
Scheduling for Performance and Availability in Systems with Temporal
Dependent Workloads∗

Ningfang Mi, Giuliano Casale, and Evgenia Smirni
Computer Science Department, College of William and Mary

{ningfang,casale,smirni}@cs.wm.edu

Abstract

Temporal locality in workloads creates conditions in
which a server, in order to remain available, should quickly
process bursts of requests with large service requirements.
In this paper, we show how to counteract the resulting peak
congestions and maintain high availability by delaying se-
lected requests that contribute to the temporal locality.

We propose and evaluate SWAP, a measurement-based
scheduling policy that approximates the shortest job first
(SJF) schedulingwithout requiring any knowledge of job
service times. We show that good service time estimates can
be obtained from the temporal dependence structure of the
workload and allow to closely approximate the behavior of
SJF. Experimental results indicate that SWAP significantly
improves system performability. In particular, we show that
system capacity under SWAP is largely increased compared
to first-come first-served (FCFS) scheduling and is highly-
competitive with SJF, but without requiring a priori infor-
mation of job service times.

1 Introduction

Temporal dependence in workloads processed by multi-
tier architectures, disk drives, and grid services, signif-
icantly reduces performance and availability by creating
peak congestions that can make service unavailable [9, 12,
14]. With temporal locality, requests with large service re-
quirements frequently appear clustered together, reducing
system throughput for a period that is usually much longer
than the duration of the arrival burst. Thus, system avail-
ability is strongly dependent on the response given to these
workload peaks and efficient schemes to address bursts be-
come fundamental for performance and availability.

The characterization and the definition of remedies for
temporal dependence congestion effects have been exhaus-
tively studied in networking, leading to the development

∗This work was supported by the National Science Foundation under
grants ITR-0428330 and CNS-0720699.

of accurate models of autocorrelated traffic processes (e.g.,
MMPP, fractional Brownian motion,M/G/∞) [18], and
to measurement-based load-control schemes for network
availability under rapidly changing flows [7]. Unfortu-
nately, because of systematic violations of the underlying
assumptions, these schemes cannot be easily applied to sys-
tems. Deterministic or Erlang service time distributions in
ATM networks are replaced in systems by highly-variable
service demands [2, 14]; similarly, the usual assumption
that a channel multiplexes a sufficiently large number of
traffic flows to enable Gaussian approximations [7] is not fit
for systems where restrictive constraints on the maximum
concurrency level exist, e.g., limits on the maximum num-
ber of simultaneous HTTP sessions or DB locking condi-
tions.

In this paper, we address the lack of effective
measurement-based schemes to maintain performance and
availability in systems with temporal dependent workloads.
We focus on the difficult case where processing the en-
tire workload is mandatory and where work reduction tech-
niques such as request drop cannot be applied. Our main
contribution is to show that significant performance gains
and high system availability can be obtained by delaying se-
lected requests that contribute to temporal locality. We ob-
serve that request delaying results in significant throughput
improvement throughout the network, thus allowing delay-
based scheduling to increase the amount of request that a
server can process at a given time and therefore avoiding
harmful congestion conditions. We interpret the significant
performance improvement as an outcome of the autocorre-
lation reduction in the service process of the resource where
requests are delayed. Since the temporal dependence prop-
agates through the entire network [12], by decreasing the
autocorrelation at the resource with delay-based schedul-
ing, we also reduce the autocorrelation in the arrival process
of the other servers in the network, which results in gen-
eralized throughput improvement. We observe that larger
throughput lets the system sustain more customers, there-
fore improving the overall availability. We also remark that
this simple approach can be more effective than hardware

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 336 DSN 2008: Mi et al.

upgrades, i.e., doubling the speed of a server is not as effec-
tive as implementing a delay-based scheduling technique at
the server with temporal dependent workload.

Delay-based scheduling is investigated throughout the
paper by defining a new scheduling policy, called SWAP.
SWAP is a fully measurement-based policy that classifies
(i.e., “predicts”) requests as short or long based on the tem-
poral dependence of the workload service process. That is,
we leverage on the structure of temporal locality to forecast
the size of upcoming requests and define self-adjusting cri-
teria to discriminate (i.e., delay) requests that the algorithm
deems as large, to be delayed. Experimental results indi-
cate that SWAP can increase throughput up to30% − 40%
under temporal dependent workloads, without service rejec-
tion while maintaining the fraction of delayed requests low.
These results show that SWAP works comparably to Short-
est Job First (SJF), despite the fact that it does not require
any a priori knowledge of future workload.

Sensitivity analyses with respect to device relative
speeds, to different degrees of temporal dependence, to sys-
tem load, and to network size show that SWAP is effective
and robust in many different environments. Furthermore,
we also show that in all cases, the performance under SWAP
is very close to that of the SJF policy, thus suggesting the
effectiveness of the workload prediction used by SWAP.

This paper is organized as follows. In Section 2, we
present the SWAP scheduling algorithm. In Section 3 we
use simulation to validate the effectiveness and robustness
of SWAP. In Section 4 we give an overview of the previous
work in networking on scheduling and availability control
under temporal dependent workloads. Finally, in Section 5,
we draw conclusions and outline future work.

