
Computational Geometry 30 (2005) 41–58
o

ive
speed up

r efficient
ime exact
olds.
istance

ices
nt

gonal
f the
ation

xample,
www.elsevier.com/locate/comge

Polygonal chain approximation: a query based approach

Ovidiu Daescu∗, Ningfang Mi

Department of Computer Science, University of Texas at Dallas, MS-EC31, Richardson, TX 75080, USA

Received 12 September 2003; received in revised form 28 June 2004; accepted 26 July 2004

Available online 11 September 2004

Communicated by P. Agarwal

Abstract

In this paper we present a new, query based approachfor approximating polygonal chains in the plane. We g
a few results based on this approach, some of more general interest, and propose a greedy heuristic to
the computation. Our algorithms are simple, based on standard geometric operations, and thus suitable fo
implementation. We also show that the query based approach can be used to obtain a subquadratic t
algorithm with infinite beam criterion and Euclidean distance metric if some condition on the input path h
Although in a special case, this is the first subquadratic result for path approximation with Euclidean d
metric.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A polygonal path or chainP in the plane, withn vertices, is defined as an ordered set of vert
(p1,p2, . . . , pn), such that any two consecutive verticespi , pi+1 are connected by the line segme
pipi+1, for 1� i < n. The polygonal path approximation problem is to approximate a general poly
pathP by another polygonal pathP ′ whose vertices are constrained to form an ordered subset o
vertices ofP . The problem appears as a subproblem in many applications in geographic inform
systems (GIS), cartography, computer graphics, medical imaging and data compression. For e
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with recent imaging technologies, medical and satellite images have become very rich in details. Analyz-
ing such images or using them in interactive remote WWW-based applications may require a significant
amount of time. Thus, path approximation algorithms can be used to simplify/compress those images,
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for the purpose of efficient storage or for progressive transmission to a remote site. Similar obse
apply to map representation in geographic information systems, where in many situations (anim
etc.) a high level of detail is unnecessary or even unwanted.

1.1. Problem definition

Given a planar polygonal pathP = (p1,p2, . . . , pn), the polygonal path approximation problem is
find a pathP ′ = (pi1 = p1,pi2, . . . , pim = pn) such that, for eachj ∈ {1,2, . . . ,m − 1}: (i) ij < ij+1,
whereij , ij+1 ∈ {1,2, . . . , n} and (ii) the subpath(pij , pij +1, . . . , pij+1) of P is contained in someerror
toleranceregion of the line segmentpij pij+1. We will also consider the case when the vertices of
approximation are not restricted to a subset of the original path.

Theerror toleranceregion of a line segmentpipj is defined by an error measure criterion. A few er
criteria have been used in solving various polygonal path approximation problems, not necessari
form above [1–3,5,9–11,13,16,17,21–26,28]. If not otherwise specified, we consider the error c
used in [10,16,23,28], called theinfinite beamor parallel-strip criterion, with the Euclidean,L2 measure
of distance. With this criterion, theε-tolerance region of a line segmentpipj is the set of points that ar
within distanceε from the lineL(pipj ) supporting the line segmentpipj (see Fig. 1(I)). If a subpat
Pij ,ij+1 = (pij , pij +1, . . . , pij+1) of P is contained in theε-tolerance region of the line segmentpij pij+1

of P ′, thenpij pij+1 is anε-approximatingsegment forPij ,ij+1. A pathP ′ is anε-approximationof P if
each line segmentpij pij+1 of P ′, for j = 1,2, . . . ,m − 1, is anε-approximatingsegment.

Other commonly used error criteria are the tolerance zone and uniform measure. With thetolerance
zonecriterion [21,23,24], theε-tolerance region of a line segmentpipj is the region of space that is th
union of all radius-ε disks centered at points along the segmentpipj (see Fig. 1(II)). With the uniform
error measure [2], the error of a line segmentpipj is defined as max{d(pk,pipj ) | i � k � j}, where
d(pk,pipj ) denotes the vertical distance betweenpk andpipj (see Fig. 1(III)). This measure applies
x-monotone paths.

In this paper, we consider the optimization version of the polygonal path approximation pro
called themin-# problem: Given a polygonal pathP and a positive approximation errorε, find anε-
approximating pathP ′ of P with the smallest number of vertices.

While the tolerance zone criterion would produce a compressed version that better captures
tures of the original path, the motivation for studying the problem under infinite beam criterion i
fold. The first reason is that the best known solutions under tolerance zone criterion compute a

Fig. 1. Theε-tolerance zones of a single segmentpipj with infinite beam criterion, tolerance zone criterion and unifo
measure.
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Fig. 2. Theε-approximating paths with infinite beam and tolerance zone criteria.

mating lines or semilines in order to obtain approximating segments. Thus, some of our results
useful for this error criterion. The second reason is that infinite beam criterion gives a better de
compression (see Fig. 2).

Lemma 1. Let P ′ be anε-approximating path ofP with tolerance zone criterion. ThenP ′ is an ε-
approximating path ofP with infinite beam criterion.

