
Performance-Guided Load (Un)Balancing
under Autocorrelated Flows

Qi Zhang, Member, IEEE, Ningfang Mi, Student Member, IEEE,

Alma Riska, Member, IEEE, and Evgenia Smirni, Member, IEEE

Abstract—Size-based policies have been shown in the literature to effectively balance the load and improve performance in cluster

environments. Size-based policies assign jobs to servers based on the job size and their performance improvements are an outcome of

separating “short” from “long” jobs, by avoiding having short jobs waiting behind long jobs for service. In this paper, we present evidence

that performance improvements due to this separation quickly vanish if the arrival process to the cluster is autocorrelated. Based on our

observations, we devise a new size-based policy called D_EQAL that still strives to separate jobs to servers according to job size but this

separation is now biased by an effort to reduce performance loss due to autocorrelation in the arrival flows to each server. As a result of

this bias, all servers may not be equally utilized (i.e., the load in the system may be “unbalanced”), but performance benefits become

significant. D_EQAL can be used on-line as it does not assume any a priori knowledge of the incoming workload. Extensive simulations

show the effectiveness of D_EQAL under autocorrelated and uncorrelated arrival streams and illustrate that the policy successfully self-

adjusts the degree of load unbalancing based on monitored performance measures.

Index Terms—Load balancing, autocorrelated arrivals, highly variable service times, self adaptive policies.

Ç

1 INTRODUCTION

IN the past few years, there has been a renewed interest in
the development of load balancing policies for clustered

systems with a single system image, i.e., systems where a
set of (homogeneous) hosts behaves as a single host. Jobs (or
requests) arrive at a dispatcher which then forwards them
to the appropriate server.1 While there exists no central
waiting queue at the dispatcher, each server has a separate
waiting queue and a separate processor that operates under
the first-come first-serve (FCFS) queueing discipline, see
Fig. 1. The dispatching policy is critical for system
performance and its effectiveness strongly depends on the
stochastic characteristics of the jobs as well as on the
performance measures that the system strives to optimize. If
job service times are highly variable, then policies that use
the size of the incoming jobs as a basic load balancing
criterion, have been shown to minimize the expected job
completion time and the expected job waiting time [10], [9].
This broad family of load balancing policies is known as
size-based policies.

The basic premise for the success of size-based policies is
reduction of variability in the job service time distribution at
each server. First, it has been demonstrated in the literature

that increased variability in the service process of an M/GI/
1 queue results in longer waiting queue lengths [13]. Longer
waiting queues imply longer expected job response times
(i.e., waiting plus service times) and longer average job
slowdowns (defined as the expected value of the ratio of the
job response time to the job service time). In an M/GI/1
setting, the performance of small jobs that are queued
behind large jobs degrades significantly, which then
contributes to longer average job response time and longer
average job slowdown. Size-based policies that direct jobs
of similar sizes to the same server aim at reducing the
variation in job service times seen by each server and at
diminishing the proportion of small jobs waiting behind
long jobs. Defining the intervals of job sizes served by each
server must be done judiciously. If there is a priori
knowledge of the job service time distribution, then
splitting the cumulative distribution function (CDF) of job
service times in equal parts, as many as the servers, ensures
that all servers are equally utilized (i.e., the system is load
balanced) and that jobs of “similar” size are directed to the
same server. The optimality of size-based policies in
homogeneous environments with respect to minimizing
the expected job response time and the expected job waiting
time has been proved in [9].

Not all size-based policies require a priori knowledge of
the job service time distribution as the empirical distribu-
tion may be estimated on-the-fly by collecting statistics of
the past workload seen by the system [25]. A required
condition for size-based policies is that upon job arrival at
the dispatcher, an accurate estimate of the job service time is
possible. This condition restricts our discussion here to
systems where accurate estimation of job service times is
possible.

Several types of clustered systems can take advantage of
size-based policies. One example is locally-distributed Web
server clusters where a switch is the initial interface

652 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

. Q. Zhang is with the Windows Server Performance Team, Microsoft, Bldg
26/1407, One Microsoft Way, Redmond, WA 98052.
E-mail: qizha@microsoft.com.

. N. Mi and E. Smirni are with the Department of Computer Science,
College of William and Mary, Williamsburg, VA 23187-8795.
E-mail: {ningfang, esmirni}@cs.wm.edu.

. A. Riska is with Seagate Research, 1251 Waterfront Place, Pittsburgh, PA
15222. E-mail: Alma.Riska@seagate.com.

Manuscript received 17 July 2006; revised 20 Feb. 2007; accepted 16 Aug.
2007; published online 12 Sept. 2007.
Recommended for acceptance by R. Iyer.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0190-0706.
Digital Object Identifier no. 10.1109/TPDS.2007.70775.

1. In this paper, we use the terms “jobs” and “requests” interchangeably.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

between the cluster nodes and the Internet [3], [25], [15]. For
static requests in Web server clusters, e.g., transfers of
image or text files, the job service time is analogous to the
size of the transferred file. This information can be
immediately used by the dispatcher to assign the request
to the appropriate server [25].2 Media-server clusters that
provide streaming of audio and video is another example of
a centralized cluster where job size is known a priori and
where size-based policies can be used [22], [6]. Storage
systems that use mirroring to improve performance and
data availability is yet another case of a cluster system
where load balancing based on the job size is possible.

Here, we focus on the general problem of load balancing
in a homogeneous cluster of FCFS servers depicted in Fig. 1,
aiming at improving the expected job response time and the
expected job slowdown. In contrast to prior work in size-
based policies, which assumes that the arrival process at
the dispatcher is independent and identically distributed
(i.i.d.), we examine the performance of size-based policies
under an autocorrelated arrival process. Autocorrelation in
the arrival process implies that there is a dependence
structure in the arrival flows. Conventional wisdom has it
that the arrival process in Internet servers is not i.i.d.
because of the self-similar nature of network traffic [20].
Autocorrelated flows have also been observed in multi-
tiered systems [14] and storage systems [17].

In this paper, we show that the effectiveness of size-
based policies diminishes if the workload arrival process is
autocorrelated. We closely examine the performance effects
of autocorrelation under several load balancing policies
including ADAPTLOAD, a size-based policy, and several
classic policies including Join the Shortest Weighed Queue,
Join the Shortest Queue, and Round-Robin in order to build
intuition on the problem. Based on our observations, we
propose D_EQAL, a new size-based load balancing policy
that reduces performance degradation due to autocorrela-
tion in each server. D_EQAL dynamically distributes work
equally addressing autocorrelation and load, and may
unbalance load in the system in order to benefit perfor-
mance. If the arrival process to the cluster is uncorrelated,
then the policy loads each server with equal work, i.e., aims
at balancing the load across all servers. If the arrival process

to the cluster is autocorrelated, then D_EQAL loads each
server with unequal work such that load in the system
becomes unbalanced, but overall system performance
increases dramatically. D_EQAL does not assume any a
priori knowledge of the job service time distribution nor
any knowledge of the autocorrelation structure in the
arrival streams, yet it successfully copes with changing
workloads by observing past arrival and service character-
istics as well as past performance. To the best of our
knowledge, this is the first time that dependence in the
arrival process becomes a critical aspect of load balancing.

