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Abstract

In this paper we present a new, query based apprmaicpproximating polygonal chains in the plane. We give
a few results based on this approach, some of more general interest, and propose a greedy heuristic to speed u
the computation. Our algorithms are simple, based on standard geometric operations, and thus suitable for efficient
implementation. We also show that the query based approach can be used to obtain a subquadratic time exac
algorithm with infinite beam dterion and Euclidean distance metric if some condition on the input path holds.
Although in a special case, this is the first subquadratic result for path approximation with Euclidean distance
metric.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A polygonal path or chairP in the plane, withn vertices, is defined as an ordered set of vertices
(p1, p2, ..., pu), SUCh that any two consecutive vertices p;.1 are connected by the line segment
pipi+1, for 1<i < n. The polygonal path approximation problem is to approximate a general polygonal
path P by another polygonal pati®’ whose vertices are constrained to form an ordered subset of the
vertices of P. The problem appears as a subproblem in many applications in geographic information
systems (GIS), cartography, computer graphics, medical imaging and data compression. For example,
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with recent imaging technologies, medical and satellite images have become very rich in details. Analyz-
ing such images or using them in interactive remote WWW-based applications may require a significant
amount of time. Thus, path approximation algorithms can be used to simplify/compress those images,
for the purpose of efficient storage or for progressive transmission to a remote site. Similar observations
apply to map representation in geographic information systems, where in many situations (animations,
etc.) a high level of detail is unnecessary or even unwanted.

1.1. Problem definition

Given a planar polygonal patA = (p1, pa, ..., p.), the polygonal path approximation problem is to
find a pathP’ = (p;, = p1, pi,» ..., Pi,, = pn) SUch that, for each € {1,2,...,m — 1}: (i) i; < i;41,
wherei;, ij11 € {1,2,...,n} and (i) the subpathp;,, p;;+1, - - ., pi;,,) Of P is contained in somerror
toleranceregion of the line segmen; p;. ;. We will also consider the case when the vertices of the
approximation are not restricted to a subset of the original path.

Theerror toleranceregion of a line segment; p; is defined by an error measure criterion. A few error
criteria have been used in solving various polygonal path approximation problems, not necessarily of the
form above [1-3,5,9-11,13,16,17,21-26,28]. If not otherwise specified, we consider the error criterion
used in [10,16,23,28], called thefinite beanor parallel-strip criterion, with the Euclidearn,, measure
of distance. With this criterion, the-tolerance region of a line segmemp; is the set of points that are
within distances from the line L(p;p;) supporting the line segmeptp; (see Fig. 1(1)). If a subpath
P iy = (Pijs Pij+1, - -» Pij,,) OF P is contained in the-tolerance region of the line segmepy p;
of P’, thenp; pi;; is ane-approximatingsegment forP;, ;. . A path P’ is ane-approximationof P if
each line segmerfi; p;., of P/, for j =1,2,...,m — 1, is ane-approximatingsegment.

Other commonly used error criteria are the tolerance zone and uniform measure. Wiletaece
zonecriterion [21,23,24], the-tolerance region of a line segmepip; is the region of space that is the
union of all radiuse disks centered at points along the segmgi; (see Fig. 1(I1)). With the uniform
error measure [2], the error of a line segmenp; is defined as max (py, pip;) | i <k < j}, where
d(pk, pip;) denotes the vertical distance betwggrandp; p; (see Fig. 1(Ill)). This measure applies to
x-monotone paths.

In this paper, we consider the optimization version of the polygonal path approximation problem,
called themin-# problem: Given a polygonal patt? and a positive approximation errer find ane-
approximating path?’ of P with the smallest number of vertices.

While the tolerance zone criterion would produce a compressed version that better captures the fea-
tures of the original path, the motivation for studying the problem under infinite beam criterion is two
fold. The first reason is that the best known solutions under tolerance zone criterion compute approxi-
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(I) Infinite beam (1) Tolerance zone (I11) Uniform Measure

Fig. 1. Thee-tolerance zones of a single segmenp; with infinite beam criterion, tolerance zone criterion and uniform
measure.
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(D) Original path (I1) Infinite beam (IIT) Tolerance zone

Fig. 2. Thes-approximating paths with infinite beam and tolerance zone criteria.

mating lines or semilines in order to obtain approximating segments. Thus, some of our results may be
useful for this error criterion. The second reason is that infinite beam criterion gives a better degree of
compression (see Fig. 2).

Lemma 1. Let P’ be ane-approximating path ofP with tolerance zone criterion. TheR’ is an ¢-
approximating path oP with infinite beam criterion.