Proof. If a point of P is within distanceε from a line segmentpij pij+1 of P ′, then it is within distance
ε from the lineL(pij pij+1) supportingpij pij+1. �
1.2. Previous work

Early results for the min-# problem, under various error criteria, were presented by Imai and I
23], Melkman and O’Rourke [24] and Toussaint [28]. In particular, Imai and Iri [23] have formulate
problem in terms of graph theory: construct a path approximation, unweighted directed acyclic gG

and then use breadth first search to compute a shortest path in this graph. Their formalism has b
exploited by most of the algorithms devoted to the problem [2,5,9,10,16]. However, with the exc
of Agarwal and Varadarajan algorithms [2], all the other algorithms have quadratic or superqu
time complexity. The algorithms in [2] combine the previous iterative graph based approach with
and conquer and, using graph compression techniques and more complicated data structures
O(n4/3+δ) time and space complexities, whereδ > 0 is an arbitrarily small constant. However, tho
algorithms work for theL1 distance metric and it has been left as an open problem in [2] to ex
them to the more general,L2 distance metric. Very recently, algorithms with running times that dep
on the size of the output have been proposed in [12], by observing that only the edges ofG that are
needed by the shortest path computation inG need be computed. The most popular heuristic me
that is used in path approximation, the recursive simplification heuristic of Douglas and Peucke
can be implemented in O(n log∗ n) time [19], but does not guarantee to find an optimal solution
the vertices of the approximating path are not required to be a subset of the vertices of the inp
faster algorithms are possible [17,18,22]. Exploiting this fact, given a monotone polygonal pathP and
a parameterε > 0, linear time algorithms are proposed in [1] for computing an approximating path
verticesamong thoseof P . Specifically, they compute in linear time an optimal set ofε

2-approximating
segments forP , called asegment cover, such that, if the segmentej approximates the subpathPij ,ij+1 =
(pij , pij +1, . . . , pij+1) of P then the endpoints ofej are within the ε

2-radius disks centered atpij and
pij+1 , respectively. Then, they prove that the corresponding line segmentpij pij+1 is anε-approximating
segment forPij ,ij+1.

Solutions to polygonal subdivision simplification problem are also based on polygonal path simp
tion. In [13], polygonal path simplification has been used to approximate a subdivisionS with N vertices
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andM extra points in O(N(N +M) logN) time. Finding a minimum size simplification is NP-hard [17]
and, unless P= NP, one cannot obtain in polynomial time an approximation within a factor ofn1/5−δ of
an optimal solution, for anyδ > 0 [15].
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1.3. Our results

Quadratic or near-quadratic time algorithms for the planar min-# problem withL2 distance metric
have been developed almost two decades ago. However, no subquadratic time algorithms are kn
theL2 metric and no nontrivial lower bound could be proved. In this paper we present a new, query
approach for solving the min-# problem with infinite beam criterion, which carries out the computa
a dual space. We give a few results based on this approach, some of more general interest, and
greedy heuristic to speed up the computation. In particular, our results imply an O(n logn) time breadth
first search procedure for some quadratic size graphs and an O(n logn) preprocessing, O(logn) query
time solution for the following problem: Givenn equal radius disksD1,D2, . . . ,Dn, construct a data
structure that, for a query triplet(L, i, j), whereL is a line andi andj are integers such that 1� i <

j � n, answers whetherL intersects all disksDi,Di+1, . . . ,Dj . Under the relaxation that the vertices
the approximating path are within theε-tolerance regions of the vertices ofP (instead of being amon
the vertices ofP ), we further give an O(n logn) time, factor 2 approximation algorithm with the infini
beam criterion. Finally, we show that the dual space approach can be used to obtain a subquadr
exact algorithm with infinite beam criterion andL2 distance metric if the following condition on the inp
path holds:d(pi,pj ) /∈ [ε, ε√2], for 1� i < j � n, whered(pi,pj ) is the Euclidean distance betwe
pi andpj (in fact, it is enough to require that for each vertexpi ∈ P , only a “small” (constant) number o
verticespj are such thatd(pi,pj ) ∈ [ε, ε√2]). Although in a special case, this is the first subquadr
result with theL2 metric. For the general case our algorithm matches the best known, O(n2 logn) worst
case time bound under the infinite beam criterion [10]. All our algorithms require O(n logn) storage.

The algorithms we propose are simple, based on standard geometric operations. We have imp
a version of our solution and present experimental results and comparisons with previous path a
mation algorithms.

2. Preliminaries

In this section, we briefly present the general structure of the previous algorithms for solving the
problem. We exemplify the algorithms for the infinite beam criterion. To solve the min-# problem,
algorithms first build a path approximation, directed acyclic graphG. The vertices ofG are associate
with the vertices ofP and edges correspond toε-approximating line segments forP . An optimal approx-
imating pathP ′ is obtained by a shortest path computation inG. In general,G has O(n2) complexity
(O(n4/3+δ) in [2]). As observed in [10], in many cases one need not explicitly constructG: an optimal
path can be computed while computing theε-approximating segments. LetD(pi, ε) denote the disk with
centerpi and radiusε. The algorithms for computing theε-approximating segments use an iterati
incremental approach similar to the following.

1: for i = 1 ton − 1 do
2: j = i + 1.



