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Abstract

Latent sector errors in disk drives affect only a few data
sectors. They occur silently and are detected only when the
affected area is accessed again. If a latent error is detected
while the storage system is operating under reduced redun-
dancy, i.e., during a RAID rebuild, then data loss may occur.
Various features such as scrubbing and intra-disk data re-
dundancy are proposed to detect and/or recover from latent
errors and avoid data loss. While such features enhance
data availability in the storage system, their execution may
cause performance degradation. In this paper, we evalu-
ate the effectiveness of scrubbing and intra-disk data redun-
dancy in improving data availability while the overall goal
is to maintain user performance within predefined bounds.
We show that by treating them as low priority background
activities and scheduling them efficiently during idle times,
these features remain performance-wise transparent to the
storage system user while still improving data reliability.
Detailed trace-driven simulations show that the Mean Time
To Data Loss (MTTDL) improves by up to 5 orders of mag-
nitude if these features are implemented independently. By
scheduling concurrently both scrubbing and intra-disk par-
ity updates during idle times in disk drives, MTTDL im-
proves by as much as 8 orders of magnitude.

1 Introduction

As digital storage of commercial data and of data for
strictly personal use becomes mainstream, high data avail-
ability and reliability become imminently critical. Conse-
quently, there are substantial efforts on designing reliable
disk-based storage systems by adding redundancy. Data re-
dundancy is traditionally provided using parity locally in
the form of disk arrays (e.g., RAIDs) [16], but distributed
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storage schemes at a broader scale (e.g., the Google File
System [7]) enjoy popularity.

Data redundancy protects against entire disk failures as
well as failures of disk sectors. Commonly, disk sector er-
rors are known as “latent sector errors”, because they occur
silently and are detected only when the affected area on the
disk is accessed again [1, 2, 6, 11, 20]. While latent sector
errors may be detected when the user tries to access the af-
fected data, it is probable that they are detected during the
data rebuild process, because data rebuild accesses the en-
tire disk space in order to restore the redundancy in a system
with disk failure(s).

If the storage array is designed to protect from one fail-
ure only, such as RAIDs 1 through 5, any latent sector er-
ror detected during the data rebuild process causes data loss
because there is no data redundancy to protect against the
error. Storage systems with two redundancy levels, such as
RAID 6 [13] are better protected and may experience data
loss because of latent sector errors only if they are detected
while two simultaneous failures exist in the array (i.e., a
very unlikely event).

To avoid data loss because of latent errors detected dur-
ing data rebuilds, features exist in the storage system that
aim at detecting and recovering from latent sector errors
while there is redundancy in the system. Disk scrubbing
is an error detection technique that detects latent sector er-
rors via background media scans [19]. Intra-disk data re-
dundancy is an error recovery technique that adds another
level of redundancy in the data by adding parity for sets
(segments) of sectors within the same disk [3, 11].

Scrubbing could cause delays to the foreground work
because disk operations such as seeks are not preemptive.
Furthermore, multiple redundancy levels and intra-disk par-
ity do impose additional work in the storage system when
data is modified (e.g., during WRITE operations), because
the parity must be updated. Consequently, both scrubbing
and intra-disk parity updates should operate as system back-
ground processes. If the execution of this additional work
competes with regular user traffic, then it may cause unde-
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sired delays to regular user traffic.
In this paper, we evaluate the effectiveness of scrubbing

and intra-disk data redundancy, when these techniques are
designed to remain transparent to the storage system user,
i.e., keep average user performance degradation within pre-
defined targets. For this, we treat both these features as
strictly background ones, and schedule them using effective
idle time management policies [14]. Throughout our evalu-
ation, we show that our idle time scheduling approach [14],
is key to achieving the efficient execution of scrubbing and
in particular of the parity updates associated with the intra-
disk data redundancy feature.

Detailed trace-driven simulations indicate that, it is pos-
sible to effectively detect and recover from latent disk errors
even when the system imposes strict limitations on perfor-
mance degradation of user traffic. The simulation results
show that background activities dramatically improve sys-
tem reliability by achieving several orders of magnitude im-
provement of its mean time to data loss (MTTDL). Specif-
ically, scrubbing improves the MTTDL by as much as 5
orders of magnitude, while the intra-disk data redundancy
scheme evaluated improves the MTTDL by 2 orders of
magnitude. We further show that running both scrubbing
and intra-disk parity concurrently, utilizes best the entire
system. The combination of both features results in sig-
nificant MTTDL improvements, i.e., as high as 8 orders of
magnitude.

