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Abstract

Analyzing the performance impact of temporal depen-
dent workloads on hardware and software systems is a chal-
lenging task that yet must be addressed to enhance perfor-
mance of real applications. For instance, existing matrix-
analytic queueing models can capture temporal dependence
only in systems that can be described by one or two queues,
but the capacity planning of real multi-tier architectures re-
quires larger models with arbitrary topology.

To address the lack of a proper modeling technique for
systems subject to temporal dependent workloads, we in-
troduce a class of closed queueing networks where service
times can have non-exponential distribution and accurately
approximate temporal dependent features such as short or
long range dependence. We describe these service pro-
cesses using Markovian Arrival Processes (MAPs), which
include the popular Markov-Modulated Poisson Processes
(MMPPs) as special cases. Using a linear programming
approach, we obtain for MAP closed networks tight upper
and lower bounds for arbitrary performance indexes (e.g.,
throughput, response time, utilization). Numerical exper-
iments indicate that our bounds achieve a mean accuracy
error of 2% and promote our modeling approach for the ac-
curate performance analysis of real multi-tier architectures.

1 Introduction

Capacity planning of modern computer systems requires
to account for temporal dependent features in workloads,
such as short-range or long-range temporal dependence that
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create burstiness among consecutive requests. Recent mea-
surements in real systems show that temporal dependent
processes can be prevalent in a variety of different settings,
including multi-tier architectures and disk drives [5, 7].
However, there is currently a lack of understanding on how
to quantify performance degradation due to temporal depen-
dence and to counteract its negative performance effects.

Consider, for example, multi-tiered systems, a prevalent
architecture of today’s Web sites. We observed that bursti-
ness in the service process of any of the tiers may result
in very high user response times even if the bottleneck re-
source in the system is not highly utilized, while measured
throughput and utilizations of all other resources are also
modest [5]. When burstiness is not considered, this under-
utilization may falsely indicate that the system can sustain
higher capacities and mislead the capacity management.

In collaboration with researchers at Seagate Research
we built an e-commerce server according to the TPC-W e-
commerce benchmark to identify the presence of temporal
dependence in different tiers of the system. A high-level
overview of the experimental set-up is illustrated in Fig-
ure 1, which also shows the flow of requests. TPC-W de-
fines think times of clients to be exponentially distributed,
implying that there is no temporal dependence due to the
generation of client requests in the system. Burstiness, as
characterized by the autocorrelation function, is nonethe-
less observed in various flows in the system as shown in the
right graph of Figure 1. According to our analysis, the ori-
gin of these bursty flows is the service process in the front
server and is an effect of caching/memory pressure (details
can be found in [5]). Furthermore, because of the closed-
loop nature of the system, burstiness propagates in the flows
of the entire system, severely affecting end-to-end client re-
sponse times. In [5] we built closed queueing network mod-
els to understand the observed behavior of the TPC-W ex-
periments. Figure 2 presents the queueing network that cap-
tures the TPC-W flow of requests in the multi-tiered system.
Figure 3 presents average performance measures obtained
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Figure 1. TPC-W experimental environment (left) and autocorrelation flows in various marked points of the system under the the default browsing

mix with 384 emulated browsers (right).
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Figure 2. A simple queueing model of TPC-W.

from two different parameterizations of the models of Fig-
ure 2 and, to facilitate comparison, also the corresponding
measurements from our TPC-W testbed. The first model pa-
rameterization that explicitly captures temporal dependence
(in terms of autocorrelation) in the front server is shown on
the first row of bargraphs. Model and measurement results
are in excellent agreement. The agreement between model
and measurements diminishes quickly if the same model pa-
rameterization uses uncorrelated processes throughout the
closed system, see second row of bargraphs. That is, ignor-
ing temporal dependence results in severely underestimated
response times and queue lengths as well as overestimated
server utilizations at all tiers.

