
Towards Machine Learning-Based Auto-tuning
of MapReduce

Nezih Yigitbasi, Theodore L. Willke, and Guangdeng Liao
Intel Labs

Hillsboro, OR
{nezih.yigitbasi,theodore.l.willke,guangdeng.liao}@intel.com

Dick Epema
Delft University of Technology

the Netherlands
D.H.J.Epema@tudelft.nl

Abstract—MapReduce, which is the de facto programming
model for large-scale distributed data processing, and its most
popular implementation Hadoop have enjoyed widespread adop-
tion in industry during the past few years. Unfortunately, from
a performance point of view getting the most out of Hadoop is
still a big challenge due to the large number of configuration
parameters. Currently these parameters are tuned manually by
trial and error, which is ineffective due to the large parameter
space and the complex interactions among the parameters.
Even worse, the parameters have to be re-tuned for different
MapReduce applications and clusters. To make the parameter
tuning process more effective, in this paper we explore machine
learning-based performance models that we use to auto-tune the
configuration parameters. To this end, we first evaluate several
machine learning models with diverse MapReduce applications
and cluster configurations, and we show that support vector
regression model (SVR) has good accuracy and is also compu-
tationally efficient. We further assess our auto-tuning approach,
which uses the SVR performance model, against the Starfish auto-
tuner, which uses a cost-based performance model. Our findings
reveal that our auto-tuning approach can provide comparable
or in some cases better performance improvements than Starfish
with a smaller number of parameters. Finally, we propose and
discuss a complete and practical end-to-end auto-tuning flow that
combines our machine learning-based performance models with
smart search algorithms for the effective training of the models
and the effective exploration of the parameter space.

I. INTRODUCTION

The low cost of data acquisition and storage has enabled
industry to store massive amounts of data with the hope of
driving their innovation. MapReduce, the programming model
of the data center, and Hadoop, the most popular open source
MapReduce implementation, have taken a huge step towards
solving the problem of processing these big data in a scalable
and fault-tolerant way, and made it possible to process tens
of petabytes of data daily [1]–[3]. However, performance-
wise getting the most out of Hadoop is non-trivial; as of
Hadoop 0.20.2 there are around 190+ configuration parameters
and 10+ of these parameters have impact on the application
performance [1].

On the one hand the large parameter space enables a
wide range of opportunities for significant performance im-
provement by careful parameter tuning (Section III), but on
the other hand the large parameter space and the complex
interactions among the parameters make manual tuning time
consuming and difficult. Therefore, the research community
has recently started exploring auto-tuning Hadoop configura-
tion parameters [4]. Auto-tuning involves two phases: model

building and parameter optimization (Section VI). In the first
phase, the auto-tuner establishes a performance model to
predict the performance of an application given a parameter
configuration. Then, using this performance model in the
parameter optimization phase, the auto-tuner searches for the
optimal parameter values. Therefore, the performance model is
of crucial importance to the auto-tuner, and the quality of the
auto-tuner depends strictly on the quality of the performance
model. In this paper, we explore the feasibility of machine
learning-based performance models as we move towards a new
framework for the auto-tuning of Hadoop MapReduce.

Cost-based (analytical) performance modeling is a well-
known approach that has proven itself useful in diverse com-
puter systems, but it suffers from several drawbacks when
modeling MapReduce applications. First, cost-based modeling
is a white box approach where a deep knowledge about a sys-
tem’s internals is required, and since the system comprising the
software stack (operating system, the Java R© virtual machine,
Hadoop, and the workloads) and the hardware stack are very
complex, it becomes very difficult to capture this complexity
with cost-based models. Second, Hadoop has several extension
points where users can plug in their own policies, such as
scheduling and block placement policies, making it necessary
for the performance model to support these different policies.
Finally, although cost-based models may be effective, due
to the high coupling of the model to the system internals a
change in the system, such as the hardware technologies or the
Hadoop framework itself, triggers a change in the model. We
are motivated by these drawbacks to explore machine learning-
based performance models, which are black box models, since
building cost-based models for a complex system such as
Hadoop with good accuracy while being flexible and robust
is challenging.

Compared with the white box approach, black box models
have two main advantages. First, black box models and the
recommendations of an auto-tuner using these models are
based on observations of the actual system performance for
a particular workload and cluster. Second, they are usually
simpler to build than white box models as there is no need
for detailed information about a system’s internals. One of the
interesting research questions that motivated our work is: Can
we build an effective auto-tuner even if we treat the underlying
system as a black box? As we demonstrate in Section V, the
answer is yes; our machine learning-based approach results
in comparable and in some scenarios even better performance
than a cost-based approach.