This paper is organized as follows: Section 2 presents
related work. Section 3 gives evidence of performance
deterioration in a single server system due to autocorrelated
arrivals and demonstrates that performance gains of size-
based policies in clusters quickly evaporate in the presence of
autocorrelated arrivals. In Section 4, we first present a policy
that unbalances the load in a static manner to improve
performance under autocorrelated flows. D_EQAL, the
proposed on-line size-based policy, is presented later in the
section and its performance is evaluated via detailed
simulation. Section 5 summarizes our contributions.

2 RELATED WORK

A significant body of research in task scheduling and load
balancing has been developed over the years (see [11], [9]
and references within), but only recently there has been a
consensus that traditional load balancing policies, i.e., join-
the-shortest queue or join-the-least-loaded server, result in
high average job response time and high average job
slowdown if job service times are highly variable and/or
heavy-tailed [10]. For workloads with highly variable
service times, size-based policies, which advocate dedicat-
ing servers to jobs of similar sizes, have been shown in the
literature to achieve high performance [10], [25]. Assuming
that there are N servers, the job sizes are partitioned into
N intervals, ½s0 � 0; s1Þ, ½s1; s2Þ, . . . , ½sN�1; sN � 1Þ, so that
server i is responsible for satisfying requests of size between
si�1 and si. By dedicating servers to requests of similar size,
these policies reduce the average job slowdown through
separation of long and short jobs. Despite the fact that size-
based policies are stateless, i.e., oblivious of the instanta-
neous load in each server, they successfully load each
server with approximately the same amount of work so that
all servers are equally utilized [10], [9]. The optimality of
size-based strategies is proved in [9].

Note that size-based policies are based solely on a priori
knowledge of the distribution of the incoming job sizes and
not of the instantaneous load in the servers. Even if the job
service time distributions are not known a priori, on-line
versions of size-based policies have shown to maintain high
performance for workloads that are highly variable across
time [25]. ADAPTLOAD has been developed as an online
version of a size-based policy that monitors the incoming
workload and builds the histogram of job size frequencies
while the system is in operation. Based on this histogram, it
self-adjusts the interval boundaries according to changes in
the operational environment. Rapid fluctuations in job size
frequencies and/or job service times are immediately
reflected in the histogram.

ZHANG ET AL.: PERFORMANCE-GUIDED LOAD (UN)BALANCING UNDER AUTOCORRELATED FLOWS 653

Fig. 1. Model of a clustered server.

2. Size-based policies can be adapted for Web server clusters that serve
dynamic requests. For details, we direct the reader to [25]. Our focus here is
on the more general problem of the effectiveness of size-based policies
under autocorrelated arrivals.

Size-based load balancing policies have been examined
under the assumption of i.i.d. arrivals into the cluster.
Nonetheless, a significant body of literature shows that
dependence in arrival flows exists, especially in network-
related traffic [20]. Autocorrelated flows have been also
observed in multitiered systems [14] and storage systems
[17]. Even for systems that operate under low to moderate
utilization levels, increased autocorrelation in their arrival
process has been shown detrimental for performance, i.e.,
the higher the autocorrelation, the longer the expected
response times [8]. Similar results are reported in [2] where
the performance effects of short-range dependence versus
long-range dependence in the arrival streams are examined.
In the context of networking, traffic shaping has been used
as a technique to alleviate the negative effects of auto-
correlation, by dropping, reordering, or delaying selected
requests [5], [21], [7], [1]. Finally, recent analytic models of
a single queue with autocorrelated interarrival and/or
service process, have demonstrated that flows out of the
queue are also autocorrelated and propagate to the next
queue that feeds from that departure process [23].

3 MOTIVATION

In this section, we present data that have been measured on
real systems to confirm the existence of dependence in arrival
streams. Then, we givemotivation for this workbypresenting
the performance of a single server under autocorrelated
arrivals and by examining the performance of load balancing
policies in a cluster under autocorrelated arrivals.

3.1 Autocorrelation in Systems

Throughout this paper, we use the autocorrelation function
(ACF) as a metric of the dependence structure of a time
series (either request arrivals or services) and the coefficient
of variation (CV) as a metric of variability in a time series
(either request arrivals or services). CV values less than 1
indicate that the variability of the sample is low. CV values
larger than 1 indicate high variability. The exponential
distribution has a CV of 1.

Consider a stationary time series of random variables
fXng, where n ¼ 0; . . . ;1, in discrete time. The autocorrela-
tion function (ACF) �XðkÞ and the coefficient of variation
(CV) are defined as follows:

�XðkÞ ¼ �Xt;Xtþk ¼
E½ðXt � �ÞðXtþk � �Þ�

�2
; CV ¼ �

�
;

where � is the mean and �2 is the common variance of fXng.
The argument k is called the lag and denotes the time
separation between Xt and Xtþk. The values of �XðkÞ may
range from -1 to 1. If �XðkÞ ¼ 0, then there is no autocorrela-
tion at lag k. If �XðkÞ ¼ 0 for all k > 0 then the time series is
uncorrelated. In most cases, ACF approaches zero as k

increases. The ACF essentially captures the “ordering” of
random values in the time series. Highly positive ACF values
imply that there is strong temporal locality, i.e., a value of the
random variable has a high probability to be followed by
another variable of the same order of magnitude, while
negative ACF implies the opposite. The ACF’s decay rate
determines if a process exhibits weak or strong correlation.

Fig. 2 presents the ACF of arrivals at several storage
systems supporting (dedicatedly) various applications [16],
[17]. The figure shows that the dependence structure in the
request arrival streams to the storage systems differs among
the systems that support different applications. This depen-
dence structure is a result of multiple factors including the
architecture of the storage system, the file system, and the
resource management policies at all levels in the I/O path. For
more evidence of the existence of autocorrelated flows in
storage systems, see [17].

3.2 Autocorrelation Effects in a Single Queue

To illustrate the magnitude of the performance effects of
autocorrelation in systems, we parameterize a simple
queueing model of a single server. The arrival process is
drawn from a Markov Modulated Poisson Process (MMPP)
[12] that is parameterized such that it results in three levels
of dependence as illustrated in Fig. 3a: NOACF (i.e., arrivals
are uncorrelated), ACF1, and ACF2. The probability
distribution functions (PDFs) of these three arrival pro-
cesses are identical (i.e., all their moments are the same), but
what distinguishes them is the order of sampling from the
PDF, which introduces autocorrelation. The mean inter-
arrival time in these three processes is equal to 13.28 ms and
CV is equal to 5.67, as derived by the arrival process to the
storage system of a Web server presented in [17].