O. Daescu, N. Mi / Computational Geometry 30 (2005) 41–58 45

3: while D(pi+1, ε),D(pi+2, ε), . . . ,D(pj, ε) admit line transversal throughpi do
4: if pipj is anε-approximation update the path length atpj (if needed).
5: j = j + 1.
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6: end while
7: end for

In this approach, the path length at a vertex ofP could be updated multiple times, as the computa
of ε-approximating edges proceeds. A more efficient approach [12] is to use a breadth first c
tation of theε-approximating edges that simulates the breadth first shortest path computation
ε-approximating graphG. The structure of the breadth first traversal (BFT) approach is presente
low, with enqueueanddequeuebeing the standard queue operations.

1: enqueue(1)
2: for j = 2 to n do
3: visit(j) = 0.
4: end for
5: repeat
6: i = dequeue(),j = i + 1.
7: while D(pi+1, ε),D(pi+2, ε), . . . ,D(pj, ε) admit line transversal throughpi do
8: If !visit(j), check ifpipj is anε-approximating segment; if yes then

setvisit(j) = 1, set the path length atpj and enqueue(j).
9: j = j + 1.

10: end while
11: until pn has been reached.

Lemma 2. With the BFT approach, the shortestp1-to-pi path length at a vertexpi of P is correctly
computed when the vertex is enqueued and will not be updated by future computation.

Proof. Simple and omitted. �
Since some of our proofs make use of the algorithm in [2] we describe it in more details. F

input pathP with n vertices, the algorithm constructs a compact (bipartite clique cover) represen
G of the ε-approximation graphG(P ) by using a divide-and-conquer approach. LetP1 be the subpath
(p1, . . . , p�n/2�) of P and letP2 be the subpath(p�n/2�+1, . . . , pn) of P . The algorithm recursively com
putes the clique coversG1 andG2 of G(P1) andG(P2), respectively. In the merge step, the algorith
computes a clique coverG12 of the edgesE12 of G(P ), where an edgee ∈ E12 if it is an ε-approximating
edge with one endpoint inP1 and the other one inP2. Then,G1 ∪G2 ∪G12 is a clique cover ofG(P ). The
size of the cover is shown to be O(n4/3+δ). Using this clique cover representation a shortest path fromp1

to pn can be computed in O(|G| + |V |) time.
To obtainG12, they [2] defineCone(pi) for eachpi ∈ P1 andCone(pj ) for eachpj ∈ P2 as follows.

Cone(pi) is the set of (rightward directed) rays emanating frompi such that a rayρ ∈ Cone(pi) if it
intersects the vertical segmentp−

k p+
k , for everyi � k � �n/2�, wherep+

k is the point(xk, yk + ε) andp−
k

is the point(xk, yk − ε). Symmetrically,Cone(pj ) is the set of (leftward directed) rays emanating fr
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Fig. 3. Illustrating the definition ofcone(pi ) and cone(pj ): the edge(pi ,pj ) is in G(P) becausepj ∈ cone(pi ) and
pi ∈ cone(pj ).

pj such thatρ ∈ Cone(pj ) if it intersects the vertical segmentp−
k p+

k , for every�n/2� + 1 � k � j (see
Fig. 3).

The algorithm computesCone(pi) for eachpi , i = 1,2, . . . , n, and then maps the lines supporti
the rays inCone(pi) to a line segmentγi in a dual plane using a standard point-line duality transfo
Let Γ1 be the set of line segmentsγi , for 1 � i � �n/2� and letΓ2 be the set of line segmentsγi , for
�n/2� + 1 � i � n. Noting that(pi,pj ) ∈ E12 if and only if pj ∈ Cone(pi) and pi ∈ Cone(pj ), the
problem reduces to computing line segment intersections in the dual plane. Specifically, the pro
computingG12 reduces to computing a familyF = {(Γ11,Γ21), . . . , (Γ1u,Γ2u)}, where (1)Γ1i ⊆ Γ1 and
Γ2i ⊆ Γ2; (2) each segment inΓ1i intersects every segment inΓ2i and (3) for every pair of intersectin
segmentsγ1 ∈ Γ1, γ2 ∈ Γ2 there is a uniquei such thatγ1 ∈ Γ1i andγ2 ∈ Γ2i.

The familyF is computed by constructing a segment-intersection-searching data structure on
Γ2 based on a multilevel partition tree, each of whose nodes is associated with a so-calledcanonical
subsetof Γ2. The total size of all canonical subsets in the tree is O(n4/3+δ). The queries for this structur
are the segments ofΓ1. The output of a query with a segment inΓ1 is the union of a few pairwise disjoin
canonical subsets which consists of exactly those segments inΓ2 intersecting the query segment. For ea
canonical subsetΓ2i of Γ2, let Γ1i ⊆ Γ1 be the set of segments whose output containedΓ2i. If Γ1i 	= ∅,
the pair(Γ1i , Γ2i) is added to the familyF .

The size of the resulting clique coverG12 of E12 is
∑

i(|Γ1i| + |Γ2i|), which is O(n4/3+δ), and the
running time for computingG12 is dominated by the time to compute the familyF , which is O(n4/3+δ).
If S(n) denotes the size of the clique cover ofG(P ) computed by the algorithm, then the following r
currence inequality is satisfied:S(n) � 2S(n/2)+ cn4/3+δ, wherec is a positive constant. The recurren
solves forS(n) = O(n4/3+δ). Adding the O(n4/3+δ) time to compute a shortest path fromp1 to pn once
the clique cover is available gives a total of O(n4/3+δ) time for computing an optimalε-approximating
path with theL1 distance metric.