Starting from these results, we are now investigating
new models and characterization techniques to account for
burstiness in the performance evaluation of multi-tier archi-
tectures. Capacity planning based on product-form queue-
ing networks has been extensively used in the past, since
these models enjoy simple solution formulas and low com-
putational cost of approximation algorithms [4]. However,
modern Web, parallel, and storage systems often exhibit
high variability in their service processes and are therefore
best modeled by networks of queues with general indepen-
dent (GI) service [4]. Nevertheless, although much more

accurate than product-form networks, solution techniques
developed for models with GI service are insufficient for
robust performance predictions if the service process is au-
tocorrelated. An illustrative example is shown in Figure 4,
which illustrates the inaccuracy of basic Markov chain de-
composition techniques [3], commonly used for the evalu-
ation of non-product-form networks, when applied to auto-
correlated models. The figure plots the utilization at queue 1
for a basic network with two queues in tandem as the num-
ber of jobs in the network grows. Decomposition shows
unacceptable inaccuracies as soon as the number of pro-
cessed requests N increases beyond a few tens. Similarly,
the general ABA bounds [4], also shown in the figure, can-
not approximate performance well, except at very low or
very high utilization.

We overcome these limitations of existing approximation
techniques by providing a bound analysis methodology for
queueing networks with autocorrelated workloads. Because
of the complexity of their analysis, only small autocorre-
lated models based on one or two queues have been consid-
ered in the literature, mostly in matrix analytic methods re-
search; therefore, models such as the one in Figure 2 cannot
be studied analytically with existing techniques. We instead
define and study a class of closed queueing networks where
service times are modeled by Markovian Arrival Processes
(MAPs), a family of point processes which can easily model
general distributions and temporal dependent features such
as burstiness in service times [6], and that admits an accu-
rate bound analysis. Our bounds derive from the analysis of
the Markov process underlying the MAP queueing network.
Specifically, we use a new linear programming approach
that remains computationally efficient also on models with
large populations and large number of servers. An extended
version of the work presented here can be found in [1].

This document is organized as follows. We overview our
bounding approach in Section 2 introducing the new con-
cept of marginal balances. In Section 3 we give numeri-
cal evidence that our bounds can effectively characterize the
performance of autocorrelated queueing networks. Finally,



(I) ACF model (SUCCESSFULL match)

14 T T 100 T T
—mod 3
12 | Front=-mod —1 q Frgrlg?:gg —-—
:’j\ DB-mod HEE 80T,
£ A —] ~
g 10 Front—exp B )
3 DB—exp HEEE ) 60
2 =
2 8 2
g 3
s 6 =40
Z 5
g 4
=3 20
g2
0 0
128 256 384 512 128 256 384 512
Browsers Browsers
(II) no ACF model (UNSUCCESSFULL match)
14 ‘ ‘ 100 \
_ 12 | Front-mod - - Front-mod
g DB-mod HE g0 | DB-mod B
8 10 Front-exp = 1 Front-exp
] DB—cxp N S DB-exp
:E; 8 5 60
= g K]
2 =40
2 4 B
s, 20
0 0
128 256 384 512 128 256 384 512

Browsers Browsers

Figure 3. Performance measures for the model in Figure 2: re-
quest response time and server utilization. Results are presented for
two queueing models: one that captures autocorrelation in the ser-
vice processes for the front server (first row, successful match) and
one with no autocorrelation in the service process of the front server
(second row, unsuccessful match). Classic models that are used for
capacity planning do not consider autocorrelation and would result
in an unsuccessful match. To facilitate comparison, experimental
results are also presented (labeled “exp”).

Section 4 concludes the paper and outlines future work.
2 MAP Queueing Networks

We illustrate our bounding approach using the example
model shown in Figure 5, however we remark that the dis-
cussion in this section readily generalizes to models with
larger number of queues or different topology. The model
in Figure 5 represents two application servers processing
requests incoming from a shared communication link mod-
eled by queue 1. Queue 1 and queue 2 have exponen-
tial service times; queue 3 has instead MAP service, thus
we can use here non-exponential service time distributions,
e.g., hyperexponential, and temporal dependent features,
e.g., short-range dependence. Figure 6 shows the under-
lying Markov process of the MAP network in Figure 5 with
routing probabilities P1,1> P1,2, P1,3 = 1-— P11 — P12 at
the first queue and po 1 = 1, p3; = 1, at the remain-
ing queues. For simplicity of illustration, the MAP service
is specified by a Markov process composed by two states
(phases). This means that while the Markov process is in
state 1 we assume that exponentially-distributed service is
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Figure 4. Exact global balance solution of a two-queue
closed network with the ABA bounds [4] and the decomposition-
aggregation approximation [3].

offered with mean rate \;; instead, in state 2 the service
times are exponentially-distributed with a different mean
rate Ao # Ap. This state-space based description of service
times allows to define non-exponential distributions, e.g.,
hyperxeponential, and by properly selecting the frequency
of jump between the two states it is also possible to modu-
late the temporal dependent properties of the service times
to approximate short or long range dependence. In Figure
5, grey is used for states where the MAP is in phase 1; in
white states the MAP is in phase 2; additional notation is
described in the caption.