The service process is drawn from a 2-stage hyperexpo-
nential (H2) distribution with mean service time equal to
3 ms and CV equal to 1.85 and models the disk-level service
process for the Web server storage trace in [17]. Interarrival
times are scaled so that we examine system performance
under different utilization levels.

Figs. 3b, 3c, and 3d present performance measures for
the three different arrival processes as a function of server
utilization. The effect of ACF on system performance is
tremendous: the higher the ACF, the worse the system
performance, which can worsen by as much as 3 orders of
magnitude when comparing to the case with uncorrelated
(NOACF) arrivals. Because of the difference in the three
curves, the performance measures with uncorrelated
arrivals look flat. Under uncorrelated arrivals (i.e., the
NOACF curve), queue length, as expected, is equal to 152
for utilization equal to 0.9. This number is dwarfed in
comparison to the corresponding values for the ACF1 and
ACF2 curves. The inset plots in Figs. 3b, 3c, and 3d illustrate

654 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 2. ACF of the arrival process at storage systems for various

applications.

the same performance measures, but using logarithmic
scale on the y axis. The dramatic effects of autocorrelation
are illustrated even for low to moderate system utilizations,
between 25 percent and 50 percent, where the probability
that a job finds the system idle is higher than 0.5.

It is the burstiness in the arrival stream that results in
performance degradation by several orders of magnitude,
even for low to moderate loads. This burstiness is captured
by the autocorrelation metric. Positive ACF values greater
than zero for lag k � 1 imply that a small interarrival time
has high conditional probability to be followed by a small
kth interarrival, causing the queue to build up fast. These
conditional probabilities change as a function of the lag. The
stronger the dependence, the more the burstiness in the
arrival stream, which causes the waiting queue to build up
faster if the arrival stream is ACF2 versus ACF1. If the
arrival process is uncorrelated, the conditional probabilities
are the same for all lags, i.e., there is no burstiness in the
process, which implies less waiting queue build up (and
consequently better performance) even for the same server
utilization level as Fig. 3 illustrates. Although bursty
periods are relatively short, their impact on performance
is long-term, as Fig. 3 indicates. Moreover, if the goal in the
system is to achieve a certain performance, then the system
utilization should be kept at different levels for arrival
processes with the same average behavior (i.e., mean and
CV), but different dependence structures.

3.3 Autocorrelation Effects on Load Balancing
Policies

In this section, we use simulation to examine the perfor-
mance impacts of autocorrelated arrivals on load balancing
policies in the cluster of Fig. 1. We assume that the number

of nodes is equal to four. Experiments with larger number

of nodes have been also done. Results are qualitatively the

same as those reported here.
While the traces in Fig. 2 indicate that in a clustered

system arrivals have different degrees of correlation, we do

not have a detailed description of the underlying system

[16]. This prohibits us from using these traces to drive our

simulation. We opted to use another publicly available trace

measured in a Web server cluster. Specifically, the service

process is obtained from traces of the 1998 World Soccer

Cup Web site,3 that have been used in several load

balancing studies [25], [18], [19]. Trace data were collected

during 92 days, from 26 April 1998 to 26 July 1998 [4]. Here,

we use a part of the 24 June trace (10 million requests), that

corresponds to nearly ten hours of operation and we extract

the file size of each transferred request. Because the Web

site contained only static pages, the size of the requested file

is a good approximation of the request service time. The

average size of a requested file is 5,059 bytes and its CV is

7.56. High variability in the file size distribution and file

popularities that change dramatically over time make this

trace particularly challenging for load balancing and an

excellent candidate to evaluate the performance of size-

based policies, for more discussion on this trace see [25].
Unfortunately, we cannot use the arrival process of the

World Cup trace data because it is not detailed enough:

arrival timestamps of requests are provided in seconds, as a

result there are multiple requests that arrive within one second

time periods. To examine the effect of autocorrelation in the

arrival process, we use the three arrival processes generated

ZHANG ET AL.: PERFORMANCE-GUIDED LOAD (UN)BALANCING UNDER AUTOCORRELATED FLOWS 655

Fig. 3. (a) ACF of the arrival process at the server, (b) average queue length, (c) average response time, and (d) average slowdown.

3. Available from the Internet Traffic Archive at http://ita.ee.lbl.gov.

by the MMPP process described in the previous section. Their
autocorrelation structure is depicted in Fig. 3a.

We compare the performance of the following policies:
ADAPTLOAD, a size-based policy that uses a histogram of
job sizes which is built online and has been shown to be
effective under changing workload conditions [25], Join the
Shortest Weighed Queue (JSWQ) [25], Join the Shortest Queue

(JSQ) [13], and Round-Robin (RR).

. ADAPTLOAD: In a cluster with N server nodes,
ADAPTLOAD partitions the possible request sizes into
N intervals, f½s0 � 0; s1Þ; ½s1; s2Þ; . . . ½sN�1; sN � 1Þg,
so that if the size of a request falls in the i-th interval,
i.e., ½si�1; siÞ, this request is routed to server i, for
1 � i � N . These boundaries si for 1 � i � N are
determined by constructing the histogram of request
sizes and partitioning it in equal areas, i.e., represent-
ing equal work for each server, as shown by the
following equation:

Z si

si�1

x � dF ðxÞ �
�S

N
; 1 � i � N; ð1Þ

where F ðxÞ is the cumulative distribution function
(CDF) of the request sizes and the amount of total
work is �S. By sending requests of similar size to the
same server, the policy improves average job
response time and average job slowdown by avoid-
ing having short jobs being stuck after long jobs in
the queue. For a transient workload, the values of
the N � 1 size boundaries s1; s2; . . . ; sN�1 are critical.
ADAPTLOAD self-adjusts these boundaries by pre-
dicting the incoming workload based on the histo-
gram of the last K requests. In our simulations, we
set the value of K equal to 10; 000. For a detailed
discussion on the policy sensitivity to this para-
meter, we direct the interested reader to [25].

. JSWQ: The length of each queue in the system is
weighed by the size of each queued request, there-
fore each incoming request is routed to the least
loaded server.

. JSQ: When a request arrives, it is assigned to a
server with the smallest waiting queue. If multiple
servers have the same queue length, then a server is
selected randomly from this group of servers.

. RR: In the round-robin algorithm, requests are
routed to servers in a rotated order.

ADAPTLOAD is a size-based policy that has been shown
in the literature to balance load effectively in workloads
with highly variable service times [25]. Here, we show that
if arrivals are autocorrelated, then ADAPTLOAD’s perfor-
mance is comparable to that of classic policies that are well-
known to perform poorly.