3. A query based approach

In this section we present our query approach for solving the polygonal path approximation pr
We first define two key operations,Query(·, ·) andSpan(·), and show how to implement them efficient
Then, we show how to use them to obtain efficient algorithms with: (i) a special, “vertical” error me
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and (ii) theL2 distance metric, under the assumption thatd(pi,pj ) /∈ [ε, ε√2], for 1� i < j � n, with
d(pi,pj ) theL2 distance betweenpi andpj .

From Lemma 2 above, it follows that with the BFT approach a vertexpj of P that has been marked
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as visited need not be checked again in pairs(pi,pj ), with i < j . Let pi be the vertex dequeued by th
BFT algorithm. Since it may happen that many vertices immediately followingpi have been alread
visited, we should avoid including those vertices in future computation associated withpi . However,
incremental approaches cannot avoid this computation. Then, it may be appropriate to combine
algorithm described in the previous section with a query method for computingε-approximating edges
rather than using the incremental method of computation. This may also be interesting for p
applications mentioned earlier, such as animation, where one may want to approximate various s
of P at different times. To this end, we divide the vertices ofP in three categories: (1)processed: those
visited by BFT that are no longer in the queue, (2)active: those visited by BFT that are in the queue a
(3) inactive: those that have not yet been reached by the BFT. With a query method, one should
to answer fast ifpipj is anε-approximating segment without first having to compute information
verticespk , wherei < k < j . Specifically, the following two operations should be supported.

• Span(i): compute the largest indexj such that there is a line stabler throughpi for the set of disks
D(pi+1, ε),D(pi+2, ε), . . . ,D(pj, ε) (pipj could be anε-approximating segment).

• Query(i, j): answer ifpipj is anε-approximating segment.

Let V1, V2 andV3 be the sets of processed, active and inactive vertices, and consider the BFT alg
at some stage. The queue associated with the BFT contains a set of vertices such that the sho
lengths of any two of them differ by at most one. In other words, all vertices can be reached fromp1 with
k − 1 or k links, for some integer 2� k � n − 2. If pi

1 denotes the shortestp1-to-pi path length atpi ,
thenpi

1 � k if pi ∈ V1 ∪ V2 andpi
1 � k if pi ∈ V3. We further augment the BFT algorithm with a gree

approach: vertices inV2 are maintained in two priority queues having as keys the indices of vertic
P , such that a dequeue operation on each of the queues returns the largest index in the queue.
priority queue corresponds to verticesV 1

2 that can be reached withk − 1 links and the second one
those verticesV 2

2 reachable withk links.

Lemma 3. The time to maintain the two priority queues isO(f (m) log(f (m))), wheref (m) = O(n)

is the number of vertices ofP that can be reached fromp1 with no more thanm − 1 ε-approximating
segments andm is the number of vertices of amin-# approximating path.

Proof. The total number of vertices visited by the BFT algorithm beforepn is reached is O(f (m)).
Only the visited vertices are enqueued in one of the two priority queues, resulting in a to
O(f (m) log(f (m))) time. �

Observe that it is possible to havepi ∈ (V1 ∪ V2) andpj ∈ V3 such thati > j . However, only pairs o
the form(i, j), with pi ∈ V 1

2 , pj ∈ V3 andi < j should be considered forQuery(i, j) operations. Thus
we need to maintain the set of inactive vertices such that, when a vertexpi is dequeued from the BF
queue, the inactive verticespj , with j > i, are easily available.
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Lemma 4. Assuming Span(i) is known, the inactive vertices forpi can be found inO(logI + k) time,
whereI is the set of currently inactive vertices andk is the number of inactive vertices inI with indices
betweeni and Span(i). The setI of inactive vertices can be maintained inO(n+f (m) logn) time, using
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Proof. Use a balanced binary search treeT on the inactive vertices. Initially,p1 is in the queue and
p2,p3, . . . , pn are inT . The keys inT are the indices of the vertices inT . Assume that, after a numb
of steps in the BFT algorithm,pi is dequeued from the queue. We searchT to find the first vertex with
index larger thani. Then, the inactive vertices up toSpan(i) can be found by a simple traversal inT . If
one of the visited verticespj becomes active (as a result ofQuery(i, j)), we remove the vertex fromT .
Then, since each remove operation inT takes O(logn) time and there are O(f (m)) remove operation
overall, we obtain the claimed time and space bounds.�

From Lemmas 3 and 4 it follows that the time complexity of the greedy BFT algorithm depends
time complexities for performingSpan(·) andQuery(·, ·) operations and the number of failedQuery(·, ·)
operations.

Let d(pi,pj ) denote the Euclidean distance betweenpi andpj . The following lemma bounds the tim
complexities ofSpan(i) andQuery(i, j) operations.

Lemma 5. With O(n logn) preprocessing, for any pair(pi,pj ), with 1 � i < j � n, Query(i, j) can be
answered inO(logn) time. In addition, ifd(pi,pj ) /∈ [ε, ε√2], for all 1 � i < j � n, then Span(i) can
be answered inO(log2 n) time.