2 Delay-Based Scheduling Policy: SWAP

In this section we introduce SWAP, a new delay-based
scheduling policy that improves performance and availabil-
ity in systems with temporal dependent workloads. The ba-
sic idea behind SWAP can be summarized as follows. Con-
sider a system processing jobs with a first-come first-served
(FCFS) scheduling policy. Assume that theexact job size
information is available to the scheduler. If we want to max-
imize performance given that the future instants of new job
arrivals are unknown, then the optimal scheduling is short-
est job first (SJF) as it is well-know from classic scheduling
theory [15]. That is, if the resource hasK enqueued jobs
having ordered service timesSk, 1 ≤ k ≤ K, beingS1 the
service time required by the job at the head of the queue,
the total completion timeCT under the FCFS discipline is

CT = KS1 + (K − 1)S2 + . . . + SK ,

which represents the time interval from the moment that the
first job arrives to the moment that the last job leaves the

service center, and is immediately minimized ifSk ≤ Sk+1,
i.e., when short jobs are served first.

Outside the above assumptions, SJF is not in general op-
timal, but yet provides significant gains with respect to sim-
pler scheduling policies such as FCFS. We therefore inves-
tigate how the performance of SJF could be approximated
with an online policy that does not require a priori knowl-
edge. That is, the well-know problem of SJF is that it re-
quires information on the job service times, which in prac-
tice may not be available. The basic idea behind SWAP is
to use the measured serial correlation of the service times
to estimate this missing information. Once these reliable
estimates of the job service times are available, we delay
large jobs up to a fixed number of times by putting them
at the tail of the queue. In such a way, long jobs are more
likely to be served after most short jobs have been com-
pleted. Estimated-short jobs are not delayed by SWAP.

Summarizing, the basic ideas of SWAP are as follows:

1. approximate the behavior of the SJF scheduling disci-
pline by proper use of job delaying;

2. estimate the expected service times of the jobs wait-
ing in queue from the process temporal dependence, as
modeled by the correlation between successive service
time values.

We stress that SWAP doesnot assume any a priori knowl-
edge of the length of any of the enqueued jobs. The system
knows the exact service time received by a job onlyafter
the job completes execution. Estimation of service times
for the remaining jobs is based only on the past history of
the system. We also stress that we provide mechanisms to
avoid job starvation. In the following subsections we detail
the SWAP policy and its implementation.

2.1 Forecasting Job Service Times

The effectiveness of the new proposed policy depends on
the accuracy of forecasting job service times. If prediction
is done effectively, then long jobs to be delayed can be ac-
curately identified and SWAP performs optimally. We first
present SWAP service time forecasting methodology which
is specifically tailored to temporal dependent workloads.

Exploiting Service Time Variability

Our service time forecasting relies on two system aspects:
service time variability and temporal dependence of work-
loads. Concerning the former, we leverage on the fact that
service time distributions found in systems are typically
characterized by high variance [2, 14] and therefore the dis-
crimination between small and large service times can be
performed effectively and used to improve performability.
In particular, SWAP uses a large-job threshold (LT)

LT = µ−1(1 + k · CV), (1)

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 337 DSN 2008: Mi et al.

whereµ−1 is the mean service time at the resource,CV is
the coefficient of variation of service times (i.e., the ratio of
the standard deviation to the mean), andk ≥ 1 is a constant
determined online. If a job service time is greater thanLT ,
then SWAP regards the job as “long” (also referred through-
out the paper as “large”). Otherwise SWAP classifies it as
“short”. Note that the policy can successfully measure the
parameters for computingLT in an online fashion, i.e., the
meanµ−1 and the coefficient of variationCV of the service
times are continuously updated in SWAP using Welford’s
one-pass algorithm [8].

Exploiting Temporal Dependence

Given a classification into large and short jobs, the next step
to effective forecasting is to exploit the structure of tem-
poral dependence in order to “guess” if a job in the queue
is long or short. This is the critical information needed to
approximate the behavior of SJF scheduling. We assume
that the scheduler is able to measure correctly the service
times of jobs completed by the server; this is readily avail-
able in most systems. LetT be the time instant in which
a forecasting decision is needed, which in SWAP always
corresponds to the departure instant of along job depart-
ing from the queue. Also assume that during the period
[T − TW , T], the system has completedn jobs with service
timesS1, S2, . . . , Sn. TW , 0 ≤ TW ≤ T , is an update
window monitoring past history. Given the sequence{Si},
1 ≤ i ≤ n, our forecasting is based on the estimates of the
conditional probabilities

P [L|L]j =P [St+j ≥ LT |St ≥ LT],

P [S|L]j =P [St+j < LT |St ≥ LT] = 1 − P [L|L]j ,

which are computed using the samplesSt ∈ {Si} for
t = 1, . . . , n − j. Here j is called the lag of the con-
ditional probability and denotes the distance between the
service completions considered in the conditional probabil-
ities. Given that the last completed job is long,P [L|L]j
measures the fraction of times that thej-th job that had ar-
rived after it is also long; similarly,P [S|L]j estimates how
many times the lag-j arrival is short. Using these estimates,
we forecast that the lag-j arrival after the last completed job
is going to receive large service time if the following condi-
tion holds

P [L|L]j ≥ P [S|L]j , (2)

i.e., there is higher probability that thej-th arrival is going
to be long than short. SWAP is triggered only when the
last finished job is long; therefore, since we focus on closed
systems only, i.e., systems with constant populationN , we
only make use of the conditional probabilitiesP [L|L]j , for
1 ≤ j < N .