For all simulation experiments, we consider a cluster of
four homogeneous back-end servers that serve requests in a
FCFS order. We report on the average job response time,
average slowdown, average queue length, and average
system utilization. Fig. 4 plots performance results for the
four load balancing policies.

Fig. 4 shows that autocorrelation in the arrival process
degrades overall system performance for all four policies.
Observe that overall performance under uncorrelated
arrivals (NOACF) is two orders of magnitude better than
under ACF1 interarrivals, and three orders of magnitude
better than under ACF2 interarrivals, despite the fact that
average overall system utilizations are exactly the same for
all experiments, i.e., average utilizations are about 62 per-
cent, see Fig. 4d. This is consistent with results presented in
Section 3.1 for the single queue case. Per server utilizations,
for all experiments, remain the same and equal to about
62 percent, but are not reported here due to lack of space.
More importantly, the figure also shows that ADAPTLOAD

outperforms all policies under uncorrelated arrivals only,
see Figs. 4a, 4b, and 4c. Under correlated arrival processes,
ADAPTLOAD’s performance is comparable to that of the
three other policies, because, in such conditions, excessive
waiting in queue rather than load balancing decisions
determine performance.

To better understand this behavior, we examine the
autocorrelation of the arrival process in each server. Fig. 5
shows the ACF of the arrival process at each back-end
server, as well as the ACF of the arrival process at the front-
end dispatcher (labeled as “original stream” in the figure).
When there is no autocorrelation in the interarrivals at the
front-end dispatcher (left column of graphs in Fig. 5), the
ACF of interarrivals at each back-end server is almost zero
for all policies, except ADAPTLOAD as captured in Fig. 5a.

The middle column of graphs in Fig. 5 shows the ACFs
for the experiment with the ACF1 structure in the arrival
process, and the right column of graphs in Fig. 5 shows the
ACFs for the experiment with the ACF2 structure in the
arrival process. JSWQ and JSQ have the weakest depen-
dence while RR has the strongest dependence across all

656 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 4. Performance metrics under four load balancing policies: (a) average response time, (b) average queue length, (c) average slowdown, and

(d) average utilization.

servers. The main difference between ADAPTLOAD and the
other three load balancing policies is that, under ADAPT-

LOAD, the dependence structure in the arrival streams of
different servers is different.

Because ADAPTLOAD is a size-based policy and the
workload is heavy-tailed, most requests are small and are
directed to the first two servers. Specifically, the first server
receives 88.6 percent of jobs and the second server receives
8.7 percent of jobs. The remaining (large) jobs are sent to the
third and fourth servers. Consequently, the first server
inherits the dependence structure of the entire arrival
stream. The arrivals at the second server are also auto-
correlated, but at a lesser degree than at the first server.
ACF in the arrivals of the first two servers does not affect
their utilization, which remains almost the same as the rest
of the servers. The rest of performance measures, however,
are different for different servers, under ADAPTLOAD.
Looking at the per-server performance measures, we
observe that, under ADAPTLOAD, the performance of the
first server (and proportionally of the second server) is
much worse than the performance of the rest of the servers,

negatively affecting overall performance measures for the
entire system. This behavior is consistent with the single
queue performance, see Fig. 3, where performance mea-
sures for utilization around 60 percent differ by several
orders of magnitude between arrival processes with
different dependence structures. Weak ACFs in the arrival
processes of all servers under JSWQ/JSQ help performance,
but because short and long jobs are now served on the same
server, performance measures remain low. The perfor-
mance of RR suffers from both autocorrelated arrivals and
mixing of long with short jobs on the same server, resulting
in the worst performance of the examined policies.

The above observations suggest that in clusters with
autocorrelated arrivals, unbalancing the load while main-
taining the property of serving jobs of equal size in the same
server (as under ADAPTLOAD), may improve performance.
Specifically, the only distinction among the servers in the
cluster under ADAPTLOAD which balances load and work, is
the correlation structure of the arrival streams, which implies
that to achieve equal performance among these servers, their
load should be unequal, as Fig. 3 suggests. Under the other

ZHANG ET AL.: PERFORMANCE-GUIDED LOAD (UN)BALANCING UNDER AUTOCORRELATED FLOWS 657

Fig. 5. ACF in interarrivals at each server, where the arriving requests at the front-end dispatcher have (a) no dependence (NOACF), (b) ACF1

dependence, and (c) ACF2 dependence.

three load balancing policies, the correlation structure of the
arrival streams to the servers of the cluster is the same,
therefore load unbalancing cannot help improve perfor-
mance. In the next sections, we present two policies that are
built on top of ADAPTLOAD, one static and one dynamic, and
aim at reducing the load of the server(s) that admit arrival
streams with high autocorrelation in an effort to improve the
performance of individual servers and consequently overall
system performance.

4 UNBALANCING LOAD tO IMPROVE PERFORMANCE

First, we present S_EQAL, a variation of ADAPTLOAD,
where the load of the servers with autocorrelated arrivals is
reduced by a static percentage. Then, we present D_EQAL,
a dynamic version of the same policy, where the degree of
load unbalancing is automatically re-adjusted to account for
fluctuations in the incoming workload characteristics and to
improve policy performance seamlessly.

4.1 S_EQAL: Static Policy

Recall that in an N-server cluster, ADAPTLOAD assigns to
each server �S=N of the work, provided that the amount of
total work is �S. ADAPTLOAD determines the boundaries si, of
job sizes for each server 1 � i � N by constructing the
histogram of job sizes and partitioning it in N equal areas,
see (1). This histogram is built efficiently on-the-fly with only
a small space cost for its storage [25]. Analysis of per-server
performance measures shows that equally partitioning the
histogram guarantees equal utilization of all servers. How-
ever, this may hurt performance of jobs that are directed to
servers with correlated arrivals. With ADAPTLOAD, the first
server admits 88.6 percent of the jobs, thus it inherits the
correlation structure of the entire arrival stream to the
dispatcher. According to the single server analysis, this
server should operate under a lower utilization level than the
rest of the servers. Work must be shifted away from it, in order
to reach similar performance levels with other servers, whose
arrival stream is less correlated. Naturally, the work that is
shifted away from the first server must be redistributed
appropriately to the rest of the cluster. This observation is the
basis of S_EQAL, a new policy that still builds the histogram
of job sizes as ADAPTLOAD does, but sets new boundaries, s0i,
by weighting the work assigned to each server as a function of
performance degradation due to autocorrelation of the (new)
arrival process to each server. That is, servers that admit
autocorrelated arrival streams must now be less loaded than
those that admit streams of uncorrelated arrivals.