Proof. If a point of P is within distances from a line segmenp;; p; _; of P, then it is within distance
¢ from the lineL(p;; pi,,,) supportingp; pi, ;. O

1.2. Previous work

Early results for the min-# problem, under various error criteria, were presented by Imai and Iri [21—
23], Melkman and O’Rourke [24] and Toussaint [28]. In particular, Imai and Iri [23] have formulated the
problem in terms of graph theory: construct a path approximation, unweighted directed acyclicGgraph
and then use breadth first search to compute a shortest path in this graph. Their formalism has been late
exploited by most of the algorithms devoted to the problem [2,5,9,10,16]. However, with the exception
of Agarwal and Varadarajan algorithms [2], all the other algorithms have quadratic or superquadratic
time complexity. The algorithms in [2] combine the previous iterative graph based approach with divide
and conquer and, using graph compression techniques and more complicated data structures, achiev
On*3+%) time and space complexities, whete- 0 is an arbitrarily small constant. However, those
algorithms work for thel, distance metric and it has been left as an open problem in [2] to extend
them to the more general,, distance metric. Very recently, algorithms with running times that depend
on the size of the output have been proposed in [12], by observing that only the edGethaff are
needed by the shortest path computatiorGimeed be computed. The most popular heuristic method
that is used in path approximation, the recursive simplification heuristic of Douglas and Peucker [14],
can be implemented in @log*»n) time [19], but does not guarantee to find an optimal solution. If
the vertices of the approximating path are not required to be a subset of the vertices of the input, then
faster algorithms are possible [17,18,22]. Exploiting this fact, given a monotone polygonaP zett
a parametet > 0, linear time algorithms are proposed in [1] for computing an approximating path with
verticesamong thosef P. Specifically, they compute in linear time an optimal se§efpproximating
segments foP, called asegment covesuch that, if the segmeaf approximates the subpath, ;... =
(Pi;» Pij+1, - - -» Pi;y,) OF P then the endpoints of; are within the$-radius disks centered af, and
Pi;..» respectively. Then, they prove that the corresponding line segmgnt,; is ans-approximating
segment forP;, ;..

Solutions to polygonal subdivision simplification problem are also based on polygonal path simplifica-
tion. In [13], polygonal path simplification has been used to approximate a subdiSisith N vertices
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andM extra points in QN (N + M) log N) time. Finding a minimum size simplification is NP-hard [17]
and, unless B= NP, one cannot obtain in polynomial time an approximation within a factat/8f*® of
an optimal solution, for any > 0 [15].

1.3. Our results

Quadratic or near-quadratic time algorithms for the planar min-# problem Ayittlistance metric
have been developed almost two decades ago. However, no subquadratic time algorithms are known witf
the L, metric and no nontrivial lower bound could be proved. In this paper we present a new, query based
approach for solving the min-# problem with infinite beam criterion, which carries out the computation in
a dual space. We give a few results based on this approach, some of more general interest, and propose
greedy heuristic to speed up the computation. In particular, our results implyrdoga) time breadth
first search procedure for some quadratic size graphs andalo@:) preprocessing, dogn) query
time solution for the following problem: Given equal radius disk®1, D,, ..., D,, construct a data
structure that, for a query tripléf, i, j), whereL is a line and; and j are integers such that<{i <
J <n, answers whethek intersects all disk®;, D; 1, ..., D;. Under the relaxation that the vertices of
the approximating path are within thetolerance regions of the vertices Bf(instead of being among
the vertices ofP), we further give an Q:logn) time, factor 2 approximation algorithm with the infinite
beam criterion. Finally, we show that the dual space approach can be used to obtain a subquadratic time
exact algorithm with infinite beam criterion aiid distance metric if the following condition on the input
path holdsd(p;, p;) ¢ le, e+/2], for 1<i < j <n, whered(p;, p;) is the Euclidean distance between
pi andp; (in fact, itis enough to require that for each verjex P, only a “small” (constant) number of
verticesp; are such thatl(p;, p;) € [e, £+/2]). Although in a special case, this is the first subquadratic
result with theL, metric. For the general case our algorithm matches the best knowAldQn) worst
case time bound under the infinite beam criterion [10]. All our algorithms requitdd@n) storage.

The algorithms we propose are simple, based on standard geometric operations. We have implemente
a version of our solution and present experimental results and comparisons with previous path approxi-
mation algorithms.

2. Preliminaries

In this section, we briefly present the general structure of the previous algorithms for solving the min-#
problem. We exemplify the algorithms for the infinite beam criterion. To solve the min-# problem, those
algorithms first build a path approximation, directed acyclic grapiThe vertices oiG are associated
with the vertices ofP and edges correspond4deapproximating line segments fé&. An optimal approx-
imating pathP’ is obtained by a shortest path computatiorGinin general,G has Gn?) complexity
(O(m*3+%) in [2]). As observed in [10], in many cases one need not explicitly constuen optimal
path can be computed while computing thapproximating segments. LEX(p;, ) denote the disk with
center p; and radiuss. The algorithms for computing the-approximating segments use an iterative,
incremental approach similar to the following.

1: fori=1ton —1do
2. j=i+1.
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3 while D(p;11, ¢), D(piy2, €), ..., D(p;, &) admit line transversal through do
4. if pip; is ane-approximation update the path lengthpat(if needed).

