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Abstract—A large-scaled cluster system has been employed in
various areas by offering pools of fundamental resources. How
to effectively allocate the shared resources in a cluster system
is a critical but challenging issue, which has been extensively
studied in the past few years. Despite the fact that classic load
balancing policies, such as Random, Join Shortest Queue and
size-based polices, are widely implemented in actual systems due
to their simplicity and efficiency, the performance benefits of
these policies diminish when workloads are highly variable and
heavily dependent. In this paper, we propose a new load balancing
policy named ADUS, which attempts to partition jobs according
to their sizes and to further rank the servers based on their loads.
By dispatching jobs of similar size to the servers with the same
ranking, ADUS can adaptively balance user traffic and system
load in the system and thus achieve significant performance
benefits. Extensive simulations show the effectiveness and the
robustness of ADUS under many different environments.

I. INTRODUCTION

Present day, large-scale cluster computing environments are
being employed in an increasing number of application areas.
Examples of these systems include High Performance Com-
puting (HPC), enterprise information systems, data centers,
cloud computing and cluster servers, which provide the pools
of fundamental resources. In particular, a cloud platform, as
a new and hot infrastructure, provides a shared “cloud” of
resources as an unified hosting pool, which requires a central
mechanism for resource provisioning and resource allocation
based on multiple remote clients’ demands [1], [2]. Figure 1
shows an example of a classic cluster system, which consists
of a hierarchy of server nodes and a front-end dispatcher which
is responsible for distributing the incoming jobs among these
server nodes. In our paper, we focus on the load balancing
design for the dispatcher, which is featured as a redirect buffer
without a central waiting queue while each server node has its
own queue for waiting jobs and serves these jobs under the
first-come first-serve (FCFS) queuing discipline.

A lot of previous studies have been focusing on developing
load balancing policies for a large-scale cluster computing
system over the past decades [3], [4], [5], [6], [7]. Examples of
these policies include Join Shortest Queue (JSQ) and the size-
based ADAPTLOAD. When there is no a priori knowledge of
job sizes and the job sizes are exponentially distributed, JSQ
has been proven to be optimal [8]. However, prior research
has shown that the job service time distribution is critical
for the performance of load balancing policies. [9] evaluated
how JSQ performs under various workloads by measuring the

Fig. 1. Example of a classic cluster system.

mean response times and demonstrated that the performance of
JSQ clearly varies with the characteristics of different service
time distributions. For example, the optimality of JSQ quickly
disappears when job service times are highly variable and
heavy-tailed [10], [11].

Recently, size-based policies were proposed to balance the
load in the system, only using the knowledge of the incoming
job sizes. The literature in [6], [11], [12] have shown that
such size-based policies are optimal if one aims to achieve
the minimum job response times and job slowdowns. The
ADAPTLOAD policy being a representative example of size-
based policies, has been developed to improve average job re-
sponse time and average job slowdown by on-the-fly building
the histogram of job sizes and distributing jobs of similar sizes
to the same server [12]. Nonetheless, [4] demonstrated that
such size-based solutions are not adequate if the job service
times are temporally dependent.

Based on different assumptions, other classic load balancing
policies are developed under cluster and cloud computing
environments. The Min-Min and the Max-Min algorithms that
focus on the problem of scheduling a bag of tasks, assume
that the execution times of all jobs are known [13]. Meta-
schedulers, like Condor-G [14], rely on accurate queuing
time prediction in scheduling jobs on computing grids. How-
ever, accurate predictions become more challenging in the
current virtualized and multi-tiered environments. Recently,
techniques of advance-reservation and job preemption were
presented to allocate jobs in cluster or grid systems [15].
Yet, extra system overheads and job queue disruptions could
decrease the overall system performance.

In this paper, we propose a new load balancing policy
ADUS, which adaptively distributes work among all servers
by taking account of both user traffic and system load. In
detail, ADUS ranks all servers based on their present system
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loads and updates job size boundaries on-the-fly, allowing
the dispatcher to direct jobs of similar sizes to the servers
which have the same ranking. We expect that our new policy
can improve the overall system performance by inheriting the
effectiveness of both JSQ and ADAPTLOAD and meanwhile
overcoming the limitations of these two policies.