1. initialize:
a. maximum allowable delay limitD;
b. arrival indexi← 0;
c. large thresholdLT ← µ−1(1 + k · CV);

2. upon each job arriving at queue
a. i← i + 1;
b. set that job’s arrival index toi;
c. initialize that job’s predicted result as UnChecked;
d. initialize that job’s num. of delaysd← 0;

3. upon each job completion at queue
a. measure conditional probabilitiesP [L|L]j , 1 ≤ j < N ;
b. if its service time is greater thanLT ,

then trigger one round of the delaying;
I. initialize j ← 1;
II. if predicted result of thej-th job is not UnChecked,

then keep using its predicted result;
III. if predicted result of thej-th job is UnChecked,

then predict the size of thej-th job;
– calculate thelag apart the two jobs asj-th job’s

arrival index - completed job’s arrival index ;
– if P [L|L]lag ≥ P [S|L]lag,

then set that job’s predicted result as large;
else set that job’s predicted result as small;

IV. j ← j + 1;
V. if reaching the end of the queue,

then for each large job with num. of delaysd ≤ D

delay it to the end of the queue and setd← d + 1;
else, go to step 3-c-II;

c. else, go to step 3;

Figure 1. Description of SWAP.

2.2 The Delaying Algorithm: SWAP

We now describe SWAP in detail. For presentation sim-
plicity, we assume here that the large thresholdLT that is
fundamental for forecasting is given; in the next subsection,
we present how SWAP self-adjustsLT on-the-fly, i.e., no
a priori knowledge ofLT is required and SWAP becomes
truly autonomic.

Upon the completion of a long job, the entire queue is
scanned and the size of thej-th queued job is predicted by
using the conditional probabilities introduced in the pre-
vious subsection. If thej-th job is estimated as large,
SWAP marks it as such. All jobs that are marked long are
delayed by moving them at the end of the queue. After all
jobs in the queue have been examined and long jobs have
been delayed, SWAP admits for service the first job in the
queue. Delaying is not triggered again before completion of
another long job.

Jobs are “reshuffled” in the queue based on their antic-
ipated service times; the order of the jobs in the service
process is therefore altered (attempting to approximate SJF
scheduling) and this modifies both the throughput at the

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 338 DSN 2008: Mi et al.

queue and the serial correlation of the process. Concern-
ing the latter, we point to [1] for an accurate analysis of the
effects of shuffling in stochastic processes that can be mod-
eled using Markovian methods.

SWAP does not re-forecast the length of a job whose ser-
vice time has been already forecasted to be long. This is
done by recording an absolute arrival indexAi for each job.
That is, once a job has been marked as long it remains as
such for all the duration of its stay in the queue and is never
forecasted as short in successive activations of SWAP; the
same property holds also for short jobs. We apply the con-
ditional probabilities on the sequence of jobs in the queue
obtained by ordering the jobs according to the arrival in-
dexes only.

To avoid starvation of long jobs, we introduce thedelay
limit D, i.e., the maximum number of times a single job
can be delayed. When the number of times a job has been
delayed is more thanD, the policy does not delay this job
any longer and allows it to wait for service in its current
position in the queue. Figure 1 gives the pseudocode of
SWAP and summarizes the above discussion.

2.3 Self-Adjusting the Threshold LT

Now, we discuss how SWAP adjusts the thresholdLT
for large values, aiming at controlling the strength of delay-
ing to strike a good balance between being too aggressive
or too conservative. Intuitively, when the thresholdLT is
too large, the policy becomes conservative by delaying few
long jobs, the performance improvement is then negligible.
Conversely, whenLT becomes too small, more jobs (even
short ones) are delayed and therefore throughput is reduced.
As a result of this, performance may be improved very lit-
tle. Therefore, the choice of an appropriate large threshold
LT is critical for the effectiveness of SWAP.

As observed in Section 2.1, the computation ofLT is
a function of the updating windowTW used by SWAP.
We expressTW as the maximal time period in which the
system has completed exactlyW requests; in the experi-
ments presented here, we setW = 100, 000. The algo-
rithm in Figure 2 describes how the thresholdLT is dynam-
ically adjusted everyW requests. At the end of a period of
lengthTW , we updateLT while keeping as upper and lower
bounds for its value the90th and the50th percentiles of the
observed service times inTW . Indeed, whenever specific
information on the workload processed by a system is avail-
able, these values can be increased or decreased according
to the characteristics of the workload. The thresholdLT is
updated by assuming that the value of the conditional prob-
ability P [L|L]j at some large lagj is representative of the
overall tendency of the system to delay jobs.

In the implementation considered in the paper, we adjust
the parameterk which definesLT = µ−1(1+ k ·CV) with

1. initialize: µ← 0, CV ← 0, k ← 1, andadj ← 0.5;
2. setLT ← µ−1(1 + k · CV);
3. for each request in a updating windowTW do

a. upon each job completion at the autocorrelated server
I. compute observed conditional probabilities:

P [L|L]j , for 1 ≤ j < N ;
II. updateµ−1 andCV by Welford’s algorithm;
III. update the mean queue lengthQL;

b. at the end ofTW

I. if P [L|L]⌊QT/2⌋ ≥ P [S|L]⌊QT/2⌋,
thenk ← k + adj;
else ifP [L|L]⌊QT/10⌋ < P [S|L]⌊QT/10⌋,
thenk ← k − adj;

II. set maximum and minimum large thresholds:
LT max← 90 percentile of observed service times;
LT min← 50 percentile of observed service times;

III. recalculateLT ← µ−1(1 + k · CV);
IV. if LT > LTmax, thenLT ← LTmax;
V. if LT < LTmin, thenLT ← LTmin;

Figure 2. Description of how to self-adjustLT .

stepadj according to the following scheme. LetQT be the
current queue-length at the server with SWAP scheduling.
We evaluateP [L|L]j for the large lagj = ⌊QT/2⌋ and
if P [L|L]j ≥ P [S|L]j , then SWAP is assumed to be too
aggressive, since it may delay at the next round1 a number
of jobs up to⌊QT/2⌋. In this case we setk = k + adj,
which reduces the number of jobs identified to be long. A
similar procedure is performed for the casej = ⌊QT/10⌋,
where if P [L|L]j ≥ P [S|L]j , we conventionally assume
that SWAP is too conservative; in this case we setk =
k − adj which increases the number of jobs estimated as
large. Throughout experiments we have always observed
that theLT online algorithm does not show instability prob-
lems and always provide effective choices ofLT which lead
to consistent performance gains as discussed in the next sec-
tion.