5 j=Jj+1l

6: endwhile

7: end for

In this approach, the path length at a vertexPofould be updated multiple times, as the computation
of e-approximating edges proceeds. A more efficient approach [12] is to use a breadth first compu-
tation of theg-approximating edges that simulates the breadth first shortest path computation in an
g-approximating graplG. The structure of the breadth first traversal (BFT) approach is presented be-
low, with enqueueanddequeudbeing the standard queue operations.

1: enqueue(l)
2: for j=2ton do
visit(j) = 0.
end for
repeat
i =dequeue()j =i + 1.
while D(pj 1, €), D(piy2,€), ..., D(p;, €) admit line transversal through do
If lvisit(j), check if p; p; is ane-approximating segment; if yes then
setvisit(j) = 1, set the path length at; and enqueue(j).
9: j=Jj+1
10:  end while
11: until p, has been reached.

NGk w

Lemma 2. With the BFT approach, the shortegi-to-p; path length at a vertey; of P is correctly
computed when the vertex is enqueued and will not be updated by future computation.

Proof. Simple and omitted. O

Since some of our proofs make use of the algorithm in [2] we describe it in more details. For an
input pathP with »n vertices, the algorithm constructs a compact (bipartite clique cover) representation
G of the e-approximation graplG (P) by using a divide-and-conquer approach. Pgtbe the subpath
(p1, .-, Piny2)) Of P and letP, be the subpatlip, 2/ +1, ..., p,) Of P. The algorithm recursively com-
putes the clique coverg; and G, of G(P;) and G(P,), respectively. In the merge step, the algorithm
computes a clique coveéh, of the edges1, of G(P), where an edge € Eq if it is an e-approximating
edge with one endpoint iR; and the other one iR,. Then,G; U G, U Gy, is a clique cover oG (P). The
size of the cover is shown to be(@/3*+?). Using this clique cover representation a shortest path fsgm
to p, can be computed in @G| + | V) time.

To obtaingi,, they [2] defineCong p;) for eachp; € P, andCongp;) for eachp; € P, as follows.
Condp;) is the set of (rightward directed) rays emanating frppsuch that a rap € Cond p;) if it
intersects the vertical segmemjt p;", for everyi <k < [n/2], wherep;" is the point(x;, yx +¢) and p;
is the point(x;, y« — ¢). Symmetrically,Congp;) is the set of (leftward directed) rays emanating from
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Fig. 3. lllustrating the definition otongp;) and congp;): the edge(p;, p;) is in G(P) becausep; € congp;) and
pi €congp;).

p; such thatp € Condp;) if it intersects the vertical segmepf p;", for every|n/2] + 1<k < j (see
Fig. 3).

The algorithm compute€ond p;) for eachp;, i = 1,2,...,n, and then maps the lines supporting
the rays inCond p;) to a line segmeny; in a dual plane using a standard point-line duality transform.
Let I'; be the set of line segmenys, for 1 <i < |n/2]| and letl, be the set of line segmenis, for
n/2] + 1< i < n. Noting that(p;, p;) € Eq2 if and only if p; € Condp;) and p; € Condp;), the
problem reduces to computing line segment intersections in the dual plane. Specifically, the problem of
computingGi, reduces to computing a familff = {(I'11, I%21), ..., (I'w, I2,)}, where (1)Iy; € I'; and
Iy C Iy; (2) each segment iify; intersects every segment iy; and (3) for every pair of intersecting
segmenty, € I, v, € I, there is a unique such thaty, € I'; andy, € Iy;.

The family F is computed by constructing a segment-intersection-searching data structure on the set
I, based on a multilevel partition tree, each of whose nodes is associated with a sccaaledcal
subsebf I',. The total size of all canonical subsets in the tree (8*G+?%). The queries for this structure
are the segments a@f,. The output of a query with a segmentiifis the union of a few pairwise disjoint
canonical subsets which consists of exactly those segmenisrntersecting the query segment. For each
canonical subsely; of Iy, let I'; C I'y be the set of segments whose output contaifgdIf I'y; # @,
the pair(ly;, Iy;) is added to the familyF.

The size of the resulting clique covéi, of Eiis Y (11| + [Ix), which is Qn#3+?), and the
running time for computingjy, is dominated by the time to compute the fam#fy which is Qn%/3+%).

If S(n) denotes the size of the clique cover@tP) computed by the algorithm, then the following re-
currence inequality is satisfie@(n) < 25(n/2) 4+ cn*/*+, wherec is a positive constant. The recurrence
solves forS(n) = O(n*3*+?%). Adding the Qn*/3+%) time to compute a shortest path frgm to p, once
the clique cover is available gives a total of«®3%) time for computing an optimad-approximating
path with theL, distance metric.

3. A query based approach
In this section we present our query approach for solving the polygonal path approximation problem.