This paper is organized as follows. Section 2 presents
related work. Section 3 describes background material on
modeling of mean time to data lost in storage system. Sec-
tion 4 describes how to effectively schedule work during
idle times in disk drives by taking advantage of the stochas-
tic characteristics of the empirical distribution of disk idle
times. Section 5 presents the disk level traces used in our
evaluation. Analysis of scrubbing that utilizes idle times
is presented in Section 6. Section 7 analyzes background-
based intra-disk parity updates. In Section 8 we evaluate
performance and data reliability consequences if scrubbing
and intra-disk parity updates are simultaneously enabled as
background jobs. Conclusions are given in Section 9.

2 Related Work

The metric of interest when it comes to storage sys-
tem reliability is not the traditional Mean-Time-To-Failure
(MTTF) [18], but instead the Mean-Time-To-Data-Loss
(MTTDL) [2]. Data loss is caused when additional fail-
ures (even of a few data sectors) occur or are detected in
a system which has lost its redundancy because of previ-
ous failures. While simultaneous failures of multiple disks
are rare, disk sector errors may be detected during a data
rebuild, i.e., when the system has lost its redundancy, and
cause data loss [2].

To avoid data loss, storage systems may be designed with
multiple redundancy levels, i.e., RAID 6 [13]. In addition
to such solutions, system features such as scrubbing [19]
and intra-disk data redundancy [3, 11] represent effective
ways to detect and recover from latent sector errors. Re-
cent data show that scrubbing detects as much as 60% of
all latent sector errors [1]. These features are preventive in
nature but unavoidably introduce more work in the storage
system and in the individual disks. To avoid penalizing reg-
ular user traffic, any additional work to enhance reliability
is completed as a background process during disk or storage
system idle times, which is shown to be available in storage
systemes [8, 17].

While a myriad of approaches have been proposed to
best utilize idle times in order to enhance system perfor-
mance, reliability, and consistency by exploiting it locally
(i.e., within the same system) [10] or remotely (i.e., busy
systems may offload part of their work in idle ones) [12],
there has been a number of studies that focus solely on how
to better manage idle times for scheduling background ac-
tivities [5, 14]. Methods to adaptively determine how to best
exploit disk idle times to schedule long, high-penalty back-
ground jobs, such as powering or spinning-down disks, can
be found in [4, 9]. On the analytic side, several models have
been developed for systems where foreground/background
jobs coexist [21].

In this paper, we use the concept of managing idle times
proposed in [14], where decision on when to start schedul-
ing a background job is determined by the empirical distri-
bution of the previously monitored idle times. While the
study in [14] focuses on the general concept of how to uti-
lize idle times such that the effect on foreground perfor-
mance is contained within pre-defined bounds, here we fo-
cus on customizing these general background job schedul-
ing policies for the specific case of treating scrubbing and
intra-disk parity updates as background activities to en-
hance system reliability. We further study how to best uti-
lize idle times to meet the different needs of an infinite ac-
tivity such as scrubbing versus a finite one that depends on
the specific workload such as intra-disk parity updates, and
show dramatic improvements in the mean time to data loss
in systems where both features are enabled.

3 Background - MTTDL Estimation

An important reliability metric for storage systems is the
Mean-Time-To-Data-Loss (MTTDL). Approximate models
for MTTDL as a function of various system parameters are
given in [2]. Here, we calculate MTTDL with scrubbing
and intra-disk data redundancy using the same models as
in [2]. We first provide a quick overview of the MTTDL
models presented in [2]. MTTDL is defined based on the
following parameters:
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• MV , ML: mean interarrival time of visible and latent
disk errors, respectively,

• MRV , MRL: mean recovery time from visible and
latent errors, respectively,

• MDL: mean detection time of latent sector errors,
• α: temporal locality of errors,
• βXY : spatial locality of errors, where consecutive er-

rors X and Y are either visible (i.e., type V ) or latent
(i.e., type L).

If no scrubbing is initiated, then MTTDL is given by the
following equation:

1
MTTDL

≈ βV V

α

MRV

MV 2
+

βLV

α

MRV

MV · ML
+

1
ML

. (1)

If scrubbing is performed, then the above equation accounts
for the average time it takes to detect the error via scrubbing
(i.e., MDL) and recover from it (i.e., MRL) as follows:

1
MTTDL

≈ βV V

αk2

MRV

ML2
+

βLV

αk

MRV

ML2
+ (2)

βV L + kβLL

αk
· MDL + MRL

ML2

where k = ML/MV [2]. The parameter values for Equa-
tions (1) and (2) used in the following sections of this paper
are given in Table 1 and are those used in [2].

MV ML MRV
120,000 hrs 84,972 hrs 1.4 hrs

k α, βV V , βLV , βV L βLL

1.41 1 0

Table 1. Parameters used for MTTDL estimation.