To prove this lemma we first introduce some geometric structures. Letpi andpj , with i < j , be two
vertices ofP . For a vertexpk ∈ P , with i < k < j , let σk denote the set of lines that are tangent
the diskD(pk, ε). Using a standard point-line duality transform,σk is mapped to a hyperbolaHk in the
dual plane [20]. Any vertical line in the dual plane intersects each of the two branches ofHk exactly
once; the upper branchHa

k corresponds to tangents to the upper semicircle ofD(pk, ε) and the lower
branchHb

k corresponds to tangents to the lower semicircle (see Fig. 4). Each branch is anx-monotone
and unbounded Jordan curve andHa

k ∩ Hb
k = Φ. The dual of a line transversal ofD(pk, ε) corresponds

to a point belowHa
k and aboveHb

k . Observe that any pair(H c
i ,H d

j ) of hyperbolic branches intersects
at most one point, wherei 	= j andc, d ∈ {a, b}. (This it true only for equal-radius disks; for differe
radii disks each pair can intersect in at most two points.)

Let Lij be thelower envelopeof Ha
k and letUij be theupper envelopeof Hb

k , for k = i, i + 1, . . . , j .
Then,L(pipj ) is a common transversal (a line stabler) of{D(pi+1, ε),D(pi+2, ε), . . . ,D(pj−1, ε)} (the
line segmentpipj is a valid approximation segment) if and only if its dual point lies betweenLij andUij .
From [27], it follows that the complexities ofLij , Uij and the regionIij sandwiched between them a
O(j − i) and thatIij has at most one connected component. (The last property is not true for dif
radii disks, in which case there could be O(j − i) connected components.) Since for a set ofn equal-
radius disks, the space of line transversals that are restricted to pass through a common poip can
have O(n) connected components [10,12], the line dual topi can have O(j − i) disjoint segments inIij .
This is a key property that makes the min-# problem with infinite beam criterion somehow harde
with other error criteria (such as tolerance zone and uniform measure). It gives rise to the cond
Lemma 5: requiring thatd(pi,pj ) /∈ [ε, ε√2], for 1� i < j � n, assures that there is only one connec
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Fig. 4. Dual transforms of tangents to disks: The tangents to the diskD(pk, ε) (D(pj , ε)) map to the hyperbolaHk (Hj ) in

dual plane and the linel1k (l2k , l1j or l2j ) maps to the pointl∗1
k (l∗2

k , l∗1
j or l∗2

j ) in dual plane.

component (the details are given in [12]). Consequently, the line dual topi has at most one line segme
in Iij .

If we use a vertical error measure, however, where the error region of a point is a vertical line s
instead of a disk, the space of line transversals that are restricted to pass through a common poi
easily seen to have at most one connected component.

Lemma 6. Themin-# problem with infinite beam criterion and vertical error measure can be solve
O(n4/3+δ) time and space, whereδ > 0 is an arbitrarily small constant.

Proof. The result can be obtained by a simple modification of Agarwal and Varadarajan [2] min-#
rithm for x-monotone paths with uniform metric. For infinite beam criterion and vertical distance m
the difference is that right (or left) oriented rays are replaced by lines (the pathP is not monotone) and
thus wedges are replaced by double wedges. The only places where this plays a role are in the c
tion of the lower and upper convex hulls (of the upper and lower endpoints of the vertical error seg
and in the computation of the double cone atpi . The double cone atpi can be found by computing th
largest separating double cone of the two convex hulls, if such a separation is possible. This red
computing the tangents frompi to the two convex hulls. Note that the convex hulls are used only to
compute the double cone atpi , since only the double cone atpi is important for the outcome of th
algorithm. Then, to perform the incremental updating of the convex hulls and to compute the tang
altogether O(logn) time, as in [2], it suffices to use the solution in [16], based on the on-line convex
algorithm of Avis et al. [4]. Alternatively, we can maintain the convex hulls and answer queries effic
by using recently developed linear space dynamic planar convex hull data structures, that allow in
deletion of points in amortized O(logn) time per operation and support tangent queries through a g
point in O(logn) time [8]. �
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Fig. 5. Illustration of the forestF of treesT1, T2, . . . , Ts .

We remark that a similar approach can be used with theL1 metric. In that case, the space of li
transversals ton L1 disks, which are restricted to pass through a common pointp, can have at most tw
connected components. This property is implicitly exploited by the subquadratic time algorithm in

In what follows, we set up the data structures for computingSpan(i) and Query(i, j). Let T be a
complete binary tree such that the leaves ofT are associated, in order, with the vertices ofP . At each
leaf li , we also store the hyperbolic branchesHa

i andHb
i , the duals of the tangent lines toD(pi, ε). For

an internal nodev in T , let i andj be the smallest and largest indices of the leaf descendants ofv. We
store atv the regionI (v) = Iij sandwiched between the lower envelopeLij of {Ha

k | i � k � j} and the
upper envelopeUij of {Hb

k | i � k � j}. Since any two hyperbolic branches intersect each other at
once,Lij andUij have complexity O(j − i) [27]. We computeI (v) for all verticesv of T , using a divide-
and-conquer method implemented by a bottom up traversal ofT . The boundary ofI (v) is maintained
as two monotone pieces, corresponding to the contributions of the lower and upper envelopes of
sets of hyperbolic branches stored at the leaf descendants ofv. Like in [5], I (v) can be computed, fo
all verticesv in T , in a total of O(n logn) time by simple merge-like operations. Note that in general
regionI (r) at the rootr of T may be empty and thusT is a forest. We reorganizeT , in the same time
bound, in a family of treesF = {T1, T2, . . . , Ts} such thatT1’s leaves correspond to the longest poss
prefix D1 = {D(p1, ε),D(p2, ε), . . . ,D(pj1, ε)} that admits a line transversal,T2’s leaves correspon
to the longest possible prefix starting atpj1+1, and so on (see Fig. 5). Note that it is easy to const
examples whereT would have�(logn) more trees with nonempty intersection at the root thanF (e.g.,
when all the vertices ofP are on thex-axis except the last one, which is far above it).F is also useful
in support of Lemma 7 below. We explain the process for obtainingT1. For the remaining trees inF the
process is similar.