We first define two key operationQuery(-, -) andSpan-), and show how to implement them efficiently.
Then, we show how to use them to obtain efficient algorithms with: (i) a special, “vertical” error measure,
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and (ii) the L, distance metric, under the assumption at;, p;) ¢ (e, ed/2], for1<i < j < n, with
d(pi, p;) the L, distance betweep; andp;.

From Lemma 2 above, it follows that with the BFT approach a vepterf P that has been marked
as visited need not be checked again in pégs p;), with i < j. Let p; be the vertex dequeued by the
BFT algorithm. Since it may happen that many vertices immediately followingave been already
visited, we should avoid including those vertices in future computation associategpwittowever,
incremental approaches cannot avoid this computation. Then, it may be appropriate to combine the BFT
algorithm described in the previous section with a query method for compeHiproximating edges,
rather than using the incremental method of computation. This may also be interesting for practical
applications mentioned earlier, such as animation, where one may want to approximate various subpaths
of P at different times. To this end, we divide the verticesPoin three categories: (Jrocessedthose
visited by BFT that are no longer in the queue, 2)ive those visited by BFT that are in the queue and
(3) inactive those that have not yet been reached by the BFT. With a query method, one should be able
to answer fast ifp; p; is ane-approximating segment without first having to compute information for
verticesp,, wherei < k < j. Specifically, the following two operations should be supported.

e Spani): compute the largest indeksuch that there is a line stabler throughfor the set of disks
D(pit1,€), D(pit2,€), ..., D(pj,¢) (pip; could be are-approximating segment).
e Query(, j): answer ifp; p; is ane-approximating segment.

Let V1, V, and V3 be the sets of processed, active and inactive vertices, and consider the BFT algorithm
at some stage. The queue associated with the BFT contains a set of vertices such that the shortest pat
lengths of any two of them differ by at most one. In other words, all vertices can be reachegfroith
k — 1 ork links, for some integer Z k <n — 2. If p} denotes the shortegh-to-p; path length atp;,
thenp| <k if p; e ViUV, andp) >k if p; € V5. We further augment the BFT algorithm with a greedy
approach: vertices i, are maintained in two priority queues having as keys the indices of vertices of
P, such that a dequeue operation on each of the queues returns the largest index in the queue. The firs
priority queue corresponds to vertic®s that can be reached with— 1 links and the second one to
those verticed/7 reachable witlk links.

Lemma 3. The time to maintain the two priority queuesQg f (m) log( f (m))), where f (m) = O(n)
is the number of vertices @t that can be reached frorp; with no more thann — 1 e-approximating
segments angk is the number of vertices ofrain-# approximating path.

Proof. The total number of vertices visited by the BFT algorithm befpyeis reached is Of (m)).
Only the visited vertices are enqueued in one of the two priority queues, resulting in a total of

O(f(m)log(f(m))) time. O

Observe that it is possible to hayee (V1 U V) andp; € V3 such that > j. However, only pairs of
the form(, j), with p; € Vi, p; € Vs andi < j should be considered f@uery(i, j) operations. Thus,
we need to maintain the set of inactive vertices such that, when a veriexdequeued from the BFT
queue, the inactive verticgs;, with j > i, are easily available.
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Lemma 4. Assuming Spam) is known, the inactive vertices for. can be found irO(log! + k) time,
wherel is the set of currently inactive vertices akds the number of inactive vertices inwith indices
between and SpaKy). The setl of inactive vertices can be maintainedQ@in + f (m) logn) time, using
O(n) space.

Proof. Use a balanced binary search tfEeon the inactive vertices. Initiallyp; is in the queue and
p2, P3. ..., pp @areinT. The keys inT are the indices of the vertices . Assume that, after a number
of steps in the BFT algorithny; is dequeued from the queue. We seafcto find the first vertex with
index larger thar. Then, the inactive vertices up &par(i) can be found by a simple traversalih If
one of the visited verticep; becomes active (as a result@tiery, j)), we remove the vertex fromi.
Then, since each remove operatior7irtakes Glogn) time and there are G (m)) remove operations
overall, we obtain the claimed time and space bounds.

From Lemmas 3 and 4 it follows that the time complexity of the greedy BFT algorithm depends on the
time complexities for performingpar(-) andQuery-, -) operations and the number of fail€iery, -)
operations.

Letd(p;, p;) denote the Euclidean distance betwegandp ;. The following lemma bounds the time
complexities ofSpani) andQueryi, j) operations.

Lemma 5. With O(n logn) preprocessing, for any paitp;, p;), with1 <i < j <n, Queryi, j) can be
answered irO(logn) time. In addition, ifd(p;, p;) ¢ (e, e+/2], forall 1 <i < j <n, then Spafi) can
be answered i©(log?n) time.