3 Performance Evaluation of SWAP

In this section, we present representative case studies il-
lustrating the effectiveness and the robustness of SWAP. For
all simulations, we generate the service time traces with 10
million samples. Simulations stop only after all the ser-
vice times have been used. Throughout all experiments, we
stress that SWAP never changes the statistical distribution
of the service times and the ratio between long and short
jobs. Instead, SWAP only reorders the service times while
keeping the distribution intact. We stress that although we

1Here we implicitly assume that the conditional probabilitiesP [L|L]
are decreasing inj which indeed is the typical case for workloads where
large service times are a minority compared to the small service times.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 339 DSN 2008: Mi et al.

A
C

F

lag(k)

ACF1
ACF2
ACF3

−0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 1 100 200 300 400 500 600 700 800 900 1000

Figure 3. The ACF of the service process that gener-
ates the autocorrelated flows in the system, where the ser-
vice times are drawn from MMPP(2) withACF1, ACF2 and
ACF3, respectively.

simulate a closed system with jobs that cycle in the two
servers, every time when a job arrives in a service station
we cast a random number to generate its service time. Thus,
in our simulations we never re-cycle short jobs and never
change the distribution of service times.

We use simulation to evaluate the performability im-
provement of SWAP in a network withM first-come-first-
served (FCFS) servers in series. We assume that there is
only one server with temporal dependence in its service pro-
cess and denote that queue asQACF . Throughout experi-
ments, the service process atQACF is always a two-state
Markov-Modulated Poisson Process (MMPP(2)) [13] with
identical distribution having mean rateµ = 1 and squared
coefficient of variationCV 2 = 20. Letρj be the lag-j auto-
correlation coefficient. For the MMPP(2) we consider three
different autocorrelation profiles:

• ACF1: ρ1 = 0.47 decays to zero beyond lagj = 1400;

• ACF2: ρ1 = 0.46 decays to zero beyond lagj = 240;

• ACF3: ρ1 = 0.45 decays to zero beyond lagj = 100.

Figure 3 shows the ACF for the three profiles. These ACFs
are typical and representative of real workloads measure-
ments in storage systems [14], multi-tier architectures [12],
and grids [9]. The otherM − 1 queues, denoted asQi

Exp,
have exponentially distributed service times with mean rate
λi, 1 ≤ i < M . We focus on the case where a constant
workload ofN requests circulates in the network, i.e., the
model is a closed queueing network. Simple networks of
this type are often used to model real systems, e.g., multi-
tier architectures [11, 16].

3.1 Performance Improvement

We first simulate a network with two queues: the expo-
nential queueQ1

Exp has mean service rateλ1 = 2; the auto-
correlated queueQACF uses the MMPP(2) described above
with autocorrelation structureACF1. The model population
is set toN = 500, the delay limit isD = 100. Sensitivity

to the most important experiment parameters is explored in
the next subsections.

We compare system capacity under SWAP as measured
by the system throughput with the throughputs observed
whenQACF uses FCFS or SJF scheduling. Indeed, larger
throughput means that the system can sustain more load and
it is protected from the degradation of sudden bursts of re-
quests, which improves the overall availability of the sys-
tem. FCFS performance is used for a baseline in compari-
son. We recall that our stated goal is to show that SWAP is
competitive to SJF which would show that the knowledge
required by SJF can be inferred effectively from the tempo-
ral dependence of workloads.

FCFS SWAP SJF
TPUT 0.71 job/sec 0.92 job/sec 1.01 job/sec

% improv. baseline 29.6% 40.8%

Table 1. Mean system throughput (TPUT) and relative
improvement over FCFS for a network withM = 2 queues,
N = 500 jobs,λ1 = 2 and autocorrelation profileACF1.

FCFS SWAP SJF
Overall RTT 701 sec 540 sec 473 sec

short RTT 548 sec 314 sec 70 sec
long RTT 3326 sec 4279 sec 7270 sec

Table 2. Mean round trip time (RTT) of all jobs, short
jobs, and long jobs, for a network withM = 2 queues,
N = 500 jobs,λ1 = 2 and autocorrelation profileACF1.

Table 1 shows the mean throughput of the different poli-
cies and the relative improvement with respect to FCFS.
Throughput is measured at an arbitrary point of the net-
work, since for the topology under consideration through-
put at steady state must be identical everywhere [4]. The
table shows that, although we are not reducing the overall
amount of work processed by the system, both with SJF and
SWAP the capacity is significantly better than with FCFS.
Noticeably, SJF and SWAP perform closely, thus suggest-
ing that the SWAP approximation of SJF is very effective.