Aiming at unbalancing the load across servers, we

introduce a shifting vector p ¼ ðp1; p2; � � � ; pNÞ, where

�1 � pi � 1, for 1 � i � N , so that the work assigned at

server i is now equal to ð1þ piÞ �S
N , for 1 � i � N . The

elements of p can take both negative and positive values. A

negative pi makes the amount of work assigned at server i

less than its equal share of �S=N . A positive pi makes the

amount of work assigned at server i higher than its equal

share of �S=N . Because p simply shifts work from one server

to another, it should satisfy
PN

i¼1 pi ¼ 0, for 1 � i � N . The

following equation formalizes this new load distribution:

Z si

si�1

x � dF ðxÞ � ð1þ piÞ
�S

N
; 1 � i � N: ð2Þ

Fig. 6 gives an illustration of the high level idea of this new

policy.
S_EQAL statically defines pi, for 1 � i � N , by letting p1 be

equal to a (negative) predetermined initial shifting value R,

i.e., p1 ¼ �R. The rest of the shifting values pi, for 2 � i � N ,

are calculated using the algorithm of Fig. 7.4 Here, because the

majority of the requests is small and they are directed to the

first server, the smaller the i, the less work should be

dispatched to server i. This implies that p1 is negative. For

server i, for 1 � i < N , the portionR=2i�1 of its assigned work

is equally distributed among servers iþ 1 toN . Initially, all pi
for 1 � i � N are initialized to 0 (i.e., no shifting). For server 1,

p1 is reduced by R (see 2.a in Fig. 7). The work that is shifted

from server 1 is now equally distributed among the

remaining servers, i.e., p2; . . . pN increase by R
N�1 (see 2.b in

Fig. 7) such that the condition
PN

i¼1 pi ¼ 0 is satisfied. For

server 2, the work shifted away from this server is now equal

to R
2 (see 2.c in Fig. 7), so p2 is equal to R

N�1� R
2 . The algorithm

continues to equally distribute all shifted work from server 2

to the remaining servers. The iteration continues for servers 3,

4, . . .N � 1. For example, if we defineR ¼ 0:1, i.e., p1 ¼ �0:1,

then according to S_EQAL the shifting vector becomes

p ¼ ð�0:1;�0:0167; 0:033; 0:0834).

658 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

4. We stress that different algorithms can be used to determine how this
shifting of load is done, provided that

PN
i¼1 pi ¼ 0 for 1 � i � N . Finding

the optimal algorithm to set the shifting vector p is out of the scope of this
paper.

Fig. 6. S_EQAL’s high level idea of boundary shifting.

Fig. 7. Setting the shifting values pi for S_EQAL.

4.1.1 Weakly Correlated Arrival Process, ACF1

First, we evaluate the performance of S_EQAL with the
ACF1 arrival process used in the previous section.

We quantify the performance effect of different shifting
vectors p by presenting the average slowdown and average
response time of requests under S_EQAL for different initial
shifting values R. Results are presented in Fig. 8. R ¼ 0

corresponds to the original ADAPTLOAD, i.e., no boundary
shifting. Fig. 8a shows that the average slowdown of all
requests improves as R increases (i.e., boundaries are
shifted to the left). Best average slowdown is achieved for
R ¼ 0:8 (i.e., p1 ¼ �0:8). Fig. 8b shows that average
response time increases for R > 0:4. Therefore, a good
initial shifting value is R ¼ 0:4, where average slowdown
improves by 75.1 percent and average response time
improves by 41.9 percent comparing to ADAPTLOAD, i.e.,
R ¼ 0.

We present the per-server performance in Fig. 9. Per
server utilizations shown in Fig. 9d verify that the shifting
values pi indeed imbalance work across the cluster. As R
increases, the utilizations of the first two servers decrease
while utilizations of the last two servers increase. The last
server’s utilization is now the highest in the cluster.
Reducing utilization in the first server reduces its request
slowdown, as shown in Fig. 9a, but the extra work that is
now assigned to servers 3 and 4 does not increase their
slowdown significantly for small values of R. For R ¼ 0:9,
job slowdown at server 4 becomes very high, almost twice
as high as for server 1, under ADAPTLOAD. Average per-
server queue length behaves similarly to average slow-
down, see Fig. 9c. The average response time displayed in
Fig. 9b shows that small R values decrease average

response time of the first server and increase the response
time of the last server. If the portion of additional requests
served by the last server is small, then the contribution of
the last server performance to the overall performance
degradation is not significant. As R increases, more jobs are
assigned to servers with larger index, which counter-
balances the benefits of reducing utilization in the first
two servers.

We also evaluate the cumulative distribution functions
(CDFs) of slowdown and response time to better understand
how S_EQAL works. Fig. 10 gives the CDF of slowdown and
response time for all jobs (i.e., 10 million in each experiment).
Since a good initial shifting value R under ACF1 interarrival
times is equal to 0.4 (see Fig. 8), we compare the CDFs of
slowdown and response time under S_EQAL for R ¼ 0:4
with those of ADAPTLOAD (i.e., R ¼ 0). With S_EQAL, at
least 60 percent of the jobs have slowdown less than 1,000; this
percentage reduces to 38 percent with ADAPTLOAD, see
Fig. 10a. Fig. 10b shows that with ADAPTLOAD only
50 percent of jobs have response time less than 1,000 seconds
while with S_EQAL this percentage increases to 79 percent.
Moreover, the figure also shows that S_EQAL with R ¼ 0:4
makes the tail of slowdown about one order of magnitude
shorter than ADAPTLOAD. This happens, because S_EQAL
focuses on improving the performance of small jobs at the
expense of the performance of large jobs, by loading heavily
the servers that serve large jobs.

We present the performance of S_EQAL for three classes
of job sizes: small jobs that access files less than 5; 000 bytes,
medium jobs that access files with size between 5; 000 and
100; 000 bytes, and large jobs that access files with size
greater than 100; 000 bytes. For the specific workload that
drives our simulations, small, medium, and large jobs
represent, respectively, 84.5 percent, 15.4 percent, and

ZHANG ET AL.: PERFORMANCE-GUIDED LOAD (UN)BALANCING UNDER AUTOCORRELATED FLOWS 659

Fig. 8. (a) Average slowdown and (b) average response time as a

function of the initial shifting value R under ACF1 interarrival times.

Fig. 9. Per server performance measures: (a) average slowdown, (b) average response time, (c) average queue length, and (d) average utilization

as a function of the initial shifting value R with ACF1 interarrival times. The order of bars for each policy reflects server identity.

Fig. 10. The CDFs of (a) slowdown and (b) response time under ACF1

interarrival times, with R ¼ 0 (ADAPTLOAD) and R ¼ 0:4.

0.1 percent of total jobs. Per class CDFs of slowdowns and

response times are illustrated in Fig. 11. With ADAPTLOAD,

the performance of small and medium jobs suffers in

comparison to S_EQAL, confirming our speculation that

slowdown and response time tails are dominated by the

(bad) performance of small jobs. This phenomenon reduces

considerably with S_EQAL: after boundary shifting the tails

of slowdowns and response times are dominated by the

deteriorated performance of large jobs.