To prove this lemma we first introduce some geometric structuresp;Land p;, with i < j, be two
vertices of P. For a vertexp, € P, with i < k < j, let o, denote the set of lines that are tangent to
the diskD(py, €). Using a standard point-line duality transforeq,is mapped to a hyperbolH, in the
dual plane [20]. Any vertical line in the dual plane intersects each of the two branchiés exfactly
once; the upper brancH;' corresponds to tangents to the upper semicircl® g, ¢) and the lower
branchH} corresponds to tangents to the lower semicircle (see Fig. 4). Each branck-imianotone
and unbounded Jordan curve aHgd N H,f = @. The dual of a line transversal &f(p;, ) corresponds
to a point belowH; and abovefi?. Observe that any paifi*, Hj.’ ) of hyperbolic branches intersects in
at most one point, where# j andc, d € {a, b}. (This it true only for equal-radius disks; for different
radii disks each pair can intersect in at most two points.)

Let £;; be thelower envelopef H{ and letl4;; be theupper envelopef H?, for k =i,i +1,..., j.
Then,L(p;p;) is a common transversal (a line stabler) Df(p; 1, €), D(pi42,€),..., D(pj_1,¢)} (the
line segmenp; p; is a valid approximation segment) if and only if its dual point lies betwggmandif;; .

From [27], it follows that the complexities af;;, i4;; and the regior¥;; sandwiched between them are

O(j — i) and thatZ;; has at most one connected component. (The last property is not true for different
radii disks, in which case there could b&O- i) connected components.) Since for a set afqual-

radius disks, the space of line transversals that are restricted to pass through a commenagaaint
have Qn) connected components [10,12], the line duapt@an have @j — i) disjoint segments if;; .

This is a key property that makes the min-# problem with infinite beam criterion somehow harder than
with other error criteria (such as tolerance zone and uniform measure). It gives rise to the condition in
Lemma 5: requiring thal (p;, p;) ¢ [¢, e+/2], for L<i < j < n, assures that there is only one connected
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Fig. 4. Dual transforms of tangents to disks: The tangents to theldigk, &) (D(p;, ¢)) map to the hyperbold (H;) in
dual plane and the lingt (2, Zjl. orljz.) maps to the poirgs® (172, l;fl orljz) in dual plane.

component (the details are given in [12]). Consequently, the line dyaltias at most one line segment
inZ;;.

If we use a vertical error measure, however, where the error region of a point is a vertical line segment
instead of a disk, the space of line transversals that are restricted to pass through a common point can b
easily seen to have at most one connected component.

Lemma 6. Themin-# problem with infinite beam criterion and vertical error measure can be solved in
O(n*3+%) time and space, wheik> 0 is an arbitrarily small constant.

Proof. The result can be obtained by a simple modification of Agarwal and Varadarajan [2] min-# algo-
rithm for x-monotone paths with uniform metric. For infinite beam criterion and vertical distance metric,
the difference is that right (or left) oriented rays are replaced by lines (thefpamot monotone) and

thus wedges are replaced by double wedges. The only places where this plays a role are in the computa
tion of the lower and upper convex hulls (of the upper and lower endpoints of the vertical error segments)
and in the computation of the double conepatThe double cone gb; can be found by computing the
largest separating double cone of the two convex hulls, if such a separation is possible. This reduces to
computing the tangents from to the two convex hulls. Note that the convex hulls are used only to help
compute the double cone @t, since only the double cone @t is important for the outcome of the
algorithm. Then, to perform the incremental updating of the convex hulls and to compute the tangents in
altogether @ogn) time, as in [2], it suffices to use the solution in [16], based on the on-line convex hull
algorithm of Avis et al. [4]. Alternatively, we can maintain the convex hulls and answer queries efficiently
by using recently developed linear space dynamic planar convex hull data structures, that allow insert and
deletion of points in amortized @gn) time per operation and support tangent queries through a given
point in O(logn) time [8]. O
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We remark that a similar approach can be used withlthenetric. In that case, the space of line
transversals ta L, disks, which are restricted to pass through a common pgionan have at most two
connected components. This property is implicitly exploited by the subquadratic time algorithm in [2].

In what follows, we set up the data structures for compupgr(i) and Query, j). Let T be a
complete binary tree such that the leaveS adire associated, in order, with the verticesPofAt each
leaf/;, we also store the hyperbolic branchigé and H”, the duals of the tangent lines Bp;, ¢). For
an internal node in T, leti andj be the smallest and largest indices of the leaf descendantsVeé
store atv the region/ (v) = Z;; sandwiched between the lower envelafe of {H/ | i <k < j} and the
upper envelopé/; of {H! | i <k < j}. Since any two hyperbolic branches intersect each other at most
once,L;; andl{;; have complexity Qj —i) [27]. We computd (v) for all verticesv of T', using a divide-
and-conquer method implemented by a bottom up traversal dthe boundary off (v) is maintained
as two monotone pieces, corresponding to the contributions of the lower and upper envelopes of the two
sets of hyperbolic branches stored at the leaf descendantsLie in [5], I (v) can be computed, for
all verticesv in T, in a total of Qn logn) time by simple merge-like operations. Note that in general the
regionI(r) at the rootr of T may be empty and thug is a forest. We reorganizg, in the same time
bound, in a family of trees” = {T1, T», ..., T,} such thatT;’s leaves correspond to the longest possible
prefix Dy = {D(p1, €), D(p2,€), ..., D(pj,, ¢)} that admits a line transversdly’s leaves correspond
to the longest possible prefix starting @41, and so on (see Fig. 5). Note that it is easy to construct
examples wher& would have® (logr) more trees with nonempty intersection at the root tiate.qg.,
when all the vertices oP are on thex-axis except the last one, which is far above f)is also useful
in support of Lemma 7 below. We explain the process for obtaifiind-or the remaining trees i# the
process is similar.