Trace-driven simulations are used to evaluate the perfor-
mance of ADUS. Extensive experimental results indicate that
ADUS significantly improves the system performance - job
response times and job slowdowns, under heavy-tailed and
temporal dependent workloads. We also use the case study of
a real TCP trace to further validate the benefits of ADUS in
actual systems, where ADUS again achieves a clear improve-
ment of up to one order of magnitude. The reminder of this
paper presents our results in detail.

II. MOTIVATION

In this section, we first give an overview of three existing
load balancing policies which are widely used in cluster
systems. By analyzing these policies under highly variable
and/or heavily dependent workloads, we then illustrate their
limitations in terms of performance matrices, which motivate
the design of a new efficient policy proposed in this paper.

Here, We consider the following three load balancing poli-
cies.
• Random: it randomly determines the server that will be

allocated for each incoming job.
• Join Shortest Queue(JSQ)[16]: the newly arrived job is

assigned to the server with the least number of jobs in
the queue.

• A size-based policy, e.g., ADAPTLOAD [12]: it builds
the histogram of job sizes and partitions the work into
equal areas. Each server will then dedicate to processing
jobs with similar sizes. The boundaries of each size
interval are adjusted dynamically according to the past
history. ADAPTLOAD has been proven to achieve high
performance by reducing the number of small jobs from
waiting behind large ones.

Despite the fact that such classic load balancing policies
are widely used because of their simplicity (e.g., Random)
and their efficiency (e.g., JSQ and ADAPTLOAD), we found
that these policies exhibit performance limitations under the
workloads with high variability and strong temporal depen-
dence. Here, we exemplify such performance limitations by
evaluating the JSQ and ADAPTLOAD policies.

Limitations of JSQ: Since JSQ always sends a job to the
shortest (or least loaded) queue, there is a high probability
such that small jobs are stuck behind large ones, which
may consequently cause performance degradation when the
distribution of job sizes is highly variable. To verify this
limitation, we measure the fraction of small jobs that are stuck
in the queue due to large ones, i.e., the ratio of the number of
small jobs which wait behind large jobs to the total number
of small jobs. Here, we use T = μ−1(1 + 2CV ) to classify
small and large jobs, where μ−1 is the mean of job sizes and
CV is the coefficient of variation of job sizes.

In this experiment, the job interarrival times are exponen-
tially distributed with mean rate λ = 2 while the job sizes
are drawn from a 2-state Markov-Modulated Poisson Process
(MMPP) with mean rate μ = 1 and squared coefficient of
variation SCV = 20. We also consider 4 homogeneous server
nodes in the system. By scaling the mean processing speed of
each server node (i.e., μp = 1), we obtain 50% utilization per
server node. The sample space in this experiment is 1 million.

Table I shows the measured results under the three load
balancing policies. We first observe that among the three
policies, Random as expected obtains the largest fraction of
small jobs which have to wait behind large ones in the queue.
Observe also that although JSQ is well known for its optimal
performance, there are about 23% of small jobs being stuck
in the queue due to large ones, which thus degrades the
performance of small jobs and further deteriorates the overall
system performance. By dispatching jobs based on their sizes,
the size-based policy ADAPTLOAD successfully avoids the
majority of small jobs (i.e., about 95%) waiting behind large
ones in the queue.

TABLE I
FRACTION OF SMALL JOBS THAT ARE STUCK BEHIND LARGE

ONES WHEN THE JOB SIZES HAVE HIGH VARIABILITY.

Policy Random JSQ ADAPTLOAD

Ratio 42.53% 22.93% 4.78%

Limitations of ADAPTLOAD: We investigate the perfor-
mance of ADAPTLOAD under the workload with high variance
and strong temporal dependence in job sizes by measuring
the queuing times of small and large jobs separately. Ta-
ble II shows the measured results, where we use the same
experimental setting as shown in the above but introduce
the temporal dependence into job sizes. We observe that the
effectiveness of ADAPTLOAD dramatically deteriorates such
that its performance becomes comparable to the worst one
(i.e., Random). This essentially motivates that simply directing
jobs with similar size to the same server is not sufficient under
temporally dependent workloads. We interpret that because
of the temporal dependence in job sizes, it becomes highly
possible that the jobs with similar sizes are clustered together
and arrive the system in bursts. If the policy simply assigns
such jobs to the same server, then that particular server will
experience a sudden load spike during a short period, causing
long waiting times for those jobs and thus degrading the
overall system performance.

