
Cluster Comput (2008) 11: 197–211
DOI 10.1007/s10586-008-0052-0

A regression-based analytic model for capacity planning
of multi-tier applications

Qi Zhang · Ludmila Cherkasova · Ningfang Mi ·
Evgenia Smirni

Received: 8 February 2008 / Accepted: 6 March 2008 / Published online: 25 March 2008
© Springer Science+Business Media, LLC 2008

Abstract The multi-tier implementation has become the in-
dustry standard for developing scalable client-server enter-
prise applications. Since these applications are performance
sensitive, effective models for dynamic resource provision-
ing and for delivering quality of service to these applications
become critical. Workloads in such environments are char-
acterized by client sessions of interdependent requests with
changing transaction mix and load over time, making model
adaptivity to the observed workload changes a critical re-
quirement for model effectiveness. In this work, we apply
a regression-based approximation of the CPU demand of
client transactions on a given hardware. Then, we use this
approximation in an analytic model of a simple network of
queues, each queue representing a tier, and show the approx-
imation’s effectiveness for modeling diverse workloads with
a changing transaction mix over time. Using two case stud-
ies, we investigate factors that impact the efficiency and ac-
curacy of the proposed performance prediction models. Ex-
perimental results show that this regression-based approach
provides a simple and powerful solution for efficient capac-
ity planning and resource provisioning of multi-tier applica-
tions under changing workload conditions.

Keywords Regression-based model · Capacity planning ·
Multi-tier systems · Changing workload

Q. Zhang (�)
Microsoft, One Microsoft Way, Redmond, WA 98052, USA
e-mail: qizha@microsoft.com

L. Cherkasova
Hewlett-Packard Labs, Palo Alto, CA 94304, USA

N. Mi · E. Smirni
College of William and Mary, Williamsburg, VA 23187, USA

1 Introduction

Effective models of complex enterprise systems are cen-
tral to capacity planning and resource provisioning. As
multi-tiered architectures are now established as the in-
dustry standard that allows for integration of new, agile
web applications with legacy (e.g., database) systems, the
need for effective models of such systems becomes preva-
lent. Self-adaptive resource provisioning in such systems re-
quires swift responses to workload changes. The need of
fast response necessitates the use of analytic models that
can quickly supply performance numbers, which then can
drive system provisioning. In Next Generation Data Centers
(NGDC) [12], where server virtualization provides the abil-
ity to slice larger, underutilized physical servers into smaller,
virtual ones, fast and accurate performance models become
instrumental for enabling applications to automatically re-
quest necessary resources and support design of utility ser-
vices.

Our thesis is that effective analytic models can enable
powerful and simple solutions for dynamic resource provi-
sioning. The need for swift changes and timely performance
predictions argues against the use of traditional simulation
models and is in part responsible for the revival of clas-
sic analytic techniques for performance prediction that are
based on simplified queuing networks [21–23]. The advan-
tage of analytic models relates to their ability of providing
a contained abstraction of the system by considering flows
of customers (requests) in the queuing network (tiers). The
effectiveness of the modeling ability of the queuing net-
work relates to whether this abstraction is done properly. If
salient characteristics of the system workload are captured
well within the abstraction, then simple queuing network
models can be effective in predicting the performance of
complex systems. Naturally, more detailed workload models

mailto:qizha@microsoft.com

198 Cluster Comput (2008) 11: 197–211

that capture multi-class behavior (i.e., the resource demands
of different classes of customers) can be more effective than
single class workloads where different user behaviors are
aggregated into a single one.

A further challenge is the sensitivity of analytic mod-
els to their parameterization. Measurements in real sys-
tems cannot provide accurate workload “demands” (i.e., ex-
ecution times without any delays due to queuing) in each
tier/server (i.e., queue). Approximate workload demands are
extrapolated using measurements at very low utilization lev-
els or at nearly 100% utilization [22]. Variability across
different customer behaviors further exacerbates the prob-
lem by requiring measurements of a large number of flows
to accurately model the workload. An additional point re-
lates to the fact that the workload is session-based rather
than transaction-based. Each user session consists of an as-
sortment of transactions, which in turn consist of process-
ing many smaller objects and database queries. Conse-
quently, detailed measurements, although necessary to in-
crease model accuracy, become totally impractical.

In this work, we provide a practical solution to the above
problems by laying out a theoretical framework which illus-
trates how to use information at the transaction level to ef-
fectively model session-based workloads. The effectiveness
of the proposed framework is based on a regression-based
methodology to approximate CPU demands of transactions
on a given hardware. This regression-based solution pro-
vides an effectively “compacted” information on workload
demands within a few model parameters only. Simplicity is
an additional benefit of this solution as this entire methodol-
ogy is not intrusive and is based on monitoring data that are
typically available in enterprise production environments.

We illustrate the effectiveness of the methodology via
two case studies:

• a detailed set of experimentation using the TPC-W e-
commerce suite [20], and

• an HP Open View Service Desk application (OVSD).

We present sensitivity analysis of the proposed modeling
approach with respect to the regression window as well as
with respect to a continuously changing workload and trans-
action mix over time, that essentially behaves like a “live"
system. Our experiments show that for the majority of cases,
the model is in excellent agreement with experimental data.
Even for the more challenging case where there is a contin-
uous bottleneck switch in TPC-W, errors remain contained
within 15%, providing a close answer to the fundamental
problem of how many simultaneous sessions can be concur-
rently supported by the system.

This paper is organized as follows. The experimental
TPC-W testbed is presented in Sect. 2. Section 4 shows
how one can compress a session-based workload with a
transaction-based one. The statistical regression-based ap-
proach is presented in Sect. 5. Section 6 gives the simple

queuing network model that is used to model TPC-W un-
der changing workloads. Approach limitations are discussed
in Sect. 7. Section 8 presents the second case study with
OVSD. Related work is given in Sect. 9. Conclusions and
future work are outlined in Sect. 10.

2 Experimental environment

We built a test-bed of a multi-tier application using the three-
tier architecture paradigm that has now become the indus-
try standard for implementing scalable client-server appli-
cations. This allows to conduct experiments under different
settings in a controlled environment, which then allows to
evaluate the proposed modeling approach.

In our experiments, we use a testbed of a multi-tier e-
commerce site that simulates the operation of an on-line
bookstore, according to the classic TPC-W benchmark [20].
A high-level overview of the experimental set-up is illus-
trated in Fig. 1, and specifics of the software/hardware used
are given in Table 1.

Typically, a client access to a web service occurs in the
form of a session consisting of a sequence of consecutive
individual requests. In an e-commerce site, placing an order
through the web site involves selecting a product, providing
shipping information, arranging payment agreement, and fi-
nally receiving a confirmation. Thus, the real performance
measure of such a web service is its ability to process the en-
tire sequence of individual transactions needed to complete
a higher-level business transaction. The capacity of the sys-
tem is measured by the number of concurrent client sessions
such that the multi-tier system can support without violating
pre-defined limits in average transaction response times.