Table 2 further presents the mean round trip times
(RTTs) of short and long jobs. The mean round trip times of
all jobs for different policies are presented as well. Round
trip time is measured as the sum of response times at allM
queues. Table 2 shows that under both SJF and SWAP poli-
cies, the overall performance is significantly better than un-
der FCFS. Because of the inexact information used, SWAP
does not improve the performance of short jobs as much as
SJF does. On the other hand, SWAP does not degrade the
performance of long jobs as worse as the SJF does. By giv-
ing the higher priority to short jobs, SJF achieves the long

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 340 DSN 2008: Mi et al.

(b)

(a)

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 1e4 1e5 1e6 1e7

cc
df

 (
%

)

round trip time

FCFS

SWAP

SJF

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 100 200 300 400 500 600 700 800 900 1000

A
C

F

lag(k)

FCFS

SWAP

SJF

Figure 4. Comparative evaluation of SWAP, SJF and
FCFS: (a) CCDF of RTTs, (b) autocorrelation (ACF) of ser-
vice times atQACF .

tail in the distribution of round trip times for long jobs.
Further confirmation of this intuition comes from Figure

4(a), which shows the complementary cumulative distribu-
tion function (CCDF) of the round trip times (RTTs), i.e.,
the probability that the round trip times experienced by in-
dividual jobs are greater than the value on the horizontal
axis. The plot shows that the largest part of job experiences
the lowest RTTs when the scheduling is SJF or SWAP. In-
deed, the part of the workload whose execution is delayed
at QACF receives increased response times, but the num-
ber of penalized requests amounts to less than3% of the
total. Observe also that the performance of SJF and SWAP
is extremely close. The only significant difference is that in
SJF a small fraction of jobs (less than0.5%) receives much
worse RTTs than in SWAP. We attribute such difference to
the unavoidable forecasting errors in SWAP, which may oc-
casionally fail in identifying jobs as long also if their ac-
tual service requirement is large, thus resulting in a smaller
CCDF tail than SJF.

Other interesting observations arise from Figure 4(b).
This figure shows the autocorrelation of the service times at
QACF under the different scheduling disciplines. Temporal
dependence is much less pronounced under SJF and SWAP,
thus suggesting that both techniques are able to break the
strong temporal locality of the original process.

3.2 Sensitivity to Device Relative Speeds

From now on, we investigate the robustness of SWAP
performance to changes in the experimental parameters. We
first focus on evaluating networks with varying process-
ing speeds, i.e., we consider the model in Section 3.1 and
vary the service rate at the exponential queueQ1

Exp while

40.8% 15.1% 16.2%

29.8%

52.7%
29.6%

SJFFCFS SWAP

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

Exp5Exp2

th
ro

ug
hp

ut

Exp1

Figure 5. Sensitivity to service process ratio in a network
with M = 2, N = 500, andACF1. The numbers on the
top of bars are the improvements with respect to FCFS.

keeping fixed the speed atQACF . Figure 5 presents the
average system throughput for three experiments, labeled
Exp1, Exp2, andExp5, where we setλ = 1, 2, and5,
respectively. For ease of comparison, and only for this ex-
periment, we have rescaled in experiments the mean service
rate atQACF to µ = 2. Thus, inExp1 the slowest bottle-
neck queue isQ1

Exp, in Exp2 the two queues have identical
speed, while inExp5 the bottleneck isQACF . The relative
capacity improvement with respect to FCFS scheduling is
marked above each bar in the figure. The interpretation of
the experimental results leads to the following observations.

First, SWAP improves the system throughput across all
experiments and is better for smaller values ofλ. The in-
tuition behind this result is that ifQ1

Exp is the bottleneck,
then delaying a job produces less overhead, i.e., a job put in
the tail ofQACF can yet reach the head of the queue quite
rapidly since most of the network population is enqueued at
the other resourceQ1

Exp. In this way, the cost of delaying
becomes negligible and the network can benefit more of the
reordering of jobs sizes.

A second important observation is that, asλ increases,
SWAP performance converges to SJF performance. This
suggests that SWAP forecasting is very accurate since in
Exp5 almost all population in the network is queueing at
QACF and SJF sorts nearlt perfectly a large population
close toN jobs according to their exact size. The fact that
SWAP achieves similar performance indicates that the same
accurate ordering is obtained if forecasting is based on tem-
poral dependence.

As a final remark, it is interesting to observe that SWAP
can be more effective than hardware upgrades. For instance,
the throughput under SWAP inExp2 (white bar,Exp2)
is more than the expected throughout with FCFS inExp5
(black bar,Exp5). That is, under temporal dependent work-
loads, it can be more effective to adopt SWAP than doubling
the hardware speed ofQ1

Exp.
We conclude the experiment showing in Figure 6 the

CCDF of RTTs for the previous experiments. The CCDF
tail behavior observed in the previous subsection persists

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 341 DSN 2008: Mi et al.

(b) Exponential service rate 2 (c) Exponential service rate 5(a) Exponential service rate 1

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 1e4 1e5 1e6

cc
df

 (
%

)

round trip time

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1e6 1e7

cc
df

 (
%

)

round trip time
 1e4 1e5 1000

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1e5 1e6 1e7

cc
df

 (
%

)

round trip time
 1e4 1000

SWAP
SJF

FCFS

SWAP
SJF

FCFS FCFS

SJF

SWAP

Figure 6. Il lustrating the CCDF of RTTs in a network withM = 2, N = 500, andACF1. The service rateλ1 of the exponential
queue is equal to (a) 1, (b) 2, and (c) 5.

