal variations. In
Proc. of IEEE NCA, page 89, 2003.

[22] A. Wierman and M. Harchol-Balter. Classifying scheduling policies
with respect to unfairness in an M/GI/1. In Proc. of ACM
SIGMETRICS, pages 238–249. ACM, 2003.

[23] A. Wierman and M. Nuyens. Scheduling despite inexact job-size
information. In Proc. of ACM SIGMETRICS, pages 25–36, New
York, NY, USA, 2008. ACM.

[24] X. Yuan and M. Ilyas. Modeling of traffic sources in atm networks.
In Proc. of SoutheastCon, pages 82–87, 2002.

[25] X. Zhong and C. Z. Xu. Energy-aware modeling and scheduling of
real-time tasks for dynamic voltage scaling. In Proc. of IEEE RTSS,
pages 366–375, 2005.

262

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