According to the TPC-W specification, the number of
concurrent sessions (i.e., customers) or emulated browsers

Fig. 1 E-commerce experimental environment

Table 1 Testbed components

Processor RAM

Clients (emulated-browsers) Pentium III / 1 GHz 2 GB

Front server—Apache2.0/Tomcat4.0 Pentium III / 1 GHz 3 GB

Database server—MySQL4.0 Pentium III / 1 GHz 3 GB

Cluster Comput (2008) 11: 197–211 199

Fig. 2 Three TPC-W Transaction Mixes: (a) Throughput; (b) Average CPU utilization of the front server; and (c) Average CPU utilization of the
DB server

Table 2 Basic 14 transactions and their types in TPC-W

Browsing type Ordering type

Home Shopping cart

New products Customer registration

Best sellers Buy request

Product detail Buy confirm

Search request Order inquiry

Search results Order display

Admin request

Admin confirm

(EBs) is kept constant throughout the experiment. For each
EB, the TPC-W benchmark statistically defines the user ses-
sion length, the user think time, and the queries that are gen-
erated by the session. To better simulate the behavior of a
real system, there is a time-out period (uniformly distributed
between 5 and 15 minutes) that is associated with each EB.
If a time-out occurs, then the session ends and a new session
starts immediately. The database size is determined by the
number of items and the number of customers. In our exper-
iments, we use the default database setting, i.e., the one with
10,000 items and 1,440,000 customers.

TPC-W defines 14 different transactions which are
roughly classified as either of browsing or ordering types
as shown in Table 2.

One way to capture the navigation pattern within a
session is through the Customer Behavior Model Graph
(CMBG) [14], which describes patterns of user behavior,
i.e., how users can navigate through the site, and where arcs
connecting states (transactions) reflect the probability of the
next transaction type. TPC-W defines the set of probabilities
that drive user behavior from one state to another at the user
session level. According to the weight of each type of activ-
ity in a given traffic mix, TPC-W defines 3 types of traffic
mixes as follows:

• the browsing mix: 95% browsing and 5% ordering;
• the shopping mix: 80% browsing and 20% ordering;

Table 3 Top 5 transaction types of each workload mix

Browsing mix Shopping mix Ordering mix

Home 29% Search request 20% Search request 15%

Product detail 21% Product detail 17% Shopping cart 14%

Search request 12% Search results 17% Search results 13%

New products 11% Home 16% Customer reg. 13%

Best sellers 11% Shopping cart 12% Buy request 13%

• the ordering mix: 50% browsing and 50% ordering.

Table 3 gives the 5 most popular transaction types of each
workload mix.

For each workload mix, we ran a set of experiments with
the number of EBs equal to 30, 100, 200, 300, 400, 500, and
600. Each experiment ran for 5 hours. The first 20 minutes
and the last 20 minutes are considered as warm-up and cool-
down periods, thus omitted in our analysis.

Figure 2 presents a summary of these experiments. Fig-
ure 2(a) shows that the system becomes overloaded with 300
EBs, 400 EBs, and 500 EBs under the browsing mix, shop-
ping mix and ordering mix, respectively. System through-
put asymptotically flattens with higher EBs due to the effect
of a closed-loop system, i.e., there is a constant number of
EBs (customers) that circulate in the system at all times. Fig-
ures 2(b) and (c) show the average CPU utilization at front
and database servers respectively under the three workloads.
From these results it is apparent that the front server is a bot-
tleneck when the system is processing shopping and order-
ing transaction mixes (i.e., CPU utilization of the front tier
is reaching 90–98%, while CPU utilization of the database
tier is under 40–60%). However, for the browsing mix under
high loads it is not obvious which tier/resource is the bot-
tleneck: the average CPU utilization of both front and data-
base tiers reaches 65–70%. It is not uncommon especially
under bursty workload conditions [11, 24] for the system
to become overloaded although average system utilization
remains moderate. Here, average utilizations of both front
and database servers are within the 65–80% range and ad-

200 Cluster Comput (2008) 11: 197–211

Fig. 3 Browsing Mix: Utilization of front and DB servers at 1 min
granularity under 400 EBs

ditional performance measures show that I/O (either at the
disk or network) is not the system bottleneck either.

Figure 3 shows the CPU utilization of the front and data-
base servers across time (at 1 min granularity) for the brows-
ing mix with 400 EBs. The figure shows that there is a
continuous bottleneck switch between the front and data-
base servers over time. If switching of bottlenecks occurs
across time, one can observe increased client response times
and violations of service level agreements, while server uti-
lizations on individual components remain modest [11, 24].
This non stable behavior is difficult to model. Traditional an-
alytic and simulation models assume that system is capable
of higher throughput. We return to this phenomenon in the
future sections with modeling results.

3 Transaction as a unit of client/server interaction

Since service providers are interested in dynamic resource
provisioning methods for their production systems under
live, real workloads, we must first understand which are the
most important properties of these workloads to incorporate
in analytic models. To this end, we first focus on what is re-
quired at the server side to generate a reply in response to a
web page request issued by a client.

Typically, a client communicates with a web service (de-
ployed as a multi-tier application) via a web interface, where
the unit of activity at the client-side corresponds to a down-
load of a web page. In general, a web page is composed of
an HTML file and several embedded objects such as images.
A browser retrieves a web page by issuing a series of HTTP
requests for all objects: first it retrieves the main HTML file
and after parsing it, the browser retrieves all embedded im-
ages. Thus, at the server side, a web page retrieval corre-
sponds to processing multiple smaller objects that can be re-
trieved either in sequence or via multiple concurrent connec-
tions. It is common that a web server and application server
reside on the same hardware, and shared resources are used
by the application and web servers to generate main HTML

files as well as to retrieve page embedded object.1 Addition-
ally, the main HTML file may be built via dynamic content
generation where the page content is generated on-the-fly to
incorporate customized data retrieved via multiple queries
from the back-end database.

Since the HTTP protocol does not provide any means to
delimit the beginning or the end of a web page, it is very
difficult to accurately measure the aggregate resources con-
sumed due to web page processing at the server side. There
is no practical way to effectively measure the service times
for all page objects, despite the fact that accurate CPU con-
sumption estimates are required for effective model parame-
terization. To address this problem, we define a transaction
as a combination of all processing activities at the server
side to deliver an entire web page requested by a client, i.e.,
generate the main HTML file as well as retrieve embedded
objects, and perform related database queries.

4 Session-based versus transaction-based systems

While it is well-accepted that a workload of e-commerce
and enterprise sites is more accurately described at the level
of sessions [6, 10], we focus on whether a simplified work-
load model that is only based on the probabilistic transaction
mixes can be used for performance modeling of such sites.