Let jo = 0. For the treel; of F, we should find the largest possible ind@xsuch that the region
Tjy+1,j; is not empty. We begin to construgt by forming a search patiy, starting from the leap, of
T.In general, the path; for someT; has an ascending phase and a descending phase. In each step of the
ascending phase of the path, we go up to the parent nodg of the current node. We stop whéiw,,)
is empty and we come at, from a left child. Clearly, the leaves with indices frojn+ 1 to the largest
index of a leaf node in the subtree rooted at the left childf v, appear inTy. LetZ; denote the region
of these leaf descendantswf. Z; is computed while traversing; using the merge-sort like procedure
described foiT' (note that forTy it is the region stored at).

We then begin the descending phaserpfrom the right childv, of v, and keep going down to the
left child v,, of v, until the intersection of (v,,) andZ; is not empty or a leap, is reached. In the later
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Fig. 6. The construction of the foregt= {Ty, T», T3}.

case,j; is set tok — 1 or k, depending on whether the merged regior gf;) andZ; is empty or not.
In the former case, we updalg as the intersection af(v,,) andZ; and continue the descending phase
from the sibling node,, of v,, (v, becomes), ). The descending path stops at some leaf node and we set
Jj1 to the index of that node or the index of the previous node, depending on whether the last node gives
a non-empty or an empty intersection wifh Thus, the value of; is the sought largest possible index
of T1.

With that, we begin to find the longest possible prefixfoby forming another search path starting
from the leaf nodep;, 1. We construct;, 73 and so on in the same way as we constijofsee Fig. 6).
Since for each tre&; of F, for 1 <i < s, the time to merge the regions associated with the leaves of
T; at each node on; is O(n;), wheren; is the number of leaves @, and the search patt in T has
O(logn) nodes, the computation f takes Gn; logn) time. Noting that) "} O(n;) = n, the total time to
construct the foresf in O(nlogn).

This implies the following result.

Lemma 7. F can be used to compute an approximating path with vertices inside the error tolerance
regions of the vertices aP and of size at most twice the size of an optigtapproximating path with
vertices among the vertices Bf

Proof. For eachT; € F, pick a point in the intersection stored at the rooZpand trim the dual line to
a line segment with endpoints inside the first leaf and the last le&f, eésulting in|F| line segments.
Then join the resulting segments to form a path, which gdds- 1 segments. Obviously, an optimal
approximating path must have at le@st vertices, from which the claim follows. Oncg is available,
the construction takes @F|) time. O

Note that our 2-factor approximation solution is different from the greedy solutions in [1,17,24], which
consider wedges instead of double wedges and/or may depend on some predefined stabbing order. Alsc
it can be easily seen that the same results hold for other distance metrics, gycmeisic.

We now give the proof for Lemma 5.
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Proof of Lemma 5. Let p;; be the dual of the line.(p;p;). To perform aQuery(, j) operation, we
form a search path;; in F, from the leafl; to the leafl;. Observe that; and/; may be in the same tree
or in different, adjacent trees of. We say that a node of 7' is on theright fringe (left fringe) of ;;

if v is not onx;; but it is a right (left) child of a node on;;. Noting that the query is a decomposable
search problem, we can answ@uery(i, j) by determining ifp;; is inside (v) for eachv that is a right
(left) fringe node ofr;; (answering “true” if and only if it is inside them all). Using the approach in [5],
based on fractional cascading technique of Chazelle and Guibas [6,7], the ansWerefg, j) can

be obtained in @ogn) time. Spani) computation proceeds in a similar way. We form a search path
in F as follows. We start a and go up the corresponding trég storing/; until we find a node with
nonempty intersection on the right fringe or we reach the rodt,ofif the root has been reached, we
go on a downward path ofj, ;1 (if it exists) until we find a node with nonempty intersection on the left
fringe. Letv be the root of that subtree (right or left fringe) andllgs;) be the dual line op,. We then
compute the intersection &fp;) with I (v). The condition in the lemma assures th@t;) N I (v) has at
most one connected componentvl& 7;, andi(p;) N I (v) # @, setl(p;) =1(p;) N I(v). Then go up