9.9%8.8%20.4%40.8%

29.6%

19.3%

SJFFCFS SWAP

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

ACF3ACF2ACF1

th
ro

ug
hp

ut

Figure 7. Sensitivity to temporal dependence in a net-
work with M = 2, N = 500, andλ1 = 2, where the
relative improvement over the FCFS policy is indicated on
each bar.

for Exp1, Exp2, andExp5, where again SWAP degrades
the performance of only3% of the total number of requests.
3.3 Sensitivity to Temporal Dependence

In order to analyze the effect of temporal dependence on
policy performance, we conduct experiments with various
autocorrelation profiles atQACF , but always keeping the
same mean andCV of the job sizes. We use the three ser-
vice processes with autocorrelationACF1, ACF2, andACF3

shown in Figure 3.
Figure 7 shows the system throughput under FCFS,

SWAP and SJF policies for the same model evaluated in
Section 3.1 but for different autocorrelations. In general,
we expect that strong ACF degrades overall system perfor-
mance more than weak ACF, as it is clearly confirmed by
the experimental results. Yet, SWAP under the stronger
ACF improves more than under the weaker ACF. This is
because the stronger the ACF, the higher the conditional
probabilities for having large-large pairs in the service time
series and the delaying is more aggressive. For instance, for
ACF1, we haveP [L|L]j ≥ P [S|L]j for all j < 69.

When the service process has the two weaker ACFs, i.e.,
ACF2 andACF3, the margin for performance improvement
of SWAP and SJF is much reduced. In this case, only the
conditional probabilities with lags up toj = 30 for ACF2

and up toj = 14 for ACF3 satisfyP [L|L]j ≥ P [S|L]j .
This implies that weaker ACFs make SWAP more conser-
vative in delaying long jobs, but SWAP still achieves per-
formance very close to the target behavior of SJF.

The plots in Figure 8 present the effect of different tem-
poral dependence on the tail RTTs under SWAP. Strong
temporal dependence in the service process makes SWAP
to delay long jobs more effectively, and thus almost97% of
requests are served up to seven times faster than under the
FCFS policy, see Figure 8(a). As temporal dependence be-
comes weaker in Figure 8(b), the policy delays long jobs
less aggressively and a few requests show worse perfor-
mance. That is, SWAP becomes less effective, resulting in
a longer tail of the RTTs distribution. With low autocorre-
lation, see Figure 8(c), SWAP becomes more conservative
in delaying jobs, which is reflected by a small fraction of
affected jobs. Consistently with the results presented in the
previous case studies, SJF gives a long tail in the distribu-
tion of RTTs across all experiments and as the strength of
ACF decreases, the tail becomes longer.

3.4 Case 4: Sensitivity to System Load

Now we investigate the sensitivity of SWAP to an in-
creased number of requests in the system. This is extremely
important to understand the performability benefit of the
technique as the system reaches critical congestion. In or-
der to evaluate how SWAP improves system availability, we
conduct experiments with three different network popula-
tionsN = 500, N = 800, andN = 1000, while keeping
fixed the other parameters as the experiment in Section 3.1.
The system throughput for these three experiments is illus-
trated in Figure 9 and the CCDFs of the RTTs experienced
by individual requests are plotted in Figure 10. In the ex-
periment with the highest loadN = 1000, SWAP improves
throughput by33% compared to FCFS and achieves perfor-
mance close to the target SJF performance. The improve-
ment is clear also for lower loads, i.e.,N = 500, 800, but
performance gains are maximal under the most congested
caseN = 1000.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 342 DSN 2008: Mi et al.

(c) ACF3(a) ACF1 (b) ACF2

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 1e6 1e7

cc
df

 (
%

)

round trip time
 1e5 1e4

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 1e5 1e6 1e7

cc
df

 (
%

)

round trip time
 1e4

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 1e4 1e5 1e6 1e7

cc
df

 (
%

)

round trip time

FCFS

SWAPSJF SJF

FCFS

SJF

SWAP

FCFS

SWAP

Figure 8. Il lustrating the CCDF of RTT in a network withM = 2, N = 500, andλ1 = 2. The service process ofQACF has
temporal dependence (a)ACF1, (b) ACF2, and (c)ACF3.

(a) N = 500 (b) N = 800 (c) N = 1000

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 1e5 1e6 1e7

cc
df

 (
%

)

round trip time
 100 1000 10000

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1e5 1e6 1e7

cc
df

 (
%

)

round trip time
 1000 10000

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1e5 1e6 1e7

cc
df

 (
%

)

round trip time
 1000 10000

SWAP
SJF

FCFS FCFS

SWAP

SJF

FCFS

SWAP

SJF

Figure 10. Il lustrating the CCDF of RTT in a network withM = 2, λ1 = 2, ACF1. The network population is (a)N = 500, (b)
N = 800, and (c)N = 1000.

29.6%

40.8%
32.8%

38.9%
32.7%

37.2%

SJFFCFS SWAP

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

N=1000N=800N=500

th
ro

ug
hp

ut

Figure 9. Sensitivity to network population in the system
with M = 2, λ1 = 2, andACF1, where the relative im-
provement over the FCFS policy is indicated on each bar.

Regarding availability, SWAP enables the system to sus-
tain higher loads compared to the FCFS policy. For in-
stance, forN = 800 and FCFS scheduling,80% of requests
experience RTTs less than1146 when no delaying of jobs
occurs, see the solid curve in Figure 11. However, even for
N = 1000 requests, the fraction of requests having round
trip times less than 1146 becomes95% with SWAP (see the
dashed curve in Figure 11). That is, SWAP is able to give a
remarkably better performance to most jobs than with FCFS
even if the overall population is increased by200 requests.
This makes immediately clear that SWAP can be very effec-
tive in addressing request bursts that threaten system avail-
ability.