2013 IEEE 21st International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems

1526-7539/13 $26.00 © 2013 IEEE

DOI 10.1109/MASCOTS.2013.9

11

Parameter Description Default Rules of Thumb
SNB Cluster ZT Cluster

io.sort.mb (map output sort buffer) The amount of memory used while sorting files
during the map phase

100 200 400

mapred.tasktracker.map.tasks.maximum (map slots) The maximum number of map tasks to run simul-
taneously by a task tracker

2 7 31

mapred.tasktracker.reduce.tasks.maximum (reduce slots) The maximum number of reduce tasks to run
simultaneously by a task tracker

2 2 2

mapred.reduce.tasks (reduce tasks) The number of reduce tasks to run for a job 1 15 15

Job input size The size of the input dataset N/A N/A N/A

TABLE I. FIVE PARAMETERS THAT WE HAVE USED IN OUR PERFORMANCE MODELS. THE FIRST FOUR PARAMETERS ARE HADOOP CONFIGURATION

PARAMETERS SO THEY HAVE DEFAULT VALUES AND RULE OF THUMB SETTINGS FOR THE TWO CLUSTERS WE HAVE USED IN OUR EXPERIMENTS: THE SNB
AND ZT CLUSTERS (SECTION IV-B), AND THE LAST PARAMETER IS THE SIZE OF THE JOB INPUT DATASET.

Unlike the cost-based approach, our approach relies on
training data to learn the performance model, which makes
our approach more robust and flexible. The training data have
to be collected separately for every application and cluster,
and as expected, the data collection process may take more
time than profiling the workload once, which is a common
method used by cost-based approaches [4]. However, in a real
deployment we expect the training to be done once, because in
practice applications rarely change, instead their input datasets
change [5], and our performance models can easily capture the
changes to the input dataset as the input size is one of our
model parameters. Moreover, training data collection time can
be further reduced by using the logs of the completed jobs as
Hadoop daemons already generate a large amount of logging
information. Our contributions are threefold:

• We develop several machine learning-based perfor-
mance models of two Hadoop benchmarks (wordcount
and sort) using data collected from two different
cluster configurations, and we assess these models
in terms of accuracy, computational performance, and
their sensitivity to training data size (Section IV).

• We perform an extensive evaluation of the support
vector regression model (SVR), which has both good
accuracy and computational performance, by compar-
ing it against the cost-based model of the Starfish
auto-tuner, the rules of thumb settings, which are
industry recommended parameter settings, and the
default Hadoop parameter settings. Our results reveal
that the SVR model is able to achieve comparable and
in some cases even better performance improvements
than the cost-based model (Section V).

• We propose a machine learning-based auto-tuning
approach that uses smart search algorithms for both
training the performance models and exploring the
parameter space (Section VI).

II. MAPREDUCE AND HADOOP

MapReduce is a programming model used for process-
ing large amounts of data on commodity clusters. The user
specifies a map function that processes a key-value pair to
produce a list of intermediate key-value pairs, and a reduce
function to aggregate the output of the map function. Hadoop
is a framework that implements the MapReduce programming
model, and simplifies cluster programming by taking care of
automatic parallelization, load balancing, and fault-tolerance.
A typical Hadoop cluster runs over the Hadoop Distributed
File System (HDFS) and has a single job tracker (master) that
is responsible for managing the task trackers (slaves) that run
on each of the nodes in the cluster.

When a user submits a job consisting of map and reduce
functions, Hadoop first splits the input data that resides in the
HDFS into splits. Then, Hadoop divides the job into several
tasks depending on the size of the input data. For every split,
Hadoop runs a separate map task, which produces a list of
key-value pairs. Hadoop then partitions the map output based
on the keys, and runs a reduce task for each key writing the
final output to the HDFS.

Hadoop gives users enough flexibility to change its behav-
ior by exposing a large number of configuration parameters
(tuning knobs). While some of these parameters, such as the
number of map and reduce slots, have impact at the machine
level some parameters, such as the number of reduce tasks,
have impact at the cluster level. Similarly, parameters may
impact different resources in the system; while the size of
the map output sort buffer impacts mainly the memory and
disk I/O performance, the number of reduce tasks parameter
impacts mainly the network and disk I/O performance.

In this work to model the performance of MapReduce
applications we have used the five parameters shown in Table I.
The first four parameters are Hadoop parameters and the last
one is the size of the job input dataset. For the Hadoop
parameters, the default column shows the default settings of
Hadoop, and the rules of thumb column shows the values that
the industry recommends [6], [7]; note the different rule of
thumb settings for our SNB and ZT clusters (Section IV-B).
Our motivation for using these parameters is threefold. First,
these parameters have impact on different resources and the
impact of this parameter set covers all the available resources
in a cluster. Second, these parameters have impact at different
levels (machine-level or cluster-level). Finally, based on our
domain expertise we expect these parameters to have sig-
nificant impact on the performance. However, selecting the
parameters to use in a machine learning-based performance
model is a non-trivial research problem in its own, which is
known as the feature selection problem. Therefore, we have
used our domain expertise to select these parameters, and we
have left the feature selection problem as an important future
work.

III. THE NEED FOR AUTO-TUNING

In this section we make the case for why auto-tuning is the
right approach to tuning Hadoop parameters. First, through
experiments in our 8-node SandyBridge (SNB) cluster (see
Section IV-B) we show that there is significant performance
improvement opportunity even by tuning a small number
of parameters. Second, we explain why manually tuning a
complex system, such as Hadoop, is not feasible.