4 Scheduling Background Activities

Using disk idle times as a separate resource to com-
plete background activities with minimum obstruction to
foreground jobs has been the focus of scheduling policies
for foreground/background jobs. Idle waiting [5] (i.e., de-
laying scheduling background jobs during idle intervals) is
an effective mechanism to reduce foreground performance
degradation due to non-preemptive background jobs. An al-
gorithmic approach to estimate how long to idle wait based
on the variability of observed idle periods in the system is
proposed in [14], where extensive experimentation shows
that the efficiency of idle waiting increases as variability of
the empirical distribution of idle times increases1.

Idle waiting combined with an estimation of the num-
ber of background jobs to be served within an idle inter-
val, allows meeting foreground performance requirements

1For more details, we refer readers to the technical report [15].

while serving as many background jobs as possible. The
statistical characteristics of idle times can assist in defining
how long to idle wait before scheduling background jobs.
In [14], the empirical distribution function of idle times is
used to determine the length of “idle wait” in the following
three background scheduling policies:

body-based: If the variability of idle times is low, then idle
wait for a short period. This policy schedules a few
background jobs in most idle intervals, which results
in using the body rather than the tail of the idle times
empirical distribution for serving background activi-
ties.

tail-based: If the variability of idle times is high, then idle
wait for a long period. This policy schedules many
background jobs in a few idle intervals by using the tail
rather than the body of the idle times empirical distri-
bution for serving background activities.

tail+bursty: If burstiness exists in idle times, then it is
possible to obtain more accurate prediction about up-
coming idle intervals because long idle intervals are
“batched” together. After a long idle interval is ob-
served, then it is possible to predict with good accu-
racy if the next interval is also long, which then allows
for more effective scheduling of background activities.

The goal of the body-based policy is to use most of the
idle periods in the system and schedule only few back-
ground jobs in an idle period. This policy works particu-
larly well for cases with low variability in idle times be-
cause all idle intervals are of similar length. In contrast, for
idle intervals of high variabilities, the idle waiting time in
the tail-based and the tail+bursty policies is much longer,
avoiding utilization of most idle periods which results in
delaying only few foreground jobs. Although the tail-based
policies utilize only few long intervals, the total amount of
background work scheduled during those long intervals is
yet more when compared to the background work sched-
uled under the body-based policy. Tail-based policies are
effective only if the idle times are highly variable, which
implies that very long idle periods are expected to eventu-
ally occur. In the following sections, we elaborate on how
the above policies can be used in the context of scrubbing
and intra-disk parity updates to increase MTTDL.

5 Trace Characteristics and Simulation

All policies presented here are evaluated via trace driven
simulations, see [17] for a detailed description of the sta-
tistical characteristics of the disk drive traces. The selected
three disk traces are measured in a personal video recording
device (PVR), a software development server, and an e-mail

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 494 DSN 2008: Mi et al.



T1
T2
T3

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700  800  900 1000

cd
f 

(%
)

idle time (ms)

Figure 1. CDF of idle times for traces T1, T2 and T3.

server, which we refer throughout the paper by T1, T2, and
T3, respectively. Table 2 gives a summary of the overall
characteristics such as request mean interarrival time, re-
quest mean service time, utilization, as well as the mean and
the coefficient of variation (CV) of idle intervals in the trace.
Traces T1, T2 and T3 have 427K, 500K and 362K entries,
respectively. They differ from each other in the stochas-
tic characteristics of their idle intervals. For trace T1, idle
intervals have a CV close to one, while traces T2 and T3
have higher variability with CVs as high as 6.41 and 3.79,
respectively. Consequently, traces T2 and T3 have longer
tails than trace T1, see Figure 1. Furthermore, the time se-
ries of the observed idle intervals for traces T1 and T2 are
not bursty, while the time series of idle intervals for trace
T3 is bursty.

Tra Mean Mean Util Mean CV Bur
-ce Arrival Service (ms) (%) Idle (ms) Idle -sty

T1 62.85 10.68 17 91.98 0.98 No
T2 96.72 4.20 4.2 236.08 6.41 No
T3 252.29 5.59 2.2 760.84 3.79 Yes

Table 2. Overall characteristics of traces.

The focus here is on the evaluation of scrubbing and par-
ity updates related to intra-disk data redundancy as back-
ground activities. Scrubbing is an infinite background pro-
cess because commonly upon completion of one entire disk
scan, a new one starts. Parity updates depend on the WRITE
user traffic and are considered a finite background process.
The specific parameters of scrubbing and intra-disk parity
update used in our simulations are as follows.