The basic idea of our bounding approach is as follows.
We consider a queue k, 1 < k < 3, and the group of states
where its queue-length is equal to a given n, 1 < n <
N. We then determine separating cuts, henceforth called
marginal cuts, that isolate this group of states from the rest
of the graph. Drawing all cuts for all possible choices of the
queue £ = 1,2, 3 and of the queue-length size n = 0,1, 2
we obtain the grid of dashed lines shown in Figure 7.

We make the crucial observation that the underlying
global balance equations of the Markov process can be ag-
gregated to describe only the probability fluxes across the
marginal cuts of the grid. Although conceptually simple,
the observation is striking in that it opens the way to effi-
ciently estimate performance indexes by focusing only on
simpler aggregate quantities and without the need of evalu-
ating individually each state of the Markov process. To the
best of our knowledge, this is the first time that an exact
aggregation technique is proposed for abritrary-size non-
product-form networks. For the example in Figure 6, we
may formulate a marginal cut balance for queue 2 as

propim(ng > 1,m9) = pom(ne > 1,na+1), (1)

for 1 < ng < N — 1, where the marginal probability
m(n; > 1,ny) is the probability that queue j is busy while



queue k has ny enqueued jobs. More general formulas ac-
counting for possible phase changes in the MAP queues
can be similarly derived, leading to the derivation of thir-
teen distinct types of marginal balance equations. The main
properties of this result are twofold:

Computational tractability. Overall, the number of prob-
ability terms appearing in marginal cut balances similar to
(1) for a model with N jobs and M queues is M?(N + 1),
which scales efficiently with the model size. This is a fun-
damental result, because the number of terms in the global
balance equations grows as

(M + N — 1)

N )
which explodes combinatorially as the number of queues or
jobs in the model grows. In comparison, the marginal cut
balance description is always computationally feasible.

Exactness. The bounding method derives from the ex-
actness of marginal cut balances. Let A7 = b be the set of
all possible marginal cut balance equations for the queue-
ing network model under study, and define f(7) as a lin-
ear combination of probabilities which represents a perfor-
mance metric of interest. Useful quantities that can be com-
puted in terms of a linear function f(7) are, e.g., utiliza-
tions, throughputs, or mean, variance and higher moments
of queue-lengths; we also show later how to compute re-
sponse times. We determine bounds on these performance
indexes by computing a bound on f(7) using a simple lin-
ear program in the form

fmin = min f(7) subject to AT = b, T > 0,
for lower bounds or
fmaz = max f(7) subject to AT =b, @ > 0,

for upper bounds. The computational costs of linear pro-
grams of marginal cut balances are very good for practical
applications, e.g., we have solved the linear program for
a model with 10 MAP(2) queues and N = 50 jobs using
an interior point solver in approximately four minutes; for
N = 100 the solution of the same model is found in ap-
proximately ten minutes suggesting very good scalability in
the population size. Examples of the linear programming
bounds described before are given in the next section.

3 Accuracy Evaluation and Examples

We assess the accuracy of the proposed bounds using the
following methodology. We use both randomly-generated
models and representative case studies. In the random mod-
els, we evaluate bound maximal relative error with respect
to the exact solution of the MAP network computed by
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Figure 5. Example network composed by two exponential
queues and a MAP queue.
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Figure 6. Underlying Markov process of the network in Fig-
ure 5 in the simple case when the MAP is a MMPP(2) process; the
job population is N = 2. The first two queues are exponential
with rates p1 and po, respectively; the third queue is a MAP with
two phases where, e.g., vé’Q and ué"2 are the probabilities of mov-
ing from phase 1 to phase 2 without job completions, respectively.
(002, 1) indicates that the exponential queues are idle and the MAP
queue has two jobs and is in phase 1; in (110, 2), the phase 2 is the
phase left active by the last served job.