Let j0 = 0. For the treeT1 of F , we should find the largest possible indexj1 such that the region
Ij0+1,j1 is not empty. We begin to constructT1 by forming a search pathπ1 starting from the leafp1 of
T . In general, the pathπi for someTi has an ascending phase and a descending phase. In each ste
ascending phase of the pathπ1, we go up to the parent nodevp of the current node. We stop whenI (vp)

is empty and we come atvp from a left child. Clearly, the leaves with indices fromj0 + 1 to the larges
index of a leaf node in the subtree rooted at the left childvl of vp appear inT1. Let I1 denote the region
of these leaf descendants ofvp. I1 is computed while traversingπ1 using the merge-sort like procedu
described forT (note that forT1 it is the region stored atvl).

We then begin the descending phase ofπ1 from the right childvr of vp and keep going down to th
left child vrl of vr until the intersection ofI (vrl ) andI1 is not empty or a leafpk is reached. In the late
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Fig. 6. The construction of the forestF = {T1, T2, T3}.

case,j1 is set tok − 1 or k, depending on whether the merged region ofI (pk) andI1 is empty or not.
In the former case, we updateI1 as the intersection ofI (vrl ) andI1 and continue the descending pha
from the sibling nodevrr of vrl (vr becomesvrr ). The descending path stops at some leaf node and w
j1 to the index of that node or the index of the previous node, depending on whether the last nod
a non-empty or an empty intersection withI1. Thus, the value ofj1 is the sought largest possible ind
of T1.

With that, we begin to find the longest possible prefix forT2 by forming another search pathπ2 starting
from the leaf nodepj1+1. We constructT2, T3 and so on in the same way as we constructT1 (see Fig. 6).
Since for each treeTi of F , for 1 � i � s, the time to merge the regions associated with the leave
Ti at each node onπi is O(ni), whereni is the number of leaves ofTi , and the search pathπi in T has
O(logn) nodes, the computation ofTi takes O(ni logn) time. Noting that

∑s
1 O(ni) = n, the total time to

construct the forestF in O(n logn).
This implies the following result.

Lemma 7. F can be used to compute an approximating path with vertices inside the error tole
regions of the vertices ofP and of size at most twice the size of an optimalε-approximating path with
vertices among the vertices ofP .

Proof. For eachTi ∈ F , pick a point in the intersection stored at the root ofTi and trim the dual line to
a line segment with endpoints inside the first leaf and the last leaf ofTi , resulting in|F | line segments
Then join the resulting segments to form a path, which adds|F | − 1 segments. Obviously, an optim
approximating path must have at least|F | vertices, from which the claim follows. OnceF is available,
the construction takes O(|F |) time. �

Note that our 2-factor approximation solution is different from the greedy solutions in [1,17,24], w
consider wedges instead of double wedges and/or may depend on some predefined stabbing or
it can be easily seen that the same results hold for other distance metrics, such asL1 metric.

We now give the proof for Lemma 5.
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Proof of Lemma 5. Let pij be the dual of the lineL(pipj ). To perform aQuery(i, j) operation, we
form a search pathπij in F , from the leafli to the leaflj . Observe thatli andlj may be in the same tree
or in different, adjacent trees ofF . We say that a nodev of T is on theright fringe (left fringe) of πij
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if v is not onπij but it is a right (left) child of a node onπij . Noting that the query is a decomposab
search problem, we can answerQuery(i, j) by determining ifpij is insideI (v) for eachv that is a right
(left) fringe node ofπij (answering “true” if and only if it is inside them all). Using the approach in
based on fractional cascading technique of Chazelle and Guibas [6,7], the answer forQuery(i, j) can
be obtained in O(logn) time. Span(i) computation proceeds in a similar way. We form a search paπi