Scrubbing is abstracted as a long background job that
is preemptive at the level of a single disk request. Hence,
it is assumed that an entire scan of a 40GB disk, i.e., one
complete scrubbing, requires 100,000 disk IOs, each scan-
ning approximately 1000 sectors. Disk capacities of 40GB
might be conservative given that modern disk drives reach
capacities of up to 500GB, but we stress that the analysis
presented here is independent of the disk size. One single
disk scan request as part of the scrubbing job is assumed to
take on the average as much time as a READ disk request.
In our simulations, this time is drawn from an exponential
distribution with mean 6.0 ms. The time to serve 100,000

disk IOs as part of a single scrubbing corresponds the aver-
age scrubbing time.

Parity updates are abstracted as short background jobs.
To update the parity of a segment of sectors, the follow-
ing steps are taken. First, the entire set of sectors should
be read, then the parity must be calculated, and finally the
new parity is written on the disk. Therefore, each parity
update consists of one READ (assumed to take 10 ms on
the average) and one WRITE (assumed to take 5 ms on the
average), both exponentially distributed. The preemption
level of parity updates is at the disk request level. If a parity
update is preempted after the READ, then the system main-
tains no memory of the work done and the update has to
restart during another idle period. Parity updates are served
in a first-come-first-served (FCFS) fashion.

Scrubbing and intra-disk parity updates processes are
scheduled using the three policies outlined in Section 4. In
storage systems, a slowdown of the foreground traffic by
5% to 10% is considered transparent to the user. Hence, we
set the pre-defined limit on performance degradation to 7%.
All three policies degrade the performance of user traffic by
restricting the amount of background jobs served. Their ef-
ficiency regarding the performance of timely completion of
background tasks (i.e., scrubbing or parity updates) depends
on the variability of idle times in traces T1, T2, and T3.

6 Disk Scrubbing

Background media scans can be abstracted as an infinite
background process that detects any possible media errors
on disk drives and thus prevents data loss caused by latent
sector errors. As a preventive feature, scrubbing is com-
pleted in the background and can be conducted by the stor-
age system or the disk drive itself. Based on the system
specifications described in Section 5, we evaluate the effec-
tiveness of scrubbing aiming at degrading performance of
user traffic by at most 7%.

The goal of scrubbing as a preventive background fea-
ture is to improve the MTTDL. The average time of scrub-
bing allows for MTTDL calculation when scrubbing is not
running and when it is running, using Equations (1) and
(2), respectively. The mean detection time of sector er-
rors (MDL) in Equation (2) is set to be equal to 0.5 ×
average scrubbing time. Moreover, compared to detection
times, the recovery times of latent sector errors are insignif-
icant (i.e., MRL � MDL). We thus assume MRL ≈ 0 in
Equation (2). Table 3 gives the improvements in MTTDL
when scrubbing is running over the case when it is not run-
ning, i.e., the ratio of the two MTTDLs. The results show
that when utilizing the body and the tail of idle times as ex-
plained in Section 4, scrubbing dramatically improves relia-
bility while the degradation in the performance of user traf-
fic is limited to 7%. The overall improvement of MTTDL
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because of scrubbing is 5 orders of magnitude. Differences
in the MTTDL improvement between the scheduling poli-
cies are between 20% and 40%. The body-based policy
achieves better MTTDL improvement for low variable idle
times (e.g., trace T1) than the tail-based policy. For T2 that
has high viability in idle times, the tail-based policy is supe-
rior to the body-based policy. Additionally, the prediction
of upcoming idle times further improves the system’s relia-
bility for trace T3 whose idle times are bursty.

T1 T2 T3
body tail body tail tail tail+bursty

0.4 0.3 0.3 0.5 0.4 0.5
×105 ×105 ×105 ×105 ×105 ×105

Table 3. MTTDL improvement via scrubbing.

Table 4 also provides an explanation for the differences
in the MTTDL improvement between the three schedul-
ing policies by presenting the number of completed media
scans, their average scrubbing time, and the overall system
utilization. For lowly variable idle times (e.g., T1), uti-
lizing the body rather than the tail of idle times results in
faster scrubbing and better overall system utilization. In
particular, scrubbing under the body-based policy is twice
faster than under the tail-based policy (see first row of Ta-
ble 4). Consequently, the faster scrubbing time under the
body-based policy yields the superior MTTDL improve-
ments shown in Table 3. For T2 that has highly variable idle
times, the tail-based yields faster scrubbing, i.e., at least two
orders of magnitude difference than the body-based pol-
icy, which results in higher MTTDL improvement. Further-
more, for trace T2, the system is a lot better utilized under
the tail-based policy. Finally, if idle times are in addition
bursty (i.e., trace T3), then utilizing the tail of idle times
and predicting long idle periods performs better than utiliz-
ing only the tail of idle times. Utilizing burstiness to benefit
scrubbing results in a five-fold improvement in mean scrub-
bing time. The body-based policy is not evaluated for T3
because the results of T2 establish that the tail rather than
the body of idle times should be used if idle times have high
variation.