Figure 7. State space grid define by marginal cuts.

global balance. Due to the state space explosion, experi-
ments using exact global balance solutions are prohibitive
for MAP networks with more than three queues and pop-
ulation N > 100. Therefore to fully explore the accuracy
of the proposed bounds compared to the exact solution, we
focus on models with three queues. Mean, coefficient of
variation, skewness, and autocorrelation geometric decay
rate at MAP(2) servers are also drawn randomly. For each
model, we compute upper and lower limits X, 4, and X i



Maximal Relative Error
M mean stddev median max
Rnax 3 0.013 0.021 0.004 0.141
Romin 3 0.022  0.020 0.019 0.126

Table 1. Results of Random Experiments

on the mean throughput f(7) = X. Then, using Little’s
Law we get the response time bounds Ryin = N/Xmax
and Ry,q0 = N/Xpmin Which are used to compute absolute
relative errors from the exact response time . We do not
report errors on other measures due to lack of space, but
we remark that they are in the same range of response time
errors.

3.1 Random Models

We evaluate on 10000 random models the maximal rel-
ative error with respect to the exact response time over all
populations 1 < N < 100. Table 1 indicates that the pro-
posed bounds perform extremely well for all models. The
mean error is 1 — 2% for both bounds with a standard devi-
ation of 0.02; the median is less than the mean, indicating
that the asymmetry of the error distribution is more concen-
trated on small errors. The maximum error is found to be
14.2% for the upper response time bound and 12.6% for
the lower bound. We have inspected carefully these cases
and found that models with more than 10% error in at least
one of the two bounds account for only the 1% of the total
number of experiments.

3.2 Case Studies

We also illustrate the accuracy of the proposed bounds
on the model shown in Figure 5 with routing probabilities
P11 = 02, P12 = 07, b1i1 = 0.1. The MAP queue
3 has CV = 4 and geoemtric autocorrelation decay-rate
v2 = 0.5. Figure 8 shows the utilization and response time
bounds of queue 3 as a function of the number of requests
in the system. The bounds of both utilization and response
times are very close to the exact value on most populations.
Both bounds converge to the asymptotic exact, a feature that
is not always found in bounds for queueing networks. For
different values of the routing probabilities the results are
even tighter than in Figure 8.

4 Conclusions

Autocorrelated service processes are often found in
workloads of storage systems and Web servers [5, 7], but
existing queueing network models are unable to correctly
model the performance degradation due to temporal depen-
dence. We have found a solution to this problem by study-
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Figure 8. Case Study Results.

ing a new class of MAP closed networks that supports au-
tocorrelated service. Experimental results indicate that our
bounds are extremely accurate, showing on average a 2%
relative accuracy error on the response time and therefore
can provide robust estimate of the performance of real sys-
tems.

Starting from these results future work will focus on
defining dynamic resource allocation policies that strive to
minimize request round-trip times under temporal depen-
dent workloads. This can be done both at the system-level
by exploring in real time (e.g., with the proposed bounds)
alternative network configurations that lead to improved
performance or at component-level by smart scheduling dis-
ciplines that take advantage of the temporal dependence
properties of the workload locally. Finally, a fundamental
research to be carried out is the parameterization of MAP
service processes from measurements. Our preliminary re-
sults indicate that queueing models with MAPs parameter-
ized up to third-order statistical properties can be several
orders of magnitude more accurate in prediction accuracy
than standard second-order parameterizations [2].

References

[1] G. Casale, N. Mi and E. Smirni Bound Analysis of Closed
Queueing Networks with Nonrenewal Service ACM SIGMET-
RICS’08, to appear, June 2008.

[2] G. Casale, E.Z. Zhang and E. Smirni Characterization of Mo-
ments and Autocorrelation in MAPs Performance Evaluation
Review, 35(1):27-29, 2007.

[3] P. Courtois. Decomposability, instabilities, and saturation in
multiprogramming systems. CACM, 18(7):371-377, 1975.

[4] E.D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik.
Quantitative System Performance. Prentice-Hall, 1984.

[5] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel. Per-
formance impacts of autocorrelated flows in multi-tiered sys-
tems. Perf. Eval., 64(9-12):1082-1101, 2007.

[6] M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type
and Their Applications. Marcel Dekker, New York, 1989.

[7] B. Schroeder and G. A. Gibson. Understanding disk failure
rates: What does an MTTF of 1,000,000 hours mean to you?
ACM Trans. Storage, 3(3):8, 2007.