in F as follows. We start atli and go up the corresponding treeTli storing li until we find a node with
nonempty intersection on the right fringe or we reach the root ofTli . If the root has been reached, w
go on a downward path onTli+1 (if it exists) until we find a node with nonempty intersection on the
fringe. Letv be the root of that subtree (right or left fringe) and letl(pi) be the dual line ofpi . We then
compute the intersection ofl(pi) with I (v). The condition in the lemma assures thatl(pi) ∩ I (v) has at
most one connected component. Ifv ∈ Tli and l(pi) ∩ I (v) 	= Φ, set l(pi) = l(pi) ∩ I (v). Then go up
Tli until a nodew on the right fringe ofπi with l(pi) ∩ I (v) = Φ is found or the root ofTli has been
reached, while updatingl(pi) along the way. Then follow a downward path (possibly inTli+1) until a
node with nonempty left fringe is found. We then proceed down the tree as follows. Letv be the curren
node and letvl andvr be the left and right children ofv. If l(pi) ∩ I (vl) 	= Φ proceed on right fringe
of v with l(pi) = l(pi) ∩ I (vl), else proceed on the left fringe ofv with l(pi). The computation stop
at some leaflj . Clearly,Span(i) = j − 1. The computation forSpan(i) at a node in the tree is simila
to that forQuery(i, j) without fractional cascading. At each nodev on the search path we compute t
two endpoints of the intersection ofl(pi) with the boundary ofI (v) using binary search on the bounda
of I (v), which takes O(logn) time. There are O(logn) levels on the search path and thusSpan(i) can
be answered in O(log2 n) time. We note here that if one is willing to increase the preprocessing tim
O(n2 logn), by precomputingl(pi) ∩ I (v) for all nodesv ∈ F andi = 1,2, . . . , n, thenSpan(i) can be
answered in O(logn) time. �
Corollary 1. Given a set ofn equal radius disksD1,D2, . . . ,Dn, in O(n logn) time one can construct
data structure of sizeO(n logn) such that, for a query triplet(L, i, j), whereL is a line andi andj are in-
tegers,1 � i < j � n, it can be decided inO(logn) time whetherL intersects all disksDi,Di+1, . . . ,Dj .

The results in Lemmas 3, 4 and 5 can be combined to obtain an efficient algorithm for solving th
# problem. Alternatively, we can use Lemma 5 together with the divide and conquer procedure in
obtain the following result.

Lemma 8. Under the condition in Lemma5, thatd(pi,pj) /∈ [ε, ε√2], for all 1 � i < j � n, themin-#
problem with the infinite beam criterion andL2 distance metric can be solved inO(n4/3+δ) time, where
δ > 0 is an arbitrarily small constant.

Proof. We can obtain the result by applying the divide and conquer procedure in [2], enhancedF
for constructing a clique coverG of theε-approximation graphG in O(n4/3+δ) time, and then computin
a shortest path fromp1 to pn in G in O(|G| + |V |) time. Since the size of the clique coverG of G is
O(n4/3+δ), the total time to solve the min-# problem is O(n4/3+δ).
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The main difficulty in applying the technique in [2] is in computing the two sets of segments used in
the combine phase of the divide-and-conquer algorithm. Since that phase is dominated by the O(n4/3+δ)

time to compute canonical subsets for segment intersection queries, to keep the same bound we need to
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compute the two sets of segments in no more than O(n4/3+δ) time. In what follows, we show how to us
F to compute these two sets in O(n log2 n) time.

With the infinite beam criterion andL2 distance metric, the right (or left) rays in [2] are replaced
lines and thus wedges are replaced by double wedges. Therefore, the double cone atpi , for 1� i � �n/2�,
contains a set of lines that pass throughpi and intersect the diskD(pk, ε), for everyi � k � �n/2�. Sym-
metrically, the double cone atpj , for �n/2� + 1� j � n, contains a set of lines that pass throughpj and
intersect the diskD(pk, ε), for every�n/2� + 1 � k � j . We can useF to compute the line segment th
is the dual of the double cone atpi , for every 1� i � n, in a total of O(n log2 n) time. The computation fo
somepi is similar to that ofSpan(i): form a search pathπi in F and obtain the line segmentl(pi) by com-
puting the intersection ofl(pi) andI (v) for each nodev on (the right/left fringe of)πi. Note that ifp�n/2�
is in someTk ∈ F , then we only need consider the vertices associated withTk and the predecessor an
successor ofTk in F (if there exists a linepipj stabbing the disksD(pi+1, ε),D(pi+2, ε), . . . ,D(pj, ε),
wherepi is in Tk−2 andpj is in Tk, then we can haveT

′
k−1 starting atpjk−2+1 and ending atpj , which

gives a longer prefix thanTk−1). The construction ofF takes O(n logn) time and can be done in a pr
processing step. Since the computation of the double cones for the combine phase takes O(n log2 n) time,
the combine phase remains dominated by the O(n4/3+δ) time to construct the canonical subsets from s
ment intersection queries. Then, the time recurrence remainsS(n) � 2S(n/2) + cn4/3+δ and we obtain
the claimed time bound. �

Although in a special case, this is the first subquadratic result for path approximation withL2 distance
metric. The result is useful especially when the algorithm is used to approximate borders of fat
regions and terrains, and in medical imaging, where the condition stated in the lemma may b
satisfied. For the general case, as shown below, the query approach matches the time complex
best known algorithms for polygonal chain approximation with infinite beam criterion andL2 distance
metric.

Theorem 1. With the query approach, themin-# problem with infinite beam criterion andL2 metric can
be solved inO(n2 logn) time andO(n logn) space.