In addition to the average performance presented in Ta-
ble 4, we also evaluate the distribution of scrubbing time.
The distribution is built with a sample space of completed
scrubbing as large as 500 by replaying the traces several
times. Figure 2 shows the cumulative distribution function
(CDF) of scrubbing time for traces T1, T2, and T3. For
all three traces, the best performing scheduling policy for
scrubbing identified in Table 4 achieves the shortest scrub-
bing distribution tail. For trace T1, see Figure 2(a), almost
100% of scrubbings have times less than 3831.9 seconds
under the body-based policy while a twice larger scrubbing
time is achieved for only 1.4% of scrubbings under the tail-

Tra Policy Completed Mean Scrubbing System
-ce Media Scans Time (s) Util (%)

T1 body 6 3,617.8 33.1
tail 4 6,484.7 26.8

T2 body 4 11,519.6 9.7
tail 63 726.4 83.1

T3 tail 20 4,476.3 14.3
tail+ 94 972.9 62.6

bursty

Table 4. Scrubbing performance for traces T1, T2, and
T3 under body-based, tail-based, and tail+bursty idle time
managing policies.

based policy. Similarly for trace T2, see Figure 2(b), the
tail of scrubbing time under the tail-based policy is about
7.5 times shorter than under the body-based policy. Ex-
ploiting burstiness with the tail+bursty policy, as shown in
Figure 2(c), further reduces the tail of the scrubbing time
distribution.

7 Intra-disk Parity Updates

Intra-disk data redundancy requires maintaining updated
parity that becomes dirty if the corresponding data is mod-
ified [3, 11]. This extra amount of work required to main-
tain updated parity consists of an extra READ and an ex-
tra WRITE for each user-issued WRITE. Completing this
work instantaneously upon completion of each user-issued
WRITE is called instantaneous parity (IP) update. Natu-
rally, IP causes degradation in user performance because it
is not a preemptable task, but provides the highest level of
data reliability.

Here, we show that it is possible to complete parity up-
dates as a background job in a timely fashion, while keep-
ing user performance slowdown within the predefined target
7%. We quantify how the amount of delay in intra-disk par-
ity updates affects data reliability for the three idle schedul-
ing techniques. The effectiveness of the idle scheduling
policies are evaluated in comparison to IP updates.

7.1 MTTDL in Data Redundant Drives

The estimation of MTTDL for disks with intra disk re-
dundancy is based on Equation (1). Assuming that latent
sector errors are spatially and temporally correlated [1], the
improvement in the mean interarrival time of latent sec-
tor errors is 0.48 × 102 [3], or equivalently, ML(2) =
0.48 × 102 · ML(1), where ML(1) represents the mean in-
terarrival time of latent errors if there is no intra-disk data
redundancy, see Table 1. ML(2) represents the mean inter-
arrival time of latent errors if there is intra-disk data redun-
dancy.
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Figure 2. CDF of scrubbing time distribution for traces (a) T1, (b) T2, and (c) T3.

If instantaneous parity (IP) is supported (i.e., parity up-
dates occur without delay), then MTTDL is calculated using
Equation (1), where the parameter ML is set as ML(2). If
parity updates are delayed, then Equation (1) is modified as
follows:

MTTDL ≈ p · MTTDLML(1) (3)

+(1 − p) · MTTDLML(2),

where p represents the probability that the parity is dirty,
and MTTDLML(1) and MTTDLML(2) are computed us-
ing Equation (1) with the parameter ML equal to ML (1)

and ML(2), respectively. We assume that if the parity is
dirty, then latent errors arrive in intervals of ML (1), and
that if parity is updated, then errors arrive in intervals of
ML(2). We approximate p as the portion of the disk with
dirty parity as follows:

p ≈ QLUpdate · LengthParity segment

CapacityDisk
(4)

=
RTUpdate · λUpdate · LengthParity segment

CapacityDisk
,

where QLUpdate is the average number of dirty pari-
ties in the disk, RTUpdate is the average parity update
time, λUpdate is the arrival rate of parity updates and
LengthParity segment is the number of sectors in each par-
ity segment. The performance of the policy to sched-
ule background requests during idle intervals determines
RTUpdate and consequently affects the MTTDL.