TABLE II
OVERALL AND INDIVIDUAL QUEUING TIMES FOR SMALL AND

LARGE JOBS WHEN THE JOB SIZES ARE HIGHLY VARIABLE AND
STRONGLY DEPENDENT.

Policy Overall Small Large
Random 22.17 21.72 34.46

JSQ 10.75 10.45 25.62
ADAPTLOAD 14.66 13.98 34.59

In summary, both JSQ and ADAPTLOAD have the limita-
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tions under highly variable and/or strongly dependent work-
loads, which thus cause negative impacts on system perfor-
mance. Motivated by this problem, we present a new load
balancing policy which attempts to address the limitations
of both JSQ and ADAPTLOAD and thus achieve visible
performance improvement.

III. NEW LOAD BALANCING POLICY: ADUS

Now, we turn to present our new load balancing policy
ADUS which adaptively distributes work among all servers
by taking account of both user traffic and system load, aiming
to inherit the effectiveness of JSQ and ADAPTLOAD and
meanwhile overcome the limitations of these two policies as
shown in the previous section. The main idea of ADUS is
to on-the-fly rank all the servers according to their system
loads and dynamically tune the job size boundaries based
on the current user traffic loads. ADUS then directs the
jobs whose sizes locate in the same size boundary to the
corresponding servers which are in the same ranking. Based
on the observation that the majority of jobs in a heavy-tailed
workload is small, ADUS always gives small jobs high priority
by sending them to the highly ranked (i.e., less loaded) servers.

Recall that ADAPTLOAD [12] evenly balances the load
across the entire cluster by determining boundaries of jobs
sizes for each server. ADUS adopts such boundaries where
the histogram of job sizes is built and partitioned into N

equal areas for N servers in the system. Then, the ith server is
responsible for the work locating in the ith area, which allows
the decreasing variation in job sizes (or job service times) on
each server. Consequently, the proportion of small jobs that
wait behind long ones is reduced as well and the user traffic
is thus well balanced among all servers.

However, as we discussed in Section II, simply separat-
ing requests according to their sizes is not sufficient under
temporally dependent workloads. Therefore, ADUS periodi-
cally ranks all servers based on their present system loads
and keeps sending the incoming jobs of similar sizes to a
server with the same ranking instead of the same server
which might be overloaded by the previous arrived jobs.
Given N servers {S1, ..., SN} and N boundaries of jobs sizes
[0, b1), [b1, b2), ..., [bn−1,∞). For every window of C jobs,
ADUS sorts all the servers in a non-decreasing order of their
loads (e.g., queue length) and then gets a priority list S

′

. Then,
the ith server S

′

i in the priority list will be assigned to the
incoming jobs in the next window which have the sizes within
the ith boundary [bi−1, bi). It follows that the first server S

′

1

with the least load in the priority list will then serve small
yet a large number of jobs while the last server S

′

N that
became heavy loaded due to serving small ones during the last
window then starts to serve large but few jobs. As a result,
ADUS further successfully balances the system load among
all N servers and thus significantly diminishes the proportion
of similar sized jobs (especially small ones) being queued on
the same server during a short period.

Figure 2 gives the high level description of our new policy
ADUS. We remark that the window size C indicates how often

Algorithm: ADUS
begin
1. initialization

a. priority list: S
′

= {S
′

1, ..., S
′

N};
b. size boundaries: [0, b1), [b1, b2), ..., [bn−1,∞);

2. upon the completion of every C jobs
a. sort all N servers in a non-decreasing order of system loads

and update the priority list S
′

;
b. update the size boundaries such that the work is

equally divided into N areas;
3. for each arriving job

a. if its job size ∈ [bi−1, bi)

then direct this job to server S
′

i ;
end

Fig. 2. The high level description of ADUS.

ADUS re-ranks all servers. A large window size updates the
rankings of servers in a lower frequency, which introduces less
computational overhead but might provide slower reactions to
frequently changed workloads. In contrast, a small window
size can quickly adapt to workload changes, improving the
system performance, but needs a higher computational cost in
the meanwhile. Thus, we conclude that selecting an appropri-
ate window size is critical to ADUS’s performance as well
as its computational overheads. In our experiments, we set C
to different values under various workloads and find that the
best performance is obtained when window size C is equal
to 100. We remark that the selection of C depends on the
workload changes. If the workload changes frequently, then
a smaller window will achieve a better performance. How to
dynamically adjust C will be studied in our future work.