A session is defined as a sequence of interdependent in-
dividual transactions. Therefore, effective system provision-
ing requires to evaluate the amount of system resources
needed to support a targeted number of concurrent client
sessions without violating a negotiated upper limit on the
transaction response time. There are explicit transaction de-
pendencies in session-based systems, e.g., “an order” cannot
be submitted to an e-commerce system unless the previous
transactions have resulted in “an item being ordered”. There-
fore, the session-based system is not stateless since the next
client transaction explicitly depends on the previous ones.
Such transaction dependency in the client behavior limits
the opportunity for an efficient analytical model design. Be-
cause we aim at simple analytic models, we focus on sim-
plifying the workload such that all transaction dependencies
are ignored.

We refer to systems that do not have inter-request de-
pendencies as transaction-based systems. The question we
would like to answer is whether we can model well re-
source requirements of a session-based system by evaluating
the resource requirements of its simplified transaction-based
equivalent.

Assume that there is a total of N transaction types
processed by the server. We use the following notation:

1This is the case for TPC-W implementation that uses PHP web-
scripting/application development language [15], and it is common for
many production systems that are built in a similar way.

Cluster Comput (2008) 11: 197–211 201

Fig. 4 Session-based versus transaction-based model: average throughput under three TPC-W transaction mixes

Fig. 5 Session-based versus transaction-based model: average response time under three TPC-W transaction mixes

• let pi,j be the probability of the transaction type i fol-
lowing the transaction type j in the same client session,
where 1 ≤ i, j ≤ N ;

• let P be the probability matrix of the transition probabili-
ties of all the transaction types, i.e.,

P =

⎡
⎢⎢⎢⎢⎣

p1,1 p1,2 · · · p1,N−1 p1,N

p2,1 p2,2 · · · p2,N−1 p2,N

· · ·
pN−1,1 pN−1,2 · · · pN−1,N−1 pN−1,N

pN,1 pN,2 · · · pN,N−1 pN,N

⎤
⎥⎥⎥⎥⎦

;

(1)

• let π = [π1,π2, . . . , πN] be the vector of stationary prob-
abilities of the transactions, i.e., πP = π and πe = 1,
where e is a column vector of 1s with the appropriate di-
mension.

Vector π represents the steady-state probability all transac-
tions, i.e., πi gives the overall percentage of transactions of
type i in the workload.

In order to compare performance of session-based ver-
sus transaction-based system, we designed and imple-
mented a simulation model of session-based system and its
transaction-based equivalent as follows:

• session-based model: we simulate the real session be-
havior of each client. The transaction type is determined
when a client sends out the request to the system (accord-
ing to the pre-defined transition probability matrix P), and
this transaction type generates the appropriate sequence

of requests to the other tiers in the modeled multi-tier sys-
tem. The next client transaction in the session is generated
according to the transaction probability matrix P.

• transaction-based model: each tier has the same transac-
tion mix as the session-based system. However, the trans-
action type in each tier is selected according to the sta-
tionary probabilities π .

This simulation model is implemented using C++Sim [18].
For performance comparison we use the browsing, shop-

ping, and ordering workloads in TPC-W as defined in
Sect. 2. Figures 4 and 5 present the simulation results for
these workloads modeled as session-based versus trans-
action-based systems. Figures 4 and 5 show system through-
put and average transaction response time, respectively, for
the three workload mixes. Simulation results confirm that
performance and resource requirements of session-based
systems in multi-tier environment can be efficiently mod-
eled by their simplified transaction-based equivalent.

Under the transaction-based workload, each transaction
arriving in the system is totally independent of other trans-
actions while the overall transaction distribution is the same
as in the system with session-based behavior. Such transac-
tion distribution can be easily monitored for an existing pro-
duction system. If we find a way to approximate the service
time of each transaction type in the workload, then we can
evaluate the average service time for the entire system under
changing workload conditions (i.e., under varying transac-
tion mix and load conditions over time) and design compact
and efficient analytical models that answer capacity plan-
ning and resource requirement questions.

202 Cluster Comput (2008) 11: 197–211

5 CPU cost of transactions

In this section, we propose a statistical regression-based ap-
proach for an efficient approximation of CPU demands of
different transaction types. With the knowledge of CPU de-
mands of transactions one can easily compose the resource
requirement of scaled or modified transaction mixes. Thus,
this methodology can be directly applied to production sys-
tems operating under live, real workloads, and can be used
for explaining large-scale system behavior and predicting
future system performance.

Prerequisite to applying regression is that a service
provider collects the following:

• the application server access log that reflects all processed
client transactions (i.e., client web page accesses);

• the CPU utilization of every tier of the evaluated system.

5.1 Regression methodology

To capture the site behavior across time we observe a num-
ber of different transactions over monitoring windows of
fixed length T . The transaction mix and system utilization
are recorded at the end of each monitoring window.

Assuming that there are totally N transaction types
processed by the server, we use the following notation:

• T is the length of the monitoring window;
• Ni is the number of transactions of the i-th type, where

1 ≤ i ≤ N ;
• UCPU,n is the average CPU utilization at n-th tier during

this monitoring window;
• Di,n is the average service time of transactions of the i-th

type at the n-th tier of the system,2 where 1 ≤ i ≤ N .

From the utilization law, one can easily obtain (2) for
each monitoring window.

∑
i

Ni · Di,n = UCPU,n · T . (2)

Because it is practically infeasible to get accurate service
times Di,n, let Ci,n denote the approximated CPU cost
of Di,n for 0 ≤ i ≤ N . Then, an approximated utilization
U ′

CPU,n can be calculated as

U ′
CPU,n =

∑
i Ni · Ci,n

T
. (3)

To solve for Ci,n, one can choose a regression method
from a variety of known methods in the literature. A typical

2This value is defined for all transactions and for all tiers. If there is no
processing activity for transaction i at n-th tier, then Di,n = 0.

objective for a regression method is to minimize either the
absolute error:
∑
j

|U ′
CPU,n − UCPU,n|j

or the squared error:

∑
j

(U ′
CPU,n − UCPU,n)

2
j ,

where j is the index of the monitoring window over time.
Finding the ideal regression method for the above prob-

lem is outside of the scope of this paper. In all experiments,
we use the Non-negative Least Squares Regression (Non-
negative LSQ) provided by MATLAB to obtain Ci,n. This
non-negative LSQ regression minimizes the error

ε =
√∑

j

(U ′
CPU,n − UCPU,n)

2
j ,

such that Ci,n ≥ 0.
This regression solver produces a solution for 200 equa-

tions with 14 variables only in 7 millisecond. In general,
the common least squares algorithms have polynomial time
complexity of O(u3v) when solving v equations with u vari-
ables, and hence can be efficiently used as a part of on-line
resource evaluation method [1].

In the next two subsections, we explore the impact of
monitoring window size and workload intensities on the ac-
curacy of the regression solution.

5.2 Sensitivity of regression to monitoring window size

We use the traces collected from the TPC-W experiments
under the three workload mixes (i.e., browsing, shopping,
and ordering mixes as described in Sect. 2) to validate the
accuracy of the proposed regression-based method.

Every minute, we monitor and record the following:

• the average CPU utilization UCPU,n at each n-th tier in the
system, and

• the number Ni of processed transactions of the i-th trans-
action type in the total 14 unique transaction types.