In the following, we present results for traces T1 and T2.
Traces T2 and T3 yield similar results because both have
high variability in idle times and also because for the finite
work generated by parity updates exploiting burstiness does
not yield any further improvement. The following four met-
rics are monitored: (a) the MTTDL improvement via intra-
disk parity, (b) the ratio of completed parity updates to the
total trace WRITE traffic, (c) the average time of parity up-
dates which is the time interval between the completion of

a user-issued WRITE operation and the update of the par-
ity, and (d) the overall (foreground + background) system
utilization.

7.2 Parity Updates under Trace T1

Assuming that the disk capacity is 40GB, the relative
MTTDL improvement estimated for parity updates under
trace T1, which has nearly 40% user WRITEs, is given in
Table 5. Recall that the relative MTTDL improvement is
defined as the difference between MTTDL under the cases
with and without intra-disk parity. Here, such an improve-
ment attributed to intra-disk parity is only two orders of
magnitude – recall that those attributed to scrubbing are
as high as five orders of magnitude. The important result
of Table 5 is that there is almost no difference between
the MTTDL improvement achieved via instantaneous par-
ity (IP) updates and the delayed parity updates evaluated in
this paper, which strongly argues in favor of delayed intra-
disk parity. Furthermore, for finite background activities
(e.g., parity updates) under trace T1, the tail-based policy
achieves slightly better improvement in system reliability
than the body-based policy.

Policy
Trace body tail IP

T1 0.481 ×102 0.484 ×102 0.484 ×102

Table 5. MTTDL improvement for trace T1 via intra-disk
data redundancy, where IP is instantaneous parity update
without delaying.

Policy Completed Mean Update System
Ratio (%) Time (s) Util (%)

body 38.6 180.6 24.7
tail 41.6 3.3 22.9

Table 6. Parity update performance for trace T1 (low vari-
ability).
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Table 6 further shows that for this experiment the tail-
based scheduling performs better than the body-based pol-
icy across all metrics. Most importantly, the tail-based
policy updates parities almost by two orders of magnitude
faster than the body-based policy. Quick parity update times
are particularly desirable because the average parity update
time is the metric that affects data reliability. Note that sys-
tem utilization is higher under the body-based than under
the tail-based policy. Under the body-based policy, there
are more cases where a user request preempts a parity up-
date. Unfortunately, this results in wasted work. Under the
tail-based policy, only long idle intervals are used to update
the finite parities which results in only few of them being
preempted by foreground traffic.
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Figure 3. CDF of parity updates time for trace T1 (low
variability).

Figure 3 shows the distribution of the parity update
times. While about 68% of parity updates under the body-
based policy are faster than under the tail-based policy, the
tail of parity update times is longer and dominates the aver-
age parity update time. This causes a two orders of magni-
tude advantage for the average tail-based performance, see
the mean parity update times in Table 6.

7.3 Parity Updates under Trace T2

User issued WRITE traffic in T2 represents only 1% of
the total requests. To experiment with traces with more
WRITE traffic, we generate three additional traces that have
10%, 50%, and 90% WRITEs, respectively. These traces
are generated based on T2, by probabilistically selecting an
entry in the trace to be a READ or a WRITE.

Table 7 presents the relative MTTDL improvement via
parity updates under four variants of trace T2 using the
body-based and tail-based policies to schedule work in idle
times. This table also shows two different performances
for the tail-based policy (marked as “tail-S” and “tail-L”).
Although both tail-based policies utilize the tail of the idle
times, under “tail-S” the idle wait is (approximately 40%)
shorter than under “tail-L”. Table 7 shows that similar to
the results for trace T1 (see Table 5), all scheduling poli-
cies achieve two orders of magnitude MTTDL improve-

ment attributed to intra-disk parity. The difference between
the MTTDL improvement achieved via instantaneous par-
ity (IP) updates and the delayed parity updates is negligi-
ble, especially under the tail-based policy. Recall that IP
updates dirty parities instantaneously upon the completion
of each user-issued WRITE and is not preemptable. When
the amount of parity updates is large (e.g., cases with 50%
and 90% WRITEs), the body-based policy obtains the worst
MTTDL improvement.

Table 8 shows that since T2 has highly variable idle
times, the tail-based policy outperforms the body-based
one. For example, the body-based policy performs at least
seven times worse than the tail-based policy with respect to
the average parity update time. The differences in perfor-
mance between the body-based and the tail-based policies
increase as the amount of parity updates increases. Among
the tail-based policies, “tail-L” achieves better update time,
while “tail-S” complets more parity updates. The two tail-
based policies perform exactly the same when the amount
of parity updates is small (e.g., cases with 1% WRITEs).
Timely updates are critical for MTTDL, we elaborate more
on this later in this section.