 1

 10

 100

 0 5000 10000 15000 20000 25000

cc
df

 (
%

)

round trip time

FCFS N=800
SWAP N=1000

Figure 11. Il lustrating the CCDF of RTT in a network
with M = 2, λ1 = 2, andACF1. The solid curve shows
the results in the experiment withN = 800 under the FCFS
policy and the dashed curve presents the results in the ex-
periment withN = 1000 under SWAP.

3.5 Sensitivity to Network Size

We evaluate the sensitivity of SWAP to the network size
by evaluating throughput improvement forM = 2, 3, 4.
Except for the autocorrelated queueQACF , the remaining
M −1 resources are queues with exponential service times.
In order to evaluate the different impact of service times
that are balanced or unbalanced with respect to the service
at QACF , we consider the sets of rates shown in Table 3,
see the initial part of this section for related notation.

Figure 12 shows throughput improvement provided by
the three scheduling disciplines. Note that the first experi-

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 343 DSN 2008: Mi et al.

M QACF Q1

Exp Q2

Exp Q3

Exp

2 µ = 1 λ1 = 1 N/A N/A
3 µ = 1 λ1 = 1 λ2 = 0.25 N/A
4 µ = 1 λ1 = 1 λ2 = 0.25 λ3 = 1

Table 3. Queue service rates in the three experiments used
to study SWAP sensitivity to different network sizes.

29.5%

52.7%

15.8%
26.3%

8.6%4.3%

SJFFCFS SWAP

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

M=4M=3M=2

th
ro

ug
hp

ut

Figure 12. Sensitivity to network size in a network with
N = 500 andACF1, where the relative improvement over
the FCFS policy is indicated on each bar.

ment is different from the conditions of Table 1, since here
the two queues are balanced. As the number of queues in
the network increases, the relative improvement over the
FCFS policy decreases. We interpret this effect by observ-
ing that since there are more exponential servers in the net-
work, the temporal dependence of the successive requests
at the queues are much weaker than in the experiments con-
sidered before. That is, throughout its path, each request
is served multiple times by exponential service processes
without temporal dependence and therefore the temporal lo-
cality effects in the network are reduced. Therefore, the
reduced gain in this experiment is rather a consequence of
the more limited margin for improvements on these network
rather than a limit of SWAP. In fact, we see that also SJF im-
proves modestly with respect to the FCFS case. Preliminary
experiments indicate that if SJF or SWAP are deployed at
multiple queues with temporal dependent workloads, then
overall system performance and availability benefit signifi-
cantly. We leave the detailed investigation of these proper-
ties of SWAP for future work.

We complete the analysis in this subsection with Fig-
ure 13 that plots the CCDF of job RTTs for the three ex-
periments. Consistently with the results presented in the
previous cases, SWAP delays only 2-3% of requests but
achieves better performance for most requests. The results
are consistent with the properties of SWAP observed in the
previous experiments, and the results are almost indistin-
guishable across the three experiments.

3.6 Summary of Experiments

The extensive experimentation carried out in this sec-
tion has revealed that SWAP can effectively approximate

the performance of SJF without the need of additional in-
formation about job service times. The sensitivity results
on the various autocorrelation profiles have proved that the
gains are more pronounced in presence of higher tempo-
ral dependent workloads. This suggests that SWAP is an
effective solution to increase performability in systems pro-
cessing this type of workloads. Sensitivity analyses to the
number of queues in the network and system load show that
the gains of SWAP are visible in a variety of different con-
ditions.

4 Related Work

A large literatures on scheduling policies (disciplines)
have been developed over the years (see [6] and [5] and ref-
erences therein). Recently, Friedman and Henderson intro-
duce a preemptive scheduling policy for Web servers in [6].
This new policy called Fair Sojourn Protocol (FSP) pro-
vides both efficiency and fairness for the sojourn time of the
jobs. The Priority-based Blind Scheduling (PBS) policy ap-
proximates the existing standard blind scheduling policies,
e.g., FCFS, PS, and LAS, by tuning a single parameter [5].
The Generalized Processor Sharing (GPS) policy is stud-
ied in the literature [10]. For a two-class GPS system, the
admission region is selected for the general Gaussian traf-
fic sources which contain the service processes with both
long-range dependence and short-range dependence. How-
ever, to our best knowledge, no existing policy considers the
structure of temporal locality in scheduling for systems.

Several papers have investigated the idea of using mea-
sured autocorrelation in capacity control policies. In [7]
a general framework for measurement-based call admis-
sion control is introduced. Admission decisions are taken
by means of an approximate Gaussian model of the aggre-
gated traffic which is parameterized by the measured mean,
variance and correlation of the superposed flows. Similar
approaches appear frequently in the networking literature,
e.g., in the call admission control in VBR traffic [3], for data
communications over CDMA mediums [18], and for gen-
eral self-similar multiplexed traffic modeled as fractional
Brownian motion (fBm) [17]. However, these works differ
substantially in the scope and approach of the present paper
for several reasons. First, network flows can have highly-
variable bandwidth requirements that are non-stationary
and difficult to model outside heavy traffic or asymptotic
regimes; instead service in systems typically shows consis-
tent functional forms which are easier to model and can be
exploited effectively to control system load. Another im-
portant difference is that network traffic is often modeled
as a superposition of flows which share the available band-
width according to a discriminatory or generalized process-
sharing policy; this assumption is instead often unrealistic
in systems, e.g., when the scheduling discipline is approx-

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 344 DSN 2008: Mi et al.