We then examine the sensitivity of the regression results to
the length T of the monitoring window, i.e., T equal to 1
minute, 5 minutes, 10 minutes, and 15 minutes.

Using the aggregated values of N1 to N14 and UCPU,n

for each monitoring window T we obtain a set of equations
in a form of (2) to approximate the CPU processing cost of
transaction i at the n-th tier, i.e., the front-tier and db-tier
in our experiments. Then, using the non-negative LSQ, one
can solve this set of equations for Ci,n (1 ≤ i ≤ 14) in order
to estimate an approximation of the CPU processing cost

Cluster Comput (2008) 11: 197–211 203

Fig. 6 Front server: CDF of relative error of regression results under different monitoring window size

Fig. 7 DB server: CDF of relative error of regression results under different monitoring window size

of all transaction types across all tiers. After this step, the
approximated U ′

CPU,n (we call it fitted) of every monitoring
window is computed by using the original N1 to N14 and the
computed C1,n to C14,n values.

We use the relative error of the approximated CPU uti-
lization with respect to the originally measured CPU utiliza-
tion as a metric to validate the regression accuracy. For every
monitoring window, the relative error of the approximated
utilization is defined as

ErrorR = |U ′
CPU,n − UCPU,n|

UCPU,n

. (4)

Figures 6 and 7 show the CDF of the relative errors
for the front server and the database server under different
lengths of monitoring window and the three TPC-W trans-
action mixes: browsing, shopping, and ordering.

These performance results can be summarized as follows:

• The approximation of CPU transaction cost at the front
server is of higher accuracy than that at the database
server.

For the three TPC-W transaction mixes, the relative er-
rors of the CPU cost approximation at the database server
is higher than that at the front server. Partially, this re-
flects a higher variance in the CPU service time at the
database tier for the same transaction type. The relative er-
rors of the CPU cost approximation at the database server
is lower for the shopping and ordering mixes as shown in

Figs. 7 (b), (c), while at the front server, the relative errors
are lower for the browsing mix, see Fig. 6 (a);

• Larger T achieves higher accuracy.
The larger monitoring windows T work better, espe-

cially at the database server. For example, for browsing
and shopping mixes, with T = 1 min, the percentage of
monitoring windows at the database server that show less
than 20% of relative errors are 50% and 70%, respec-
tively. With T = 15 min, the percentage of monitoring
windows at the database server with the same relative er-
rors (less than 20%) increases to 83% and 89%, respec-
tively. Larger T allows us to find a better “average” ap-
proximation for CPU service times of high variability for
the same transaction type.

A larger monitoring window T has less impact at the
front server. However, for the browsing mix, it still pro-
vides a reasonable improvement: with T = 15 min 87%
of monitoring windows show less than 10% of relative er-
ror compared to 77% of windows in the same error range
when T = 1 min.

By considering “worst” / “best” numbers across the three
transaction mixes and using a larger monitoring window
T = 15 min, we can summarize the accuracy of regression
results for approximating the CPU transaction cost as fol-
lows:

• at the front server: 87%–98% of monitoring windows
have relative errors less than 15%;

204 Cluster Comput (2008) 11: 197–211

Fig. 8 Front Server: CDF of
relative error of regression
results under light and heavy
system loads

Fig. 9 DB Server: CDF of
relative error of regression
results under light and heavy
system loads

• at the database server: 79%–89% of monitoring windows
show relative errors less than 20%.

Now, we turn our attention to the impact of workload type
on the accuracy of regression.

5.3 Sensitivity of regression results to workload intensity

Might be load dependent, we evaluate this conjecture by
splitting the regression equations into two sets according to
their corresponding loads. Measurements from experiments
with less than or equal to 200 EBs are used to get CPU costs
under light load, and data from experiments with larger than
200 EBs are used to get the costs under heavy load. Here, we
do not partition equations and results according to different
workload mixes, but rather present the overall (combined)
impact of all mixes on the accuracy of CPU transaction cost
approximation.

Figures 8 and 9 present the combined CDF of relative
errors across the three TPC-W mixes: browsing, shopping,
and ordering, under light load and heavy load. Comparing
these figures, we can summarize the observations as follows:

• The approximation of CPU transaction cost is much more
accurate when the regression is done separately for differ-
ent workload intensities. This observation holds for both
front and database servers.

• The approximation of CPU transaction cost is less accu-
rate under the “light” workload intensities. Partially, it is
due to a smaller number of transactions per monitoring
window, and at the same time, higher variance of process-
ing time in a lightly loaded system.

The above observations imply that in this modeling exer-
cise one can use the transaction cost as a function of load,
e.g., use two-values transaction cost under conditions of
light and/or heavy load. Overall, we demonstrated that re-
gression provides a simple and powerful solution to accu-
rately approximate CPU transaction costs, especially with
appropriately tuned monitoring window size and with the
workload intensity (or system load) taken into account.

6 Analytic model and modeling results

Our next step is to use the results of the regression method
to parameterize an analytic model of queues to enable dy-
namic evaluation of required system resources under chang-
ing workload conditions.3 In this section, we explore this
idea and perform a detailed performance study comparing
the accuracy of our analytic model for resource usage eval-
uation with the real system results.

Because of the upper limit on the number of simultaneous
connections at a web server (which is reflected by the fixed
number of EBs in the TPC-W benchmark), the system can
be modeled as a closed system with a network of queues,
see Fig. 10.

3For the TPC-W benchmark and most production multi-tier services
CPU is a typical system bottleneck. However, in practice, when
one needs to make a projection of the maximum achievable system
throughput, additional “back of the envelope” computations for esti-
mating memory and network requirements under the maximum num-
ber of concurrent clients are required to justify this maximum through-
put projection.

Cluster Comput (2008) 11: 197–211 205

The number of clients in the system is fixed and circulate
in the network. When a client receives the response from
the server, it issues another request after certain think time,
i.e., after spending some time at Q0. One could argue that
since some of the requests are satisfied in at the front tier,
i.e., Q1, therefore there must be direct flow from Q1 back
to Q0. This is not needed here since we do not model each
single visit at each tier, but the aggregated service time spent
in each tier by a transaction.

This model can be efficiently solved using Mean-Value
Analysis (MVA) [13], a classic algorithm for solving closed
product-form queuing networks. This model takes as inputs
the think time in Q0 and the service demands of Q1 and Q2,
and provides average system throughput, average transac-
tion response time, and average queue length in each queue.
The think time in Q0 is defined by the TPC-W benchmark
as exponentially distributed with mean equal to 7 seconds,
this is the value used in all experiments here. In production
systems this value can be measured on-line or extracted by
analyzing historic data. The average service demand at tier n

is computed as follows. First, the CPU cost Ci,n is obtained
by regression for all i and all n. After calculating the trans-
action mix distribution vector π (see Sect. 4), the overall
service demands at tier n is given by

Sn =
14∑
i=1

πi · Ci,n. (5)

Fig. 10 The queuing model of the TPC-W environment

The above value is used by the MVA model to evaluate the
maximum achievable system throughput for the three TPC-
W transaction mixes: browsing, shopping, and ordering.