T;, until a nodew on the right fringe ofr; with I(p;) N I(v) = @ is found or the root off;, has been
reached, while updatingyp;) along the way. Then follow a downward path (possiblyZjn 1) until a
node with nonempty left fringe is found. We then proceed down the tree as follows.deethe current
node and let; andv, be the left and right children af. If /(p;) N 1(v;) # @ proceed on right fringe
of v with I(p;) =1(p;) N I(v;), else proceed on the left fringe ofwith I(p;). The computation stops
at some leaf;. Clearly, Spari) = j — 1. The computation fo6par(i) at a node in the tree is similar
to that forQueryi, j) without fractional cascading. At each noden the search path we compute the
two endpoints of the intersection &fp;) with the boundary of (v) using binary search on the boundary
of I(v), which takes @ogn) time. There are Qogn) levels on the search path and thHsigari) can

be answered in Qog?n) time. We note here that if one is willing to increase the preprocessing time to
O(n?logn), by precomputing(p;) N I (v) for all nodesv € F andi = 1,2, ..., n, thenSpar(i) can be
answered in @ogn) time. O

Corollary 1. Given a set of equal radius diskd,, D, ..., D,, in O(rnlogn) time one can construct a
data structure of siz®(n logn) such that, for a query tripletL, i, j), whereL is aline andi and j are in-
tegers,1 <i < j <n, itcan be decided i@(logn) time whethet intersects all diskD;, D;;1, ..., D;.

The results in Lemmas 3, 4 and 5 can be combined to obtain an efficient algorithm for solving the min-
# problem. Alternatively, we can use Lemma 5 together with the divide and conquer procedure in [2] to
obtain the following result.

Lemma 8. Under the condition in Lemm&, thatd(p;, p;) ¢ [e, e/2], forall 1<i < j <n, themin-#
problem with the infinite beam criterion arld, distance metric can be solved @(n*/3+%) time, where
§ > Ois an arbitrarily small constant.

Proof. We can obtain the result by applying the divide and conquer procedure in [2], enhancel with
for constructing a clique covéf of the e-approximation grapi in O(n*/3+%) time, and then computing

a shortest path fronp, to p, in G in O(|G| + |V|) time. Since the size of the clique cov@rof G is
O(n*3+?%), the total time to solve the min-# problem g/ 3+?).
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The main difficulty in applying the technique in [2] is in computing the two sets of segments used in
the combine phase of the divide-and-conquer algorithm. Since that phase is dominated by*thie’ O
time to compute canonical subsets for segment intersection queries, to keep the same bound we need t
compute the two sets of segments in no more thart®+?) time. In what follows, we show how to use
F to compute these two sets in&og?n) time.

With the infinite beam criterion andl, distance metric, the right (or left) rays in [2] are replaced by
lines and thus wedges are replaced by double wedges. Therefore, the doublegofte at< i < [n/2],
contains a set of lines that pass throygland intersect the disR (py, ¢), for everyi < k < [n/2]. Sym-
metrically, the double cone at;, for [n/2] + 1< j <n, contains a set of lines that pass throyghand
intersect the dislO (py, €), for every|n/2] + 1 <k < j. We can useF to compute the line segment that
is the dual of the double cone g, for every 1< i < n, in atotal of Qn log? n) time. The computation for
somep; is similar to that ofSpar(i): form a search path; in 7 and obtain the line segmeftip;) by com-
puting the intersection df p;) and (v) for each node on (the right/left fringe of)r;. Note that ifp|,, 2,
is in someT; € F, then we only need consider the vertices associated Tyiind the predecessor and
successor of} in F (if there exists a ling; p; stabbing the disk® (p;;1, €), D(pit2,¢€), ..., D(pj, €),
wherep; is in T,_, and p; is in Ty, then we can havé”k/_l starting atp;, ,.1 and ending ap;, which
gives a longer prefix thaf;,_1). The construction ofF takes Qn logn) time and can be done in a pre-
processing step. Since the computation of the double cones for the combine phaseidtgsQtime,
the combine phase remains dominated by tie*G+) time to construct the canonical subsets from seg-
ment intersection queries. Then, the time recurrence rensgins< 25(n/2) + cn*3+ and we obtain
the claimed time bound. O

Although in a special case, this is the first subquadratic result for path approximatiohydistance
metric. The result is useful especially when the algorithm is used to approximate borders of fat planar
regions and terrains, and in medical imaging, where the condition stated in the lemma may be often
satisfied. For the general case, as shown below, the query approach matches the time complexity of the
best known algorithms for polygonal chain approximation with infinite beam criterion ardistance
metric.

Theorem 1. With the query approach, thmin-# problem with infinite beam criterion antl, metric can
be solved irO(n?logn) time andO(n logn) space.