4.1.2 Strongly Correlated Arrival Process, ACF2

In this experiment, we evaluate the performance of S_EQAL

under the ACF2 arrival process. Fig. 12 gives the average

job slowdown and the average job response time as a

function of R. In Fig. 12, we observe the same trends as in

Fig. 8, but higher absolute performance values than under

the ACF1 experiment. Compared to ADAPTLOAD (i.e.,

R ¼ 0), S_EQAL with R ¼ 0:4 improves average response

time to 49.2 percent and average slowdown to 67.2 percent

of the respective ADAPTLOAD numbers.
Fig. 13 illustrates per-server performance measures under

ACF2 traffic. Although performance trends are similar to the

ACF1 case, they are more exaggerated. Both average slow-
downand average response time of the first server reduce asR
increases (see Figs. 13a and 13b), but a turning point exists
where shifting more work to subsequent servers adversely
affects slowdown. CDF graphs, both across all files and for
small, medium, and large ranges confirm that, as in the
ACF1 experiment, the tails of the performance measures are
now dominated by the deteriorated performance of large files
due to shifting. CDF trends are the same as in the
ACF1 experiment and are not reported here due to lack of
space.

4.1.3 Various System Utilizations

In the previous sections, we evaluated the performance of
S_EQAL for different values of R in a system with average
utilization equal to about 62 percent and found thatR ¼ 0:4 is
a good shifting value for both ACF1 and ACF2 experiments.
Here, we evaluate S_EQAL performance for different values
of R under lightly loaded and heavily loaded systems.

We use the same arrival processes and the same service
process as in the previous subsection, but we scale the
service times to examine system performance under
different utilization levels. Fig. 14 illustrates the average
request slowdown and the average request response time as
a function of R in a system with average utilization equal to
20 percent. More detailed analysis shows that under
uncorrelated arrivals and low system utilization levels
ADAPTLOAD does not always balance load well. This
phenomenon is also identified in [25]. In this case, a shifting
constant of R ¼ 0:5 corrects this known weakness of
ADAPTLOAD. Fig. 14 shows that for both ACF1 and ACF2

arrivals, the best slowdown and response time are achieved

660 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 11. CDFs of slowdown and response times for three request size

ranges: small [0 - 5,000), medium [5,000 - 100,000), and large [100,000

- infinity), under ACF1 interarrival times.

Fig. 12. Average slowdown and average response time as a function of

initial shifting value R with ACF2 interarrival times.

Fig. 13. Per server performance metrics as a function of the initial shifting value R under ACF2 traffic: (a) average slowdown, (b) average response

time, (c) average queue length, and (d) average utilization. The order of bars for each policy reflects the server identity.

with R ¼ 0:6, making it an excellent initial shifting value in
a lightly loaded system.

We also evaluate performance in a system with average
utilization of 80 percent, see Fig. 15. Under uncorrelated
arrivals, S_EQAL with R ¼ 0:2 optimizes slowdown but the
best response time is achieved by ADAPTLOAD. For both
ACF1 and ACF2, although the slowdown decreases as R
increases up to 0:7, the lowest response time is achieved for
R ¼ 0:2. This happens because forR � 0:3, load imbalancing
in the cluster becomes extreme, with the last server operating
nearly in full capacity, i.e., reaches nearly 100 percent
utilization. This dramatically increases response times of
large jobs and, consequently, overall average job response
time. We conclude that the value of the initial shifting valueR
should decrease as the load in the system increases.

4.2 D_EQAL: Online Policy

In the previous section, we gave a proof of concept of the
performance benefits of load unbalancing. We also showed
that performance improvements depend on the degree of
load unbalancing determined by the initial shifting valueR. A
good choice of R can result in significant gains, but an
unfortunate choice may also result in poor performance.
Here, we present D_EQAL, an online version of S_EQAL, that
continuously monitors the workload such that the effective-
ness of load unbalancing becomes independent of R.

D_EQAL continuously monitors C requests that have
been just served by the cluster and readjusts the degree of
load unbalancing on-the-fly, aiming at improving both
average response time and average slowdown. C must be
large enough to allow for performance measures to be

statistically significant, but also small enough to allow for
quick adaptation to transient workload conditions. In the
experiments presented here, C is set to 300,000. We examine
the robustness of D_EQAL with different C values ranging
from 100,000 to 1,000,000 and conclude that small values of
C (around 100,000) are not as effective as larger values of C
(more than 200,000). This is an expected result given that C
should capture changes in burstiness of the process.

D_EQAL starts by settingR to zero, i.e., no load shifting is
proposed beyond the computed ADAPTLOAD intervals. For
every batch of C requests, we compare the relative perfor-
mance improvement/decline of average slowdown (Avgsld)
and average normalized response time (Avgnres) in compar-
ison to the previous batch of C requests. The average
normalized response time (Avgnres) is defined as follows:

AvgnresðkÞ ¼
average response time in the kth batch

average service time in the kth batch

and aims at comparing fairly the average response times in
two consecutive batches. This is particularly critical if the
per-batch average service times differ significantly.

For every C requests, R is adjusted by a fixed number
0 < D < 1:0 and interval boundaries are recalculated
correspondingly. Fig. 16 presents the D_EQAL algorithm
that implements a dynamic adjustment of R as a function of
system performance measures. For the first batch of
C requests, R ¼ 0, i.e., all servers are equally loaded and
the system operates using ADAPTLOAD. This is necessary
to obtain base-case performance measures. For the second
batch of C requests, R ¼ D, i.e., D_EQAL starts exploring
the performance effects of boundary shifting by decreasing
the load of the first servers. In subsequent steps, average

ZHANG ET AL.: PERFORMANCE-GUIDED LOAD (UN)BALANCING UNDER AUTOCORRELATED FLOWS 661

Fig. 14. Average slowdown and average response time as a function of

initial shifting value R when interarrivals are (a) uncorrelated (NOACF),

(b) having ACF1 dependence, and (c) having ACF2 dependence. The

average system utilization is about 20 percent.