Trace Policy Parity Update Parity Update System
Ratio (%) Time (s) Util (%)

T2 body 28.40 141.4 4.68
(1%) tail-S 66.40 25.4 4.57

tail-L 66.40 25.4 4.57
T2 body 13.39 7,272.9 5.23

(10%) tail-S 33.20 194.3 5.03
tail-L 21.88 62.9 4.75

T2 body 3.96 9,721.2 5.42
(50%) tail-S 21.57 69.2 6.36

tail-L 17.44 31.4 5.88
T2 body 2.41 8,142.6 5.44

(90%) tail-S 18.36 48.6 7.36
tail-L 16.90 33.4 7.03

Table 8. Performance of parity updates for trace T2 (high
variability) and four different user WRITE traffic, i.e., 1%,
10%, 50% and 90% (numbers in parenthesis indicate the
absolute number of user WRITEs).

The overall system utilization in Table 8 is not as high as
the 80% utilization level under scrubbing in Table 4 because
parity updates represent a finite amount of work. Similarly
to the results of trace T1, if the amount of parity updates
is small (cases with 1% and 10% WRITEs), then the body-
based policy utilizes the system more than the tail-based
policy because of the preempted updates. As the amount
of parity updates increases, the effect of this phenomenon
diminishes.

Figure 4 plots the CDFs of parity update times for all
four variants of trace T2. Consistently with results in Ta-
ble 8, under the body-based policy, the distribution has
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Policy T2
1% WRITEs 10% WRITEs 50% WRITEs 90% WRITEs

body 0.484 ×102 0.466 ×102 0.386 ×102 0.351 ×102

tail-S 0.484 ×102 0.483 ×102 0.482 ×102 0.482 ×102

tail-L 0.484 ×102 0.484 ×102 0.483 ×102 0.483 ×102

IP 0.484 ×102 0.484 ×102 0.484 ×102 0.484 ×102

Table 7. MTTDL improvement for trace T2 via intra-disk data redundancy.
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Figure 4. CDF of parity update time for trace T2 (high variability) and four different user WRITE traffic, i.e., 1%, 10%, 50% and
90% (numbers in parenthesis indicate the absolute number of user WRITEs).

longer tail than under the tail-based policy. The “tail-L”
variant has the shortest tail indicating that the best average
performance comes from the policy that results in a shorter
tail of update times. The “tail-L” variant has also the longest
idle waiting, which indicates that it uses the smallest num-
ber of idle intervals among all policies evaluated, i.e., it
waits for the very long idle intervals to arrive. Neverthe-
less, it results in the shortest mean parity update time and
distribution tail. As parity updates increase in number, the
differences in the distribution of update times between “tail-
S” and “tail-L” decrease.

8 Multi-feature Case: Scrubbing and Intra-
disk Parity

Scrubbing and intra-disk parity can be used simultane-
ously to improve MTTDL. In this section, we evaluate the
performance of these two features when running concur-
rently. Because both features run in the background without
any buffer requirement, their queue capacity is assumed to
be infinite. Recall that scrubbing generates infinite work
while parity updates require finite work. Here, we evalu-
ate a scenario when parity updates have higher priority than
scrubbing, i.e., scrubbing is scheduled only if there is no
parity update waiting. As in previous sections, the perfor-
mance degradation of user traffic is kept below the preset
7% threshold.

8.1 MTTDL in Data Redundant Drives

We use Equation (3) to estimate the MTTDL improve-
ment when both scrubbing and intra-disk parity are en-

abled. Differently from the MTTDL estimation in Sec-
tion 7, the MTTDLML(1) and MTTDLML(2) in Equa-
tion (3) are computed using Equation (2). The average time
for a complete disk scrubbing when it runs concurrently
with parity updates is used in Equation (2) to estimate both
MTTDLML(1) and MTTDLML(2), i.e., ML(1) = 0.5 ×
average scrubbing time and ML(2) = 0.48 × 102 · ML(1).
As the same as in Section 6, we assume MRL ≈ 0 in Equa-
tion (2). The parameter p in Equation (3) is estimated using
Equation (4) and the average parity update time when it runs
concurrently with scrubbing.

8.2 Results for Trace T1

Here we present results for trace T1 which is charac-
terized by idle periods with low variability. For this trace,
scrubbing performs better with the body-based policy while
parity updates are done more efficiently under the tail-based
policy. Here, in addition to the body-based and the tail-
based policies, we also evaluate a “hybrid” scheduling pol-
icy that schedules scrubbing work via the body-based policy
and parity updates via the tail-based policy. This policy is
called “body+tail” policy.