IV. PERFORMANCE EVALUATION OF ADUS

In this section, we use trace-driven simulations to evaluate
the performance improvement of ADUS in a homogeneous
clustered system with N (FCFS) servers. Various load balanc-
ing algorithms are then executed by a load dispatcher which is
responsible for distributing the arrivals to one of N servers. For
all simulations, the specifications of a job include job arrival
times and job sizes, which are generated based on the specified
distributions or real traces. Throughout all experiments, the N

servers have the same processing rates μp = 1.
We first produce an experiment where the job inter-arrival

times are exponentially distributed with mean λ−1 = 0.5
while the job sizes (i.e., the service process) are drawn from a
MMPP(2) with the mean equal to μ−1 = 1, squared coefficient
of variation equal to SCV = 20, and autocorrelation function
(ACF ) at lag 1 equal to 0.40. Therefore, high variability and
temporal dependence are injected into the workload, i.e., the
service process. Also, we consider N = 4 homogeneous server
nodes in the cluster such that the average utilization levels
at each server node are ρ = 50%. The sample space in all
simulations is 1 million jobs. Simulations stop only after all
the jobs have been used.

Table III shows the system performance under four policies
including Random, JSQ, ADAPTLOAD and ADUS. Here, we
measure the mean job response times “Respavg” (i.e., the
summation of waiting times in the queue and service times)
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TABLE III
OVERALL RESPONSE TIMES (RESP) AND SLOWDOWNS (SLW) OF

FOUR POLICIES WHEN
λ = 2, μ = 1, μp = 1, SCV = 20, ACF = 0.40, AND ρ = 50%.

Policy Respavg SLWavg (∗103)
Random 23.17 175.54

JSQ 11.75 (49%) 82.31 (53%)
ADAPTLOAD 15.66 (32%) 110.68 (37%)

ADUS 9.63 (58%) 59.42 (66%)

and the mean job slowdown “SLWavg”(i.e., job response times
normalized by job service times). The relative improvement
with respect to Random is also given in parenthesis, see
Table III.

We observe that compared to Random, both ADAPTLOAD

and JSQ improve the overall system performance, while
ADUS outperforms among all the policies. We also measure
the performance metrics shown in Tables I and II under ADUS
and find that only 3.99% of small jobs being stuck behind
large ones and the queueing times of small and large jobs are
7.74 and 32.62, respectively. This further shows that ADUS
achieves the best performance for small jobs. We interpret the
significant performance improvement as an outcome of always
assigning small jobs to the least loaded servers (i.e., the 1st

rank). Furthermore, the performance of large jobs is improved
as well, although not as significant as small ones.

We further investigate the tail distribution of response time
and slowdown under the four policies. Figures 3 and 4 plot
the complementary cumulative distribution function (CCDF)
of overall and individual response times and slowdowns,
respectively. As there are 4 server nodes, we here classify
job sizes into 4 categories: small, medium small, medium
large and large. Each of them represents 25% of the whole
workload. We observe that under ADUS, the majority (about
99.4%) of jobs experience faster response times and almost
all jobs have smallest slowdowns. Figure 4 further shows
that ADUS benefits small jobs by avoiding them waiting
after large ones, see plots (a) and (b). On the other hand,
due to its unfairness to large ones by sending them to high
loaded servers, ADUS degrades the performance of medium
and large jobs, see plot (c) and (d). Fortunately, the proportion
of large jobs is quite small. Such performance penalty does
not significantly affect the overall system performance.
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Fig. 3. CCDFs of overall response times and slowdowns.

A. Impacts of Variability and Temporal Dependence

As coefficient of variation and temporal dependence are
two important characteristics in the job size distribution, we

further analyze their impacts on policy performance. Figure 5
and Figure 6 show the corresponding experimental results
under the workloads with different coefficient of variations
and different temporal dependence profiles, respectively.