Fig. 15. Average slowdown and average response time as a function of

initial shifting value R when interarrival times are (a) uncorrelated

(NOACF), (b) having ACF1 dependence, and (c) having ACF2

dependence. The average system utilization is about 80 percent.

slowdown and average normalized response time of the last
C requests are compared to the batch of the penultimate
C requests. If system performance improves, then boundary
shifting is done in the same direction, i.e., if the last
adjustment shifted the work from the small (large) servers
to large (small) servers, then we continue to shift more work
from the small (large) servers to large (small) servers.
Otherwise, R is adjusted such that boundaries are shifted in
the reverse direction (see 3.b.III, in Fig. 16). In our
experiments, D is set to 0.1.5

Step 2.b.II of Fig. 16 provides an additional condition to
avoiding over-shifting. This condition is deduced from the
performance analysis of S_EQAL (see the previous section)
which shows that overloading servers 3 and 4 that serve
requests for large files may significantly deteriorate average
response time while maintaining acceptable slowdown.
Fig. 17 illustrates this behavior by plotting the average
slowdown and average response time as a transient measure
(i.e., across time) of every 10,000 requests. If R is set
appropriately, then average slowdown and average response
times change with similar rate (see Fig. 17a). An extremely
largeR causes load overshifting and increases response time
much faster than slowdown (see Fig. 17b). As a result, the
comparison of slowdown and response time provides a good
indication for overshifting. Since slowdown and response
time are performance measures of different scales, we
observe changes in two consecutive batches, i.e., jAvgsldðkÞ �
Avgsldðk� 1Þj and jAvgnresðkÞ �Avgnresðk� 1Þj, and normal-
ize them by their respective values of the first batch of
C requests when no shifting occurs, i.e., Avgsldð1Þ and
Avgnresð1Þ with R ¼ 0, the original ADAPTLOAD for a fair
comparison.

4.2.1 Performance of D_EQAL

In this section, we evaluate the effectiveness of D_EQAL. We
compare ADAPTLOAD, i.e., S_EQAL with R ¼ 0, S_EQAL
with various values of its initial shifting value R, and
D_EQAL. Note that D_EQAL starts with R ¼ 0, which
implies that we rely on the algorithm to find the appropriate

R. Results for various systemutilization levels (i.e., 20 percent,
62 percent, and 80 percent) are presented in Figs. 18, 19, and
20. In all graphs, D_EQAL is comparable to the best
performing S_EQAL. D_EQAL manages to adjust R such
that both slowdown (see Figs. 18a, 19a, and 20a) and response
times (see Figs. 18b, 19b, and 20b) are improved.

Figs. 18c, 19c, and 20c show how the algorithm changes
R throughout the duration of the experiment. With no
autocorrelation in the arrival stream, R almost always
remains equal to 0, irrespective of the system utilization
level, essentially the policy behaves like ADAPTLOAD. With
ACF1 or ACF2 arrivals, R converges toward the best
performing static value as seen in the analysis of the
performance of S_EQAL, see Section 4.1.3.

5 CONCLUSIONS

We presented evidence via detailed simulations that size-
based policies for load balancing in homogeneous clusters
become ineffective when the arrival process is autocorrelated.
If the arrival process is autocorrelated, then the basic premise

662 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

5. Finding the ideal value of D is beyond the scope of this paper. The
values used here are based on the experimental analysis of S_EQAL for this
specific workload. A large value of D results in faster load “unbalancing”
while a smaller value results to the opposite. Dynamically adjusting the
value of D using a feedback mechanism could make the policy more robust
and is subject of future work.

Fig. 16. D_EQAL dynamically adjusts R.

Fig. 17. The average slowdown and average response time of every

10,000 requests under ACF1 arrivals when (a) R ¼ 0:3 and (b) R ¼ 0:9.

The system utilization is 62 percent.

of size-based policies, i.e., balancing the load by keeping each
server equally utilized while serving jobs of similar size in
each server, may actually hurt performance as per-server
performance is sensitive to not only its utilization level, but
most importantly to the dependence structure in the arrival
stream of jobs that it serves.

We propose a new size-based load balancing policy, called
D_EQAL, that still strives to serve jobs of similar size in each
server but per-server utilization levels depend on the
autocorrelation of the arrival process to that particular server.
As a result of this effort, if there is autocorrelation in the
arrival stream to the cluster, all servers may not be equally

utilized (i.e., load in the system becomes unbalanced), but this
imbalance results in significant performance benefits. If there
is no autocorrelation in the arrival stream, then D_EQAL
seamlessly balances load across all servers as ADAPTLOAD

does (i.e., it behaves like a typical size-based policy). D_EQAL
does not require any prior knowledge of the correlation
structure of the arrival stream or of the job size distribution.
Using detailed simulations we show that D_EQAL can be
used online: by monitoring system performance measures, it
self-adjusts its configuration parameters to transient work-
load conditions and significantly improves performance
under autocorrelated arrivals.

ZHANG ET AL.: PERFORMANCE-GUIDED LOAD (UN)BALANCING UNDER AUTOCORRELATED FLOWS 663

Fig. 18. Performance effects of autocorrelation under low system utilization (20 percent). The first two rows give the average slowdown and the
average response time. The third row shows how the initial shifting value R is updated as a function of time (measured in processed requests) for
C ¼ 300; 000.

Fig. 19. Performance effects of autocorrelation under medium system utilization (62 percent utilization level). The first two rows give the average
slowdown and the average response time. The third row shows how the initial shifting value R is updated as a function of time (measured in
processed requests) for C ¼ 300; 000.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers whose
comments significantly improved this presentation. This
work was partially supported by the US National Science
Foundation under grants ITR-0428330 and CNS-0720699,
and by Seagate Research. A preliminary version of this
paper appeared at the 26th International Conference on
Distributed Computer Systems, (ICDCS ’06), Lisboa, Portu-
gal, July 2006 [24].

REFERENCES

[1] D. Abendroth and U. Killat, “Intelligent Shaping: Well Shaped
Throughout the Entire Network?” Proc. IEEE INFOCOM ’02,
vol. 2, pp. 912-919, June 2002.

[2] A.M. Adas and A. Mukherjee, “On Resource Management and
QoS Guarantees for Long Range Dependent Traffic,” Proc. IEEE
INFOCOM ’95, vol. 2, pp. 779-787, Apr. 1995.

[3] M. Andreolini, M. Colajanni, and R. Morselli, “Performance Study
of Dispatching Algorithms in Multi-Tier Web Architectures,”
ACM SIGMETRICS Performance Evaluation Rev., vol. 30, no. 2,
pp. 10-20, Sept. 2002.

[4] M. Arlitt and T. Jin, “Workload Characterization of the 1998
World Cup Web Site,” Technical Report HPL-1999-35R1, Hewlett-
Packard Laboratories, Sept. 1999.

[5] D. Bushmitch, S.S. Panwar, and A. Pal, “Thinning, Striping and
Shuffling: Traffic Shaping and Transport Techniques for Variable
Bit Rate Video,” Proc. IEEE GLOBECOM ’02, vol. 2, pp. 1485-1491,
Nov. 2002.

[6] L. Cherkasova, W. Tang, and S. Singhal, “An SLA-Oriented
Capacity Planning Tool for Streaming Media Services,” Proc. Int’l
Conf. Dependable Systems and Networks (DSN ’04), pp. 743-752, June
2004.

[7] K.J. Christensen and V. Ballingam, “Reduction of Self-Similarity
by Application-Level Traffic Shaping,” Proc. 22nd Ann. IEEE Conf.
on Local Computer Networks (LCN ’97) pp. 511-518, Nov. 1997.