Table 9 presents the MTTDL improvement when scrub-
bing and intra-disk parity co-exist under the three schedul-
ing policies. As expected, for T1 that has idle times of low
variablity, the body+tail policy achieves the best improve-
ment in MTTDL. Most importantly, the new combined pol-
icy gives 8 orders of magnitude improvements in MTTDL.
Comparing to running scrubbing and parity updates indi-
vidually, using both features results in dramatically higher
improvements while keeping the degradation of the fore-
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Figure 5. Average time for (a) an entire scrubbing, (b)
parity updates for trace T1 (low variability).

ground performance within pre-defined limits.

Trace T1
Policy body tail body+tail

0.2×108 0.6×108 0.7×108

Table 9. MTTDL improvement for trace T1 (low variabil-
ity) via scrubbing and intra-disk parity.The body+tail policy
schedules scrubbing via the body-based policy and parity-
updates via the tail-based policy.

Figure 5(a) presents the average time for a complete
scrubbing when run individually and when merged together
with parity updates. If the body-based policy is used
to schedule both types of background jobs, performance
degradation on scrubbing is significant. With the body+tail
variation, each background activity (i.e., scrubbing or par-
ity update) is scheduled using the policy under which it per-
forms best. Parity updates, because they have higher prior-
ity than scrubbing, are not penalized as much as scrubbing
(see Figure 5(b)). Furthermore, parity updates perform sig-
nificantly better if they are scheduled using the tail-based
policy, independently of how scrubbing is scheduled.

Figure 6 presents system utilization for trace T1. Re-
sults are in agreement with those shown in Figure 5: the
body+tail policy utilizes best the entire system providing
room for both scrubbing and parity updates to provide sig-
nificant performance improvements.
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Figure 6. Overall system utilization for trace T1 (low
variability) via scrubbing and intra-disk parity.

8.3 Results for Trace T2

Now, we present the results for T2 with high variable idle
times. For this trace, both scrubbing and parity updates indi-
vidually perform better using the tail-based policy. Table 10
gives the MTTDL improvement attributed to scrubbing and
intra-disk parity under this policy only. For the four vari-
ants of trace T2, the background activities dramatically im-
prove the system reliability by improving its MTTDL by as
high as 8 orders of magnitude. Consistently with the re-
sults shown in Table 9, there are gains of at least 3 orders of
magnitude in MTTDL.

T2
Policy 1% 10% 50% 90%

WRITEs WRITEs WRITEs WRITEs

tail 1.12 ×108 1.09×108 1.07 ×108 1.04×108

Table 10. MTTDL improvement for trace T2 (high vari-
ability) via scrubbing and intra-disk parity.
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Figure 7. Average (a) scrubbing and (b) parity update
times when running individually and together.

Figures 7(a) and 7(b) further give the average scrubbing
and parity update times. For comparison, in each plot the
results of only disk scrubbing and only intra-disk parity are
also included, see left set of columns in Figures 7(a) and
7(b), respectively. For the case of scrubbing, all variants of
trace T2 perform the same because scrubbing is workload
independent.

Although scrubbing has lower priority than intra-disk
parity update, enabling it concurrently with parity updates
does not affect its performance considerably (i.e., only 10%
WRITEs in the worst case). Similarly, parity updates see
minimal change in their performance because they are pro-
cesses of higher priority than scrubbing. The only exception
is the case with the smallest amount of parity updates (i.e.,
only 1% user WRITEs). As discussed in Section 7, the ef-
fect of parity updates in user traffic performance is almost
zero for this case and parity update times are the smallest.
However, adding the infinite scrubbing work degrades par-
ity update performance by as much as 3 times.

Figure 8 shows overall system utilization, which is dom-
inated by the work done for scrubbing. Because the work
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related to parity updates is small, its completion barely adds
to the system utilization. It is scrubbing with its infinite
amount of work that keeps the system continuously utilized.
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Figure 8. Overall system utilization under scrubbing and
parity updates when they run individually and together.

9 Conclusions

In this paper, we evaluate the effectiveness of data loss
prevention techniques, such as disk scrubbing and intra-
disk data redundancy, when their execution should not af-
fect user performance more than pre-defined bounds. Our
trace driven evaluation indicates that treating these features
as strictly background features and scheduling them dur-
ing idle times, guided by advance idleness management
techniques, do achieve the goal of maintaining user perfor-
mance degradation at minimum, while significantly improv-
ing the storage system Mean Time To Data Loss - MTTDL.
Specifically, scrubbing improves MTTDL by up to five or-
ders of magnitude and intra-disk data redundancy improves
MTTDL by up to two orders of magnitude. However, run-
ning concurrently both features yields further gains with
respect to MTTDL, i.e., up to eight orders of magnitude,
without violating the user performance constraints. These
results indicate that these two features complement each-
other and significantly improve data availability and reli-
ability in the storage system while remaining strictly low
priority features.
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