We also evaluate an accuracy and performance of our
transaction-based simulation model introduced and used in
Sect. 4. Here, we briefly describe its basic functionality. Af-
ter a certain think time (exponential distributed), the client
sends a transaction to the front server. The transaction type
i is randomly selected according to the stationary probabil-
ities π of the browsing, shopping, or ordering mixes. Then,
the front server processes this transaction with an exponen-
tially distributed service time with mean is equal to Ci,f ront

of the front server, i.e., the approximated CPU cost of trans-
action type i as given by regression. If this transaction type
issues a query to the database server then the database server
processes it and sends the reply back to the client. The ser-
vice time at the database server is exponentially distributed
with mean equal to Ci,db , this value is also provided by re-
gression.

Figure 11 compares the analytic results with the simula-
tion of the detailed session-based model and experimental
measurements of the real system. The results of the analytic
model perfectly match the experimental results for the shop-
ping and ordering mixes. The results also validate the sim-
plified transaction-based model: its performance results are
also in excellent agreement with experimental values.

For the browsing mix, both analytic and simulation mod-
els predict higher system throughput than the measured one.
The reason that the two models do not do as well relates to
the bottleneck switching behavior for browsing mix under
higher loads: we discussed and demonstrated this phenom-
enon in Sect. 2. However, even for this challenging case with
a continuous bottleneck switch, the error remains contained
within 15%, providing a close answer to the fundamental
problem of how many simultaneous sessions can be concur-
rently supported by the system.

Fig. 11 Comparing analytic model results with simulation model and real system: average throughput under the three TPC-W transaction mixes

206 Cluster Comput (2008) 11: 197–211

Fig. 12 Comparing performance results when the analytic model is parameterized with different CPU transaction cost models

7 Approach limitations

Once we approximated the CPU cost of different client
transactions at different tiers, then we could use these cost
functions for evaluating the resource requirement of scaled
or modified transaction workload mix, in order to accurately
size a future system. Ideally, one would like to use the CPU
cost function obtained with the regression method under
WorkloadMix_1 to predict the system behavior under a dif-
ferent WorkloadMix_2. In this section, we try to assess the
accuracy of performance predictions under drastic changes
in the workload using the analytic model.

Figures 12(a)–(c) present the system average through-
put under different workload mixes. The lines on the graphs
have the following meaning:

• the line labeled “browsing” (“shopping” or “ordering”)
means that the model is parameterized with CPU transac-
tion costs derived with regression from the system that is
processing the browsing mix (shopping or ordering mix
respectively);

• the line labeled “all” means that the model is parame-
trized with CPU transaction costs derived with regression
from the aggregate profile with all three mixes. It mim-
ics the situation when the workload mix is changing and
varying over time, i.e., when the system is processing over
different periods of time either browsing, or shopping, or
ordering transaction mixes;

• the line labeled “real” reflects measured performance of
the real system.

The observations from the modeling results can be sum-
marized as the follows.

• The cost function obtained by the profile of a stationary
workload mix gives excellent accuracy for the same work-
load mix. The relative error is under 2% when using the
cost function from the shopping (or ordering) profile into
the shopping (or ordering) simulation.

• The transaction cost function should not be applied to a
very different workload mix compared to the mix it was
derived from, especially when this cost function is derived

from a stationary mix. The complexity of deriving trans-
action cost function from the stationary mix is related to a
high probability of correlation between some of the trans-
action types as well as chances that some groups of trans-
actions are being not well represented. In both situations,
the derived transaction cost can be “0”. A transaction type
is significant if its value is non-zero. For example, the rel-
ative error of the average throughput reaches 80% when
the cost function from the browsing mix profile is used to
simulate the ordering mix. This observation deserves fur-
ther examination. Note that shopping and ordering mixes
have 80–20% and 50–50% of transactions of the browsing
and ordering types respectively (see Sect. 2), so transac-
tions from both classes are represented well in the over-
all mix (compared to 95–5% ratio in the browsing mix).
When we derive CPU transaction costs from stationary
browsing mix, most of the transactions of the ordering
type result in “0” value in the solution, and hence they
represent “non-significant” transactions in the browsing
mix. The portion of the ordering transactions is greatly
increased in shopping and ordering mixes. If we evalu-
ate performance of these mixes using “0” cost function
for the ordering transactions, it may result in a high pre-
diction error. To avoid inaccurate predictions, one should
apply the transaction cost estimates only to the transac-
tion mixes with a similar set of significant transactions to
the original mix used in the regression.

• The cost function “all” obtained from the aggregate pro-
file of all the workload mixes gives excellent results for a
diverse set of workloads. Under this approach, we solve
the set of equations that represent all three workload
mixes: browsing, shopping, and ordering. In such a way,
we imitate the system with non-stationary workload: there
are time periods when this system operates under varying
browsing/shopping/ordering mixes. The maximum error
with this cost function occurs when it is used to approx-
imate system performance under the browsing mix. For
the browsing mix, the model overestimates performance
by 15%. The reason that the product form model does not
do we well here is the bottleneck switching behavior (see
also Sect. 2 and Sect. 6).

Cluster Comput (2008) 11: 197–211 207

Fig. 13 Arrival rate and percentage of the first 3 most popular transactions in the overall workload across time

As the system and its workload evolve over time, contin-
uously aggregated measurements like the ones used in cost
function “all” allow to accurately approximate the cost func-
tion with respect to a broader set of transactions and signifi-
cantly improve model prediction.

8 Applying regression to a production system with live
workload

In this section, we apply the regression-based methodology
that we developed earlier to evaluate the performance of a
production system. We use a 1-month trace collected from
the heterogeneous application servers at the HP Open View
Service Desk (OVSD) business portal during July 2006.
This trace has a detailed information about each processed
request, including its arrival and departure time, request
URL, and client session ID.

In our analysis, we consider a reduced trace that con-
tains only transaction URLs as discussed in Sect. 3, and omit
all embedded images, style sheets, and other format-related
primitives. Moreover, we further distinguish a set of unique
transaction types and a set of client accesses to them. For
static web pages, the URL uniquely defines a file accessed
by clients. For dynamic pages the requests from different
users to the same web page URL may appear as requests
to different URLs due to the client-specific extension or a
corresponding parameter list. We carefully filter out these
client-specific extensions in the reduced trace.

Figure 13(a) shows the arrival rates of the transactions
for the 3 most popular transactions over time, and Fig. 13(b)
shows the percentages of these transaction types in the work-
load mix over time. Each point in these figures corresponds
to the statistics of one hour. It reflects a typical enterprise
diurnal access pattern, i.e., high workload intensities during
work hours and low intensities during nights and weekends.
The figure shows that the transaction mix is not stationary
over time. For example, the most popular transaction can
constitute 15% to 40% of the workload depending on the

Fig. 14 CDF of the transaction popularity ranks

hour of the day. Similar observations apply to transactions
of lower popularity.