Proof. We note that we can find a solution using onlyQuery(·, ·) operations. For eachvi , 1 � i < n,
there are O(n) Query(i, j) operations, wherei < j � n. Since eachQuery(i, j) takes O(logn) time the
query based algorithm requires O(n2 logn) time. �
Note. Some of the ideas in this section can be applied to other, unrelated problems. In particu
can extend Lemma 4 as follows. LetG be an unweighted directed graph withn vertices, such that fo
each vertexvi ∈ G, there are edges(vi, vi1), (vi, vi1+1), (vi, vi1+2), . . . , (vi, vi2) ∈ G. That is,G can be
specified by its set of vertices and the index ranges(i1, i2) associated with each vertexvi ∈ G. If a
standard representation is used for storingG, O(n2) space is required, sinceG can have O(n2) edges.
Computing a single source shortest path inG using standard breadth first search would take O(n2) time.
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Lemma 9. A single source shortest path tree in a graphG specified as above can be computed in
O(n logn) time andO(n) space.
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Proof. Similar to the proof of Lemma 4, we begin with the O(n logn)-time construction of a balance
binary search treeT on the vertices ofG, where the keys inT are the indices of the vertices ofG.
Assumev1 is the source vertex. Initially,v1 is in the queue andv2, v3, . . . , vn are inT . Since we have th
index ranges(i1, i2) associated with each vertexvi of G, whenvi is dequeued from the queue it tak
O(logn) time to find the first unvisited vertex with index no smaller thani1, by searchingT with the key
i1. Then, the unvisited vertices up tovi2 can be found in O(logn + k) time by a simple traversal inT ,
wherek � |i2 − i1|. Note that the number of unvisited vertices can be smaller than|i2 − i1| since some
vertices with index in the range[i1, i2] may have been removed fromT . We enqueue the visited vertic
into the queue and remove them fromT . Since the removal does not increase the height ofT , we need
not perform a standard deletion onT for a visited node. The traversal of the subtree ofT for the nodes
in the range[i1, i2] can simulate an Euler Tour traversal of that subtree, in which each node is vis
most three times (from the left, from below and from the right). Deleting a node when it is last visi
the tour takes O(1) time. Then, the total time required by remove operations is O(n) and we obtained th
claimed time and space bounds. Obviously, the same bounds hold even if we perform a standard(logn)

time delete operation for each visited node.�

4. Experimental results

In this section, we report the results of our experiments and give comparisons for three algo
for solving the min-# problem. The first algorithm corresponds to the iterative, incremental app
presented in Section 2. As mentioned there, the path length at a vertex could be updated more t
during the computation. For the second algorithm, which is also presented in Section 2, we use a
first traversal (BFT) approach and put a vertex into a standard queue if the path length of this
is updated (the path length at a vertex may be updated at most once). For the third algorithm,
two priority queues having as keys the indices of vertices ofP , such that a dequeue operation on e
of the queues returns the largest index in the queue. We have observed that the BFT and priori
algorithms are much more efficient than the incremental algorithm and the priority queue alg
has better performance than the BFT algorithm on average. Specifically, we define the followin
parameters to compare these algorithms.

• sum_check: the sum of the check time of all vertices inP , where the check time of a vertex is t
number of times it is visited during computation.

• max_check: the max value of the check time at a vertex ofP .
• sum_edges: the number ofε-approximating edges in the path approximating graphG.

For example, for the path in Fig. 7,(sum_check,max_check,sum_edges) is (90,9,54) with the
incremental algorithm,(57,8,10) with BFT, and (19,2,9) with the priority queue algorithm. Th
path in Fig. 8 gives(4329,49,2063) with the incremental algorithm,(3709,37,194) with BFT, and
(3092,31,194) with the priority queue algorithm.
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Fig. 7. A path with 19 vertices and its approximation (ε = 2.05).

Fig. 8. A path with 195 vertices and its approximation (ε = 6.0).

We have generated two sets of test data with different error tolerance and varying number of
on the path, respectively. In each case of the first set, we randomly generate the same number
in a 100∗ 100 area and test the inputs with different error toleranceε. In each case of the second set,
randomly generate different number of points in a 10∗ 10 area and test the inputs with the same e
tolerance. The results are illustrated in Figs. 9–14 and support our conclusion: (1) the increme
proach has the worst performance; (2) the BFT and the priority queue algorithms are much more
and (3) on average the priority queue is better than BFT. The difference in running times betwe
incremental and BFT approach increases asε increases orn increases. This corresponds to the intuit
that BFT should be much faster if coarser approximations are sought.
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Fig. 9. Comparison ofsum_checkvalues with differ-
ent error tolerance.

Fig. 10. Comparison ofmax_checkvalues with different
error tolerance.

Fig. 11. Comparison ofsum_edgesvalues with differ-
ent error tolerance.

Fig. 12. Comparison ofsum_checkvalues with differ-
ent number of points.

Fig. 13. Comparison ofmax_checkvalues with different
number of points.

Fig. 14. Comparison ofsum_edgesvalues with different
number of points.
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5. Conclusions

We have presented a query based approach for approximating polygonal chains in the plane, with the
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infinite beam criterion, which matches the worst case time of the best known algorithms for this pr
We also showed that the query based approach can be used to obtain a subquadratic time exact
with infinite beam criterion and Euclidean distance metric if some condition on the input path
Although in a special case, this is the first subquadratic result for path approximation with Euc
distance metric. The data structures we construct can be used to obtain an O(n logn) time, factor 2
approximation algorithm for the problem.

We conjecture that our results, under the condition of Lemma 5, can be extended to the toleran
criterion. A technical difficulty is in deciding whether the line segmentpipj intersects all disks with
index i < k < j , given that they are intersected byL(pipj ). It remains an open problem to extend o
results for general paths while maintaining subquadratic time.
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