(b) M = 3 (c) M = 4(a) M = 2

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 1e4 1e5 1e6

cc
df

 (
%

)

round trip time

 0.001

 0.01

 0.1

 1

 10

 100

 1 100 1e4 1e6 1e8

cc
df

 (
%

)

round trip time

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 1e4 1e5

cc
df

 (
%

)

round trip time

FCFS

SWAP
SJF

FCFS

SWAP

SJF

FCFS

SWAP

SJF

Figure 13. Il lustrating the CCDF of round trip time in a network withN = 500 andACF1. The number of queues in the network
is (a)M = 2, (b) M = 3, and (c)M = 4.

imately first-come first-served (FCFS). FCFS scheduling is
also found in networks, e.g., in ATM communication, but
the service time distributions are here usually deterministic
or Erlang, whereas high job size variability in systems is a
fundamental factor of congestion.

5 Conclusions

In this paper, we have proposed SWAP, a no-knowledge
scheduling technique for increasing the performability of
systems processing temporal dependent workloads. Tempo-
ral locality has been observed in several practical settings,
arguing for significant applicability of SWAP in real sys-
tems. Using simulation, we have shown that SWAP con-
sistently improves performance, as quantified by the system
mean throughput and by the distribution of round-trip times
experienced by requests under temporal dependent condi-
tions. We have shown that SWAP is able to approximate
effectively the SJF scheduling techniques which is known
to provide very effective results in systems, but requiring
additional knowledge on job service times that is instead
not required by SWAP.

Future work includes the extension of SWAP for
scheduling multiple classes of jobs, the analytical model-
ing of the maximum achievable performance gains under
temporal dependent workloads and the additional validation
of SWAP in complex distributed networks, e.g., in systems
that are best modeled by several queues with temporal de-
pendent service.

References

[1] A. T. Andersen and B. F. Nielsen. On the statistical impli-
cations of certain random permutations in markovian arrival
processes (MAPs) and second-order self-similar processes.
Perf. Eval., 41(2-3):67–82, 2000.

[2] M. F. Arlitt and C. L. Williamson. Web server workload
characterization: The search for invariants. InProc. of ACM
SIGMETRICS, pages 126–137, 1996.

[3] H. Chu, D. Tsang, and T. Yang. Bandwidth allocation for
VBR video traffic in ATM networks. InProc. of IEEE ICC,
pages 612–615. IEEE Press, 1995.

[4] P. J. Denning and J. P. Buzen. The operational analysis of
queueing network models.ACM Comp. Surv., 10(3):225–
261, 1978.

[5] H. Feng, V. Misra, and D. Rubenstein. PBS: a unified
priority-based scheduler. InProc. of ACM SIGMETRICS
’07, pages 203–214, New York, NY, USA, 2007. ACM.

[6] E. J. Friedman and S. G. Henderson. Fairness and efficiency
in web server protocols. InProc. of ACM SIGMETRICS ’03,
pages 229–237, New York, NY, USA, 2003. ACM.

[7] M. Grossglauser and D. N. C. Tse. A framework for robust
measurement-based admission control.IEEE/ACM T. Net-
working, 7(3):293–309, 1999.

[8] S. K. P. L. H Leemis. Discrete-Event Simulation: A First
Course. Prentice Hall, 2005.

[9] H. Li and M. Muskulus. Analysis and modeling of job ar-
rivals in a production grid. SIGMETRICS Perform. Eval.
Rev., 34(4):59–70, 2007.

[10] P. Lieshout, M. Mandjes, and S. Borst. GPS scheduling: se-
lection of optimal weights and comparison with strict prior-
ities. In Proc. of ACM SIGMETRICS ’06/Performance ’06,
pages 75–86, New York, NY, USA, 2006. ACM.

[11] D. Menasce and V. A. F. Almeida.Capacity Planning for
Web Performance: Metrics, Models, and Methods. Prentice
Hall, 1998.

[12] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel. Perfor-
mance impacts of autocorrelated flows in multi-tiered sys-
tems.Perf. Eval., 64(9-12):1082–1101, 2007.

[13] M. F. Neuts.Structured Stochastic Matrices of M/G/1 Type
and Their Applications. Marcel Dekker, New York, 1989.

[14] A. Riska and E. Riedel. Long-range dependence at the disk
drive level. InProc. of 3rd Conf. on Quantitative Evaluation
of Systems (QEST), pages 41–50. IEEE Press, 2006.

[15] L. Schrage. A proof of the optimality of the shortest re-
maining processing time discipline.Oper. res., 16:687–690,
1968.

[16] B. Urgaonkar, G. Pacifici, P. J. Shenoy, M. Spreitzer, and
A. N. Tantawi. An analytical model for multi-tier inter-
net services and its applications. InProc. of SIGMETRICS,
pages 291–302. ACM, 2005.

[17] J. Wang and A. Erramilli. A connection admission control
algorithm for self-similar traffic. InProc. of IEEE GLOBE-
COM, pages 1623–1628. IEEE Press, 1999.

[18] J. Zhang, M. Hu, and N. Shroff. Bursty data over CDMA:
MAI selfsimilarity, rate control, and admission control. In
Proc. of IEEE INFOCOM, 2002.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 345 DSN 2008: Mi et al.

	Return to DSN 2008 Main Menu
	PDS Sessions