Traditional capacity planning methodologies usually ex-
amine peak loads and system utilization to conclude on
the number of clients that can be handled by the system.
These methods aim to accommodate variations in load (i.e.,
workload intensity) while assuming that the set of workload
transactions is stationary, i.e., that the distribution of differ-
ent transaction types is fixed. Many industry benchmarks
are built using this principle [19, 20] but real workloads
rarely exhibit this feature as shown by the analysis above.
Therefore, instead of focusing only on loads, a robust capac-
ity planning methodology must also consider the changing
workload mix since the system capacity directly depends on
the types of user activities.

Overall, in the reduced trace, there are 984,505 client re-
quests that correspond to accesses of 756 different unique
transactions (or transaction types). Figure 14 shows the cu-
mulative distribution function (CDF) of client accesses to
different transaction types ranked by their popularity. The
transaction of rank 1 corresponds to the most popular trans-
action type. Figure 14 shows that the studied workload ex-
hibits a very high degree of reference locality: i.e., a small
subset of site transactions is responsible for a very high per-
centage of client accesses, e.g.,

• the top 10 transaction types accumulate 79.1% of all the
client accesses;

208 Cluster Comput (2008) 11: 197–211

Table 4 An example of transaction profile in server 1

Time (hour) N1 N2 N3 N4 · · · N756 UCPU(%)

1 21 15 21 16 · · · 0 13.3201

2 24 6 8 5 · · · 0 8.4306

3 18 2 5 4 · · · 0 7.4107

4 22 2 4 7 · · · 0 6.4274

5 38 5 6 7 · · · 0 7.5458

· · ·

• the top 20 transaction types are responsible for 93.6% of
the site accesses;

• the top 100 transaction types account for 99.8% of all site
accesses.

We use this one-month trace from the production system
to evaluate the accuracy of the regression-based method de-
scribed in Sect. 5. We limit our validation to the application
server tier because we could not get relevant CPU utiliza-
tion measurements at the database tier. For each 1-hour time
window, we collected the average CPU utilization as well as
the number of transactions Ni for the i-th transaction type,
where 1 ≤ i ≤ M . The OVSD trace profile has the format
shown in Table 4.

In Sect. 5, we introduced and applied the regression-
based technique for evaluating the transaction cost in TPC-
W. There were only 14 different transaction types in TPC-W.
The analysis of OVSD workload revealed that the real work-
loads often have a much higher number of transaction types,
e.g., the OVSD workload operates with over 756 different
transaction types. In order to apply the regression technique
to OVSD workload we would need to collect more than 756
samples of 1-hour measurements. Such a collection would
require to observe this workload for more than 1-month be-
fore we would collect enough “equations” for evaluating the
OVSD transaction cost.

Our workload analysis above shows that the studied
workload exhibits a very high degree of reference locality,
i.e., a small subset of transactions is responsible for a very
high percentage of client accesses, e.g., the 100 most popu-
lar transactions already cover 99.8% of all client accesses.
This characterization is consistent with earlier works [2–
4] that have demonstrated that web server and e-commerce
workloads exhibit a high degree of reference locality. In ad-
dition, there is a high percentage of transactions that are
rarely accessed, i.e., so called “one-timers”. After dividing
the 1-month trace in two halves and after examining each
half individually, we found that there are 203 transactions
that are accessed only once in the first half of the trace,
and which are not accessed in the second half of the trace.
Similarly, there are 189 transactions that are accessed only
once in the second half of the trace, and which are not ac-
cessed in the first half of the trace. The non-negative LSQ

regression used in this paper returns “0” as a typical value
for “rare” variables, since there is not enough information
in the original set of equations to produce an accurate solu-
tion.

So, the question is whether accurate performance results
can be obtained by approximating the CPU cost of a much
smaller set of popular (core) transactions. In other words, if
we use regression to find the CPU cost of a small number of
core transactions, can this small set be useful for an accurate
evaluation of the future CPU demands in the system?

Following this idea, we only use the columns N1 to NK

and UCPU in Table 4 to approximate Ci for 1 ≤ i ≤ K . The
approximated U ′

CPU of every hour is then computed by these
N1 to NK and C1 to CK values.

We also consider the results produced by the non-
negative LSQ regression method when K is equal to 10, 20,
60 and 100 transactions respectively. We divide the OVSD
trace into two parts. The first half is used as a training set
to solve for the CPU cost Ci using the non-negative LSQ
regression. The second half is treated as a validation set. Be-
cause the administration jobs during weekends might intro-
duce a significant noise to the CPU utilization, the training
set for the regression consists of data from workdays only.

Regression produces similar results for the two heteroge-
neous application servers (referred as server 1 and server 2
in the text) in the system. Figures 15 and 16 show the CDF
of the relative errors for the training and validating sets for
servers 1 and 2, respectively. The results can be summarized
as follows:

• Overall, the non-negative LSQ regression achieves good
results for all examined values of K , i.e., when the regres-
sion method is applied to approximate the CPU cost of the
top 10, 20, 60, or 100 most popular transactions. For the
training set, at least 60% of the points have relative errors
less than 10%, and at least 90% of the points have rela-
tive errors less than 20% (see Figs. 15(a) and 16(a)). The
method’s accuracy for the validating set is only slightly
worse (see Figs. 15(b), 16(b)).

• Larger K achieves a higher accuracy for the training set.
However, this improvement is not significant: for K =
100 there is only a 4% improvement compared to the re-
sults with the top 10 transactions.

• The larger values of K , e.g., K = 100, show worse predic-
tion accuracy for the validating set compared to K equal
to 10 or 20 core transactions as shown in Figs. 15 and 16.
These results again can be explained by the workload
properties. While we consider 100 most popular transac-
tions, the last 80 of them only responsible for 6% of the
client requests. These transactions have an irregular ac-
cess pattern. Some appear only in the first or second half
of the trace (while not being a “one-timer”). As a result,
computing the individual cost of these transactions does

Cluster Comput (2008) 11: 197–211 209

Fig. 15 CDF of relative errors
for Server 1 under a different
number of core transactions

Fig. 16 CDF of relative errors
for Server 2 under a different
number of core transactions

not help to evaluate the future CPU demands, and intro-
duces a higher error compared to the regression based on
a smaller transaction set.

Regression produces the best results when a represen-
tative set of core transactions is used, and rarely accessed
transactions are omitted. Since some of the rarely accessed
transactions might only appear in the first half of the trace,
while some different rarely accessed transactions may only
appear in the second half of the trace, it is beneficial to
use only core transactions in linear regression as well as in
the overall capacity planning exercise. The additional CPU
overhead that is due to the rarely accessed transactions is
“absorbed” by the CPU cost of the core transactions. Con-
sequently, a small additional CPU usage by the distinct and
rarely accessed transactions is accounted via the CPU cost
of the most frequently and consistently accessed core trans-
actions.