Proof. We note that we can find a solution using oery-, -) operations. For each;, 1 <i < n,
there are @) Query(, j) operations, where < j < n. Since eaclQuery, j) takes Qlogn) time the
query based algorithm requires/3logn) time. O

Note. Some of the ideas in this section can be applied to other, unrelated problems. In particular, we
can extend Lemma 4 as follows. Lét be an unweighted directed graph withvertices, such that for

each vertex; € G, there are edge®;, v;,), (vi, vi;+1), (Vi, Viy42), ..., (v;,v;,) € G. That is,G can be
specified by its set of vertices and the index rangesi,) associated with each vertex € G. If a
standard representation is used for stordhgO(n?) space is required, sina@ can have @:?) edges.
Computing a single source shortest patiGinsing standard breadth first search would take’@time.
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Lemma 9. A single source shortest path tree in a graphspecified as above can be computed in
O(nlogn) time andO(n) space.

Proof. Similar to the proof of Lemma 4, we begin with thg#dogn)-time construction of a balanced
binary search tred on the vertices oG, where the keys i7" are the indices of the vertices ©f.
Assumeuv, is the source vertex. Initiallyy; is in the queue and,, vs, ..., v, are inT. Since we have the
index rangegiy, i) associated with each vertex of G, whenv; is dequeued from the queue it takes
O(logn) time to find the first unvisited vertex with index no smaller thigrby searching” with the key

i1. Then, the unvisited vertices up tg, can be found in @Qogn + k) time by a simple traversal ifff,
wherek < |i» — i1|. Note that the number of unvisited vertices can be smaller fhani;| since some
vertices with index in the rande,, io] may have been removed frofh We enqueue the visited vertices
into the queue and remove them frdm Since the removal does not increase the heiglft,ofre need

not perform a standard deletion @hfor a visited node. The traversal of the subtre€'dor the nodes

in the rangdiy, i»] can simulate an Euler Tour traversal of that subtree, in which each node is visited at
most three times (from the left, from below and from the right). Deleting a node when it is last visited in
the tour takes @) time. Then, the total time required by remove operations(is) @nd we obtained the
claimed time and space bounds. Obviously, the same bounds hold even if we perform a stalugdary O
time delete operation for each visited nodex

4. Experimental results

In this section, we report the results of our experiments and give comparisons for three algorithms
for solving the min-# problem. The first algorithm corresponds to the iterative, incremental approach
presented in Section 2. As mentioned there, the path length at a vertex could be updated more than onct
during the computation. For the second algorithm, which is also presented in Section 2, we use a breadth
first traversal (BFT) approach and put a vertex into a standard queue if the path length of this vertex
is updated (the path length at a vertex may be updated at most once). For the third algorithm, we use
two priority queues having as keys the indices of vertice® pfuch that a dequeue operation on each
of the queues returns the largest index in the queue. We have observed that the BFT and priority queue
algorithms are much more efficient than the incremental algorithm and the priority queue algorithm
has better performance than the BFT algorithm on average. Specifically, we define the following three
parameters to compare these algorithms.

e sum check the sum of the check time of all vertices iy where the check time of a vertex is the
number of times it is visited during computation.

e max check the max value of the check time at a vertexraf

e sum edgesthe number ot-approximating edges in the path approximating graph

For example, for the path in Fig. {sum check max check sum edge$ is (90,9, 54) with the
incremental algorithm(57, 8, 10) with BFT, and (19, 2, 9) with the priority queue algorithm. The
path in Fig. 8 giveg4329 49, 2063 with the incremental algorithm(3709 37, 194 with BFT, and
(3092 31, 194 with the priority queue algorithm.
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Fig. 7. A path with 19 vertices and its approximatian= 2.05).

Fig. 8. A path with 195 vertices and its approximatien=6.0).

We have generated two sets of test data with different error tolerance and varying number of vertices
on the path, respectively. In each case of the first set, we randomly generate the same number of points
in a 100« 100 area and test the inputs with different error toleranda each case of the second set, we
randomly generate different number of points in a«x1ID area and test the inputs with the same error
tolerance. The results are illustrated in Figs. 9-14 and support our conclusion: (1) the incremental ap-
proach has the worst performance; (2) the BFT and the priority queue algorithms are much more efficient
and (3) on average the priority queue is better than BFT. The difference in running times between the
incremental and BFT approach increases agreases ok increases. This corresponds to the intuition
that BFT should be much faster if coarser approximations are sought.
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5. Conclusions

We have presented a query based approach for approximating polygonal chains in the plane, with the
infinite beam criterion, which matches the worst case time of the best known algorithms for this problem.
We also showed that the query based approach can be used to obtain a subquadratic time exact algorithr
with infinite beam criterion and Euclidean distance metric if some condition on the input path holds.
Although in a special case, this is the first subquadratic result for path approximation with Euclidean
distance metric. The data structures we construct can be used to obtaitn YA time, factor 2
approximation algorithm for the problem.

We conjecture that our results, under the condition of Lemma 5, can be extended to the tolerance zone
criterion. A technical difficulty is in deciding whether the line segmgpg; intersects all disks with
indexi < k < j, given that they are intersected by p; p;). It remains an open problem to extend our
results for general paths while maintaining subquadratic time.
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