[8] A. Erramilli, O. Narayan, and W. Willinger, “Experimental
Queueing Analysis with Long-Range Dependent Packet Traffic,”
IEEE/ACM Trans. Networking, vol. 4, no. 2, 209-223, Apr. 1996.

[9] H. Feng, M. Visra, and D. Rubenstein, “Optimal State-Free, Size-
Aware Dispatching for Heterogeneous M/G/-Type Systems,”
Performance Evaluation J., vol. 62, nos. 1-4, 475-492, Nov. 2005.

[10] M. Harchol-Balter, M. Crovella, and C.D. Murta, “On Choosing a
Task Assignment Policy for a Distributed Server System,” J. Parallel
and Distributed Computing, vol. 59, no. 2, 204-228, Nov. 1999.

[11] M. Harchol-Balter and A. Downey, “Exploiting Process Lifetime
Distributions for Dynamic Load Balancing,” ACM Trans. Computer
Systems, vol. 15, no. 3, pp. 253-285, Aug. 1997.

[12] D. Heyman and D. Lucantoni, “Modeling Multiple IP Traffic
Streams with Rate Limits,” IEEE/ACM Trans. Networking, vol. 11,
no. 6, pp. 948-958, Dec. 2003.

[13] L. Kleinrock, Queueing Systems, Volume I: Theory. Wiley, 1975
[14] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel,

“Performance Impacts of Autocorrelated Flows in Multi-Tiered
Systems,” Performance Evaluation, vol. 64, nos. 9-12, pp. 1082-
1101, Oct. 2007.

[15] V.S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W.
Zwaenepoel, and E. Nahum, “Locality-Aware Request Distribu-
tion in Cluster-Based Network Servers,” Proc. Eighth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII), pp. 205-216, Oct. 1998.

[16] A. Riska and E. Riedel, “Disk Drive Level Workload Character-
ization,” Proc. USENIX Ann. Technical Conf., pp. 97-102, June 2006.

[17] A. Riska and E. Riedel, “Long-Range Dependence at the Disk
Drive Level,” Proc. Third Int’l Conf. Quantitative Evaluation of
Systems (QEST ’06), pp. 41-50, Sept. 2006.

[18] Y.M. Teo and R. Ayani, “Comparison of Load Balancing Strategies
on Cluster-Based Web Servers,” Trans. Soc. for Modeling and
Simulation, vol. 77, nos. 5-6, pp. 185-195, Nov. 2001.

[19] V. Ungureanu, B. Melamed, P.G. Bradford, and M. Katehakis,
“Class-Dependent Assignment in Cluster-Based Servers,” Proc.
ACM Symp. Applied Computing (SAC ’04), pp. 1420-1425, Mar. 2004.

[20] U. Vallamsetty, K. Kant, and P. Mohapatra, “Characterization of
E-Commerce Traffic,” Proc. Fourth IEEE Int’l Workshop Advanced
Issues of E-Commerce and Web-Based Information Systems (WECWIS
’02), pp. 137-144, 2002.

[21] F. Xue and S.J. B. Yoo, “Self-Similar Traffic Shaping at the Edge
Router in Optical Packet-Switched Networks,” Proc. IEEE Int’l
Conf. Comm. (ICC ’02), vol. 4, pp. 2449-2453, Apr. 2002.

[22] Q. Zhang, L. Cherkasova, and E. Smirni, “FlexSplit: A
Workload-Aware, Adaptive Load Balancing Strategy for Media
Clusters,” Proc. Multimedia Computing and Networking (MMCN
’06), Jan. 2006.

[23] Q. Zhang, A. Heindl, and E. Smirni, “Characterizing the BMAP/
MAP/1 Departure Process via the ETAQA Truncation,” Stochastic
Models, vol. 21, nos. 2-3, pp. 821-846, 2005.

664 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

Fig. 20. Performance effects of autocorrelation under high system utilization (80 percent utilization level). The first two rows give the average

slowdown and the average response time. The third row shows how the initial shifting value R is updated as a function of time (measured in

processed requests) for C ¼ 300; 000.

[24] Q. Zhang, N. Mi, A. Riska, and E. Smirni, “Load Unbalancing to
Improve Performance under Autocorrelated Traffic,” Proc. 26th
IEEE Int’l Conf. Distributed Computing Systems (ICDCS ’06), June
2006.

[25] Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo, “Workload-
Aware Load Balancing for Clustered Web Servers,” IEEE Trans.
Parallel and Distributed Systems, vol. 16, no. 3, pp. 219-233, Mar.
2005.

Qi Zhang received the BS degree in computer
science from Huazhong University of Science
and Technology, Hubei, China, in 1998, and the
MS degree in computer science from the
University of Science and Technology of China,
Anhui, China, in 2001. She received the PhD
degree in computer science from the College of
William and Mary, Williamsburg, Virginia, in
December 2006. She is currently a software
engineer with the Windows Server Performance

team at Microsoft. Her research interests include performance evalua-
tion, scheduling and load balancing policies, workload characterization
and queuing modeling of multitiered systems, and departure processes.
She is a member of the ACM and the IEEE.

Ningfang Mi received the BS degree in com-
puter science from Nanjing University, China, in
2000, and the MS degree in computer science
from the University of Texas at Dallas, in 2004.
She is currently a PhD candidate in the Depart-
ment of Computer Science, College of William
and Mary, Williamsburg, Virginia. Her research
interests include resource allocation policies,
performance analysis of multitiered systems,
workload characterization, and analytic model-

ing. She is a student member of the ACM and the IEEE.

Alma Riska received the PhD degree in
computer science from the College of William
and Mary, in Williamsburg, Virginia, in 2002.
Currently, she is a Research Staff Member at
Seagate Research in Pittsburgh, Pennsylvania.
Her research interests are in performance and
reliability modeling of computer systems, in
general, and storage systems, in particular.
The emphasis of her work is on applying analytic
techniques and detailed workload characteriza-

tion in designing more reliable and better performing storage systems
that can adapt their operating into the dynamically changing operational
environment. She is a member of the IEEE and the ACM.

Evgenia Smirni received the diploma in com-
puter engineering and informatics from the
University of Patras, Greece, in 1987, and the
MS and PhD degrees in computer science from
Vanderbilt University in 1993 and 1995, respec-
tively. She is the Wilson and Martha Claiborne
Stephens Associate Professor at the College of
William and Mary, Department of Computer
Science, Williamsburg, Virginia. Her research
interests include analytic modeling, stochastic

models, Markov chains, matrix analytic methods, resource allocation
policies, Internet systems, workload characterization, and modeling of
distributed systems and applications. She has served as program
cochair of QEST ’05 and of ACM SIGMETRICS/Performance ’06. She is
a member of the ACM, the IEEE, and the Technical Chamber of Greece.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: PERFORMANCE-GUIDED LOAD (UN)BALANCING UNDER AUTOCORRELATED FLOWS 665

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