We conclude that considering the top 20 core transactions
(i.e., K = 20) leads to the most accurate results. Note that
the top 20 transactions are responsible for 93.6% of the total
transactions in the analyzed trace. Therefore, selecting the
top K transactions that account for 90–95% of all client ac-
cesses for the regression method results in a good represen-
tative subset of the entire workload. The regression solver
produces a solution for 200 equations with 20 variables only
in 8 millisecond. In general, the common least squares algo-
rithms have polynomial time complexity of O(u3v) when
solving v equations with u variables, and hence, can be ef-
ficiently used as a part of an on-line resource evaluation
method [1]. Combining the knowledge of workload proper-
ties with statistical regression provides a powerful solution
for performance evaluation of complex production systems
with real workloads.

9 Related work

Performance evaluation and capacity planning of software
and hardware systems is a critical part of the system de-
sign process [13]. There is a number of capacity plan-
ning techniques proposed for different popular applications
[5, 14, 21].

Among these techniques, queuing theory is a widely used
methodology for modeling a system behavior and answer-
ing capacity questions [21–23]. Modeling of a single-tier
system, such as a simple HTTP server, has been studied
extensively. Even for a multi-tier structure which is em-
ployed ubiquitously for most servers, the system is usually
abstracted as the most bottle-necked tier only: in [23], only
the application tier for the e-commerce systems are mod-
eled by a M/GI/1/PS queue; similarly in [16] the application
tier with N node cluster is modeled by a G/G/N queue. Re-
cently B. Urgaonkar et al. proposed analytic models for both
open and closed multi-tier systems [21, 22]. These models
are validated by synthetic workloads running in real sys-
tems. However the expense of accurately estimating model
parameters, i.e., service times and visit ratios, from each
server log makes this model difficult to use in production
environments. Direct measurements in [22] do not charac-
terize transactions as we do in this paper. Moreover, existing
capacity planning methods are based on evaluating the sys-
tem capacity for a fixed set of typical user behaviors. Once
the service time is estimated, it is consistent throughout the
planning procedure. This approach does not consider the
fact that a changing workload for the same system has differ-
ent service times and may result in different system capacity.
Our experiments show that such techniques as those in [22]
may fail to model a real system because of its dynamic na-
ture.

210 Cluster Comput (2008) 11: 197–211

In this paper, we use a similar closed multi-tier model as
in [22], but in contrast to [22] or other examples in the ex-
isting literature of capacity planning, we propose a method-
ology that does not need a controlled environment for ana-
lytic model parameterization. Instead of characterizing the
overall service time of every server, we use a statistical re-
gression method to approximate the service cost of individ-
ual transactions. This CPU cost function together with the
transaction mix help to approximate the system service time
that varies with the changing transaction mix.

The use of statistical methods in capacity planning has
been proposed in the early 80’s [7, 13], but the focus was
on a single machine/cluster that is much simpler than cur-
rent large-scaled multi-tiered systems. Recently statistical
methods are getting more attention in computer performance
analysis and system performance prediction. In [17] the
authors use multiple linear regression techniques for esti-
mating the mean service times of applications in a single-
threaded software server. These service times are corre-
lated with the Application Response Measurement package
(ARM) data to predict system future performance. In [8, 9]
the authors focus on transaction mix performance models.
Based on the assumption that transaction response times
mostly consist of service times rather than queuing times
they use the transaction response time to approximate the
transaction service demand. The authors use linear regres-
sion to identify performance anomalies in past workloads
and to scrutinize their causes. We do not use measured trans-
action response times to derive CPU transaction demands
because this approach is not applicable to the transactions
that themselves might represent a collection of smaller ob-
jects.

The contribution of our paper is that it illustrates how
a multi-tier system with a complex session-based workload
can be modeled with a transaction-based mix. This approx-
imation reduces the number of requisite parameters in a
workload and further allows for the use of regression to de-
rive the model parameters from direct measurements that are
available at any production system, making a step toward a
practical way to effectively model complex, live system with
few parameters only.

10 Conclusion

Predicting and controlling the issues surrounding system
performance is a difficult and overwhelming task for IT ad-
ministrators. With complexity of enterprise systems increas-
ing over time and customer requirements for QoS growing,
effective models for quick and automatic evaluation of re-
quired system resources in production systems processing
diverse real workloads become a priority item on the service
provider’s “wish list”.

In this work, we develop a practical solution to the above
problem by providing a theoretical framework which en-
ables the resource evaluation of complex session-based sys-
tems through the performance modeling of their transaction-
based equivalent. Once dealing with “stateless” transaction-
based workloads, we design an analytic model for evaluat-
ing multi-tier system performance that is based on a network
of queues representing the different tiers. This model is ca-
pable of modeling diverse workloads with changing transac-
tion mix over time. The effectiveness of the proposed frame-
work is based on a regression-based methodology to ap-
proximate the CPU demands of customer’s transactions on
a given hardware along all the tiers in the system. The sta-
tistical regression works very well for estimating the CPU
demands of transactions that themselves might represent a
collection of smaller objects and where direct measurement
of the cost of each object is not feasible.

We illustrate the effectiveness of this methodology via
a detailed set of experiments under different settings in
the controlled TPC-W e-commerce suite. Our experiments
show that for the majority of cases, the analytic model pro-
vides an accurate performance prediction compared to ex-
perimental data. However, the regression results should be
used with care. The CPU transaction demands that are de-
rived from workload mix which is very different from the
one that is used in prediction might lead to inaccurate perfor-
mance projections. The accuracy of regression significantly
improves when the CPU transaction demands are derived
from the extensive, aggregate workload profile that incor-
porates these possible different behaviors. The second case
study with data from HP OVSD service identifies a set of ad-
ditional challenges due to more complex and diverse behav-
ior of real systems than the synthetic TPC-W benchmark.
To efficiently deal with a significantly increased set of trans-
actions in real systems, we use the set of the most frequent
transactions in the regression analysis. This approach pro-
vides a practical, flexible and accurate solution for answer-
ing capacity planning and performance questions for multi-
tier production systems with real workloads.

While this paper concentrates on evaluating the CPU ca-
pacity required for support of a given workload, we believe
that regression methods can be efficiently applied for evalu-
ating other shared system resources. We plan to exploit this
avenue in our future work.

Acknowledgements This work was originated and mostly com-
pleted while Qi Zhang worked in HPLabs during the summer 2006 and
Ningfang Mi worked in HPLabs during the summer 2007. E. Smirni
has been partially supported in part by the National Science Founda-
tion under grants ITR-0428330 and CNS-0720699, and by a gift from
Hewlett-Packard.