We first conduct experiments with various SCV s (e.g.,10,
20, and 40) of the job sizes but keep the same mean. As
shown in Figure 5, both ADUS and JSQ obtain 30% and
40% performance improvement over Random when the job
sizes are not highly variable. However, as the variability in job
sizes increases (e.g., SCV = 40), the workload contains few
but extremely large jobs, which unfortunately diminishes the
effectiveness of JSQ. It becomes highly likely that under JSQ
small jobs may have to wait behind several extremely large
ones, resulting in long response time as well as long slowdown.
While ADUS can avoid this situation by assigning jobs with
similar size to the same ranked server and thus achieves better
performance improvement. Additionally, the tail distributions
of response times in these experiments are qualitatively the
same as we show in Figure 3, which are then omitted here in
order to save the space.
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Fig. 5. Response times and slowdowns under different SCVs when
λ = 2, μ = 1, μp = 1, ρ = 50%,and ACF = 0.40.

In order to investigate the sensitivity of ADUS to temporal
dependence, we conduct experiments with three different
temporal dependence profiles, but the same mean and the
same SCV of the job sizes. Figure 6 shows the experimental
results as a function of temporal dependence profiles (e.g.,
weak, medium and strong). When the temporal dependence
is weak, all the three policies JSQ, ADAPTLOAD and ADUS
perform better than Random. However, the strong temporal
dependence in job sizes dramatically degrades the overall
system performance and deteriorates the effectiveness of JSQ
and ADAPTLOAD, under which the system experiences sim-
ilar performance as under Random. In contrast, ADUS still
achieves a clear performance improvement, which indicates
that ADUS is more robust to temporally dependent workloads
than the other policies.

B. Case Study: Real TCP Trace

In this section, we validate the effectiveness and the robust-
ness of ADUS using actual measured data. The real trace,
named LBL-TCP-3, were collected by Lawrence Berkeley
Laboratory over a two-hour period in January 1994, which
consists of 1.8 million wide-area TCP packets. Each packet
has a timestamp and the number of data bytes. We here use
the number of data bytes as the input for job sizes, which
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λ = 2, μ = 1, μp = 1, SCV = 20 and ρ = 50%. Here, the strong
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are highly variable with SCV = 2 and temporally dependent
with ACF at lag 1 equal to 0.44. We also scale the packet
interarrival times in order to emulate a heavy loaded system
with 75% utilization. Our experimental setup assumes a cluster
of remote servers in the communication network.

Table IV summarizes the performance measurement (e.g.,
TCP packet round trip times and TCP packet slowdown) under
the four load balancing policies. Here, the server processing
rate μp is equal to 1, mean interarrival time is scaled to
λ−1 = 67, and the mean package size is μ−1 = 200.87.
Consistent to the previous experiments, ADUS achieves a
clear improvement. Furthermore, the slowdown under ADUS
is significantly improved by one order of magnitude compared
to the Random policy.

TABLE IV
REAL TRACE PERFORMANCE OF LBL-TCP-3.

Policy Random JSQ AdaptLoad ADUS
Resp 0.2964 0.252 (15%) 0.228 (23%) 0.193 (35%)
SLW 269.53 225.50 (16%) 39.16 (85%) 32.93 (88%)

In summary, the extensive experimentation carried out in
this section shows that ADUS effectively improves the overall
system performance and thus becomes the best choice for
load balancing in a cluster system. Sensitivity analysis to
job size variation and job size temporal dependence further
demonstrates the visible gains of ADUS. Finally, the case
study of a real TCP trace further validates the effectiveness
and the robustness of ADUS.

V. CONCLUSION

In this paper, we evaluate the performance of the classic
load balancing policies including JSQ and size-based approach
for a homogeneous cluster system under highly variable and
strongly temporal dependent workloads. We demonstrated that
these policies are now ineffective when workloads become

heavy-tailed and bursty. We thus proposed a new load balanc-
ing policy ADUS, which distributes the work in the system
by taking account of both user traffic and system load. Using
trace-driven simulations, we showed that ADUS inherits the
effectiveness of JSQ and size-based policies and meanwhile
overcomes their limitations, which results in significant per-
formance benefits. We also showed that ADUS can quickly
adapt to the workload changes by monitoring user traffic and
system loads, repeatedly ranking the servers and partitioning
the work in an on-line fashion.
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