Cluster Comput (2008) 11: 197–211 211

References

1. Ari, B., Giivenir, H.A.: Clustered linear regression. Knowl.-Based
Syst. 15(3) (2002)

2. Arlitt, M., Williamson, C.: Web server workload characterization:
the search for invariants. In: Proc. of the ACM SIGMETRICS ’96
Conference, Philadelphia, PA, May 1996

3. Almeida, V., Bestavros, A., Crovella, M., de Oliveira, A.: Charac-
terizing reference locality in the WWW. Technical Report, Boston
University, TR-96-11 (1996)

4. Arlitt, M., Krishnamurthy, D., Rolia, J.: Characterizing the scala-
bility of a large web-based shopping system. J. ACM Trans. Inter-
net Technol. 1(1) (2001)

5. Capacity Planning for WebLogic Portal: URL http://edocs.bea.
com/wlp/docs81/capacityplanning/capacityplanning.html

6. Cherkasova, L., Phaal, P.: Session based admission control: a
Mechanism for Peak Load Management of Commercial Web
Sites. IEEE J. Trans. Comput. 51(6) (2002)

7. Kachigan, T.M.: A multi-dimensional approach to capacity plan-
ning. In: Proc. of CMG Conference, Boston, MA (1980)

8. Kelly, T.: Detecting Performance Anomalies in Global Appli-
cations. Second Workshop on Real, Large Distributed Systems
(WORLDS’2005) (2005)

9. Kelly, T., Zhang, A.: Predicting performance in distributed en-
terprise applications. HPLabs Tech Report, HPL-2006-76, May
2006

10. Krishnamurthy, D., Rolia, J., Majumdar, S.: A synthetic work-
load generation technique for stress testing session-based systems.
IEEE Trans. Softw. Eng. 32(11) (2006)

11. Mi, N., Zhang, Q., Riska, A., Smirni, E., Riedel, E.: Performance
impacts of autocorrelated flows in multi-tiered systems. Perform.
Eval. 64(9–12), 1082–1101 (2007)

12. Lampman, D.: Building the Next Generation of IT. URL www.
hpl/hp.com/news/2006/apr-jun/technology.html

13. Menasce, D., Almeida, V., Dowdy, L.: Capacity Planning and Per-
formance Modeling: from Mainframes to Client-Server Systems.
Prentice Hall, New York (1994)

14. Menasce, D., Almeida, V.: Scaling for E-Business: Technologies,
Models, Performance, and Capacity Planning. Prentice Hall, New
York (2000)

15. PHP HyperText preprocessor: www.php.net
16. Ranjan, S., Rolia, J., Fu, H., Knightly, E.: QoS-driven server mi-

gration for Internet data centers. In: Proc. of IWQoS’2002, Miami
(2002)

17. Rolia, J., Vetland, V.: Correlating resource demand information
with ARM data for application services. In: Proc. of the ACM
Workshop on Software and Performance (1998)

18. Schwetman, H.: Object-oriented simulation modeling with
C++/CSIM. In: Proc. of 1995 Winter Simulation Conference,
Washington, DC (1995)

19. The Workload for the SPECweb96 Benchmark: URL http://www.
specbench.org/osg/web96/workload.html

20. TPC-W Benchmark: URL http://www.tpc.org
21. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic pro-

visioning of multi-tier Internet applications. In: Proc. of the 2nd
IEEE International Conference on Autonomic Computing (ICAC-
05), Seattle, June 2005

22. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.:
An analytical model for multi-tier Internet services and its applica-
tions. In: Proc. of the ACM SIGMETRICS’2005, Banff, Canada,
June 2005

23. Villela, D., Pradhan, P., Rubenstein, D.: Provisioning servers in the
application tier for E-commerce systems. In: Proc. of IWQoS’04,
Montreal, Canada (2004)

24. Zhang, Q.: The effect of workload dependence in systems: experi-
mental evaluation, analytic models, and policy development. PhD
thesis, College of William and Mary, December 2006

Qi Zhang currently is a software engineer
in Windows Server Performance team at Mi-
crosoft. She received her Ph.D. degree in Com-
puter Science from College of William and
Mary, Williamsburg, VA, USA, in December
2006. She got the BS degree in computer sci-
ence from Huazhong University of Science and
Technology, Hubei, China, in 1998, and the
MS degree in computer science from Univer-
sity of Science and Technology of China, An-

hui, China, in 2001, respectively. Her research interests include per-
formance evaluation, scheduling and load balancing policies, work-
load characterization and queuing modeling of multi-tiered sys-
tems, and departure processes. Qi Zhang is a member of ACM
and IEEE.

Ludmila Cherkasova is a senior scientist in
the Enterprise Software and Systems Labora-
tory at HPLabs, Palo Alto. She joined Hewlett-
Packard Laboratories in 1991. Before joining
HPLabs, she was a senior researcher at Insti-
tute of Computing Systems, Russia, and ad-
junct associate professor at Novosibirsk State
University. Her current research interests are
in distributed systems, Internet technologies
and networking, performance measurement and

monitoring, characterization of next generation system workloads
and emerging applications in the large-scale enterprise data cen-
ters.

Ningfang Mi received her BS degree in Com-
puter Science from Nanjing University, China,
in 2000, and her MS degree in Computer Sci-
ence from University of Texas at Dallas, in
2004. She is currently a Ph.D. candidate in
the Department of Computer Science, Col-
lege of William and Mary, Williamsburg, Vir-
ginia 23187-8795 (ningfang@cs.wm.edu). Her
research interests include resource allocation
policies, performance analysis of multi-tiered

systems, workload characterization, and analytic modeling. She is a
student member of the ACM and IEEE.

Evgenia Smirni Evgenia Smirni is the Wil-
son and Martha Claiborne Stephens Associate
Professor at the College of William and Mary,
Department of Computer Science, Williams-
burg, VA (esmirni@cs.wm.edu). She received
her Diploma in Computer Engineering and In-
formatics from the University of Patras, Greece,
in 1987, and her M.S. and Ph.D. in Computer
Science from Vanderbilt University in 1993 and
1995, respectively. From August 1995 to June

1997 she had a postdoctoral research associate position at the Univer-
sity of Illinois at Urbana-Champaign. Her research interests include
analytic modeling, stochastic models, Markov chains, matrix analytic
methods, resource allocation policies, Internet systems, workload char-
acterization, and modeling of distributed systems and applications. She
has served as program co-chair of QEST05 and of ACM SIGMET-
RICS/Performance06. She is a member of ACM, IEEE, and the Tech-
nical Chamber of Greece.

http://edocs.bea.com/wlp/docs81/capacityplanning/capacityplanning.html
http://edocs.bea.com/wlp/docs81/capacityplanning/capacityplanning.html
http://www.hpl/hp.com/news/2006/apr-jun/technology.html
http://www.hpl/hp.com/news/2006/apr-jun/technology.html
http://www.php.net
http://www.specbench.org/osg/web96/workload.html
http://www.specbench.org/osg/web96/workload.html
http://www.tpc.org

	A regression-based analytic model for capacity planning of multi-tier applications
	Abstract
	Introduction
	Experimental environment
	Transaction as a unit of client/server interaction
	Session-based versus transaction-based systems
	CPU cost of transactions
	Regression methodology
	Sensitivity of regression to monitoring window size
	Sensitivity of regression results to workload intensity

	Analytic model and modeling results
	Approach limitations
	Applying regression to a production system with live workload
	Related work
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