12

 0

 100

 200

 300

 400

 500

 600

 700

 800

100 150 200 250 300 350 400

J
o

b
 C

o
m

p
le

ti
o

n
 T

im
e

 [
s
]

io.sort.mb [MB]

 0

 100

 200

 300

 400

 500

 600

 700

 800

16 32 64 128

J
o

b
 C

o
m

p
le

ti
o

n
 T

im
e

 [
s
]

Number of Reduce Tasks

 1 2 3 4 5 6 7 8 9
 1

 2
 3

 4

 600

 800

 1000

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 [
s
]

Number o
f M

ap S
lots

Number of Reduce Slots

 0
 200
 400
 600
 800
 1000

Fig. 1. Performance of the sort benchmark with 80GB input on our 8-node SNB cluster (see Section IV-B) with different parameter settings for the size of the
map output sort buffer (left), the number of reduce tasks (middle), and the number of map and reduce slots (right).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Configuration 1

(100MB,4,1,32)

Configuration 2

(100MB,5,2,24)

J
o

b
 C

o
m

p
le

ti
o
n

 T
im

e
 [

s
]

Fig. 2. Performance obtained by tuning several Hadoop parameters at once
for the sort benchmark with 120GB input on our 8-node SNB cluster (see
Section IV-B) for two configurations (map output sort buffer, map slots, reduce
slots, reduce tasks).

Figure 1 shows the performance of different parameter con-
figurations comprising different values for the map output sort
buffer parameter (left), the reduce tasks parameter (middle),
and the map and reduce slots parameters (right) for the sort
benchmark with 80GB input on our 8-node SNB cluster (see
Section IV-B). The performance difference between the best
and the worst configuration is 16% for the map output sort
buffer parameter, 35% for the reduce tasks parameter, and 42%
for the map and reduce slots parameters. Our results show that
even by only tuning a single parameter in isolation it is possible
to obtain up to around 40% improvement in performance.

Figure 2 shows the result when we tune several Hadoop
parameters at once for the sort benchmark with 120GB input
on our 8-node SNB cluster. For Configuration 1, we set the
map output sort buffer size to 100MB, the number of map
slots to 4, the number of reduce slots to 1, and the number of
reduce tasks to 32. For Configuration 2, we set the map output
sort buffer size to 100MB, the number of map slots to 5, the
number of reduce slots to 2, and the number of reduce tasks
to 24. Our results show that by tuning only a small number
of parameters together we can achieve roughly a factor of two
performance improvement.

Although there is a vast performance improvement op-
portunity with careful parameter tuning as we have shown
above, manual tuning is not feasible for two reasons. First, it
is very difficult to understand the complex interactions among
the parameters and reason about their performance impact as
the impact of a parameter depends on several factors such
as the workload characteristics, the input dataset, the cluster
configuration, and even on the values of other parameters [4].
Second, the parameter search space is huge; even if we assume
that the parameters take values from different sets of the same
size, say 20, for 10 parameters the size of the search space

will be 2010, and it is simply impossible to manually explore
this search space. Even if we explore a small subset of the
search space, which may yield sub-optimal performance in
the end, manual tuning will still be inefficient, since the user
has to run a large number of trials to carefully search for
the performance sweet spots. For example, when tuning the
number of reduce slots the user has to address the trade-off
between resource utilization and resource contention; while
large values can cause resource contention low values may
leave resources underutilized.

IV. MODELING THE PERFORMANCE OF MAPREDUCE
APPLICATIONS

In this section we study several machine learning algo-
rithms for modeling the performance of MapReduce applica-
tions as performance modeling is the key component in an
auto-tuning system. We evaluate our models in terms of their
accuracy, computational performance, and their sensitivity to
various variables such as the training data size, the application
characteristics, and the cluster configuration.

A. Machine Learning-based Performance Models

We have explored various machine learning models to
use in a practical auto-tuner, such as the one we propose in
Section VI. Our models have five inputs (Table I) and one
output, which is the job completion time. Although multiple
linear regression is also considered as a machine learning
model [8], when presenting the results we refer to it as a
“traditional statistical model” to discriminate it from the other
more complex machine learning models we have explored. We
briefly describe our models in turn.

Simple Multiple Linear Regression (MLR): We have
used the simplest form of multiple linear regression for mod-
eling the job completion time. This model does not have any
parameter interactions and higher order terms.

Multiple Linear Regression with Parameter Interac-
tions (MLR-I): With this model the completion time is
modeled as

yi = β1xi1 + β2xi2 + ...+ βkxik +
k∑

p,r=1∧p �=r

βprxipxir + ei

where βprxipxir terms represent the parameter interactions.
As we don’t know which parameters have interactions among
them, we have performed an exhaustive search over all possible
pairwise interactions to identify the interactions that yield the
best performing model.

Multiple Linear Regression with Quadratic Effects
(MLR-Q): With this model the completion time is modeled as

13

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 200 400 600 800 1000

C
P

U
/D

is
k
 U

ti
liz

a
ti
o

n
 [

%
]

Time Since Experiment Start

CPU Util.
Disk Util.

(a) Sort CPU/Disk Util.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 200 400 600 800 1000

N
e

tw
o

rk
 U

ti
liz

a
ti
o

n
 [

%
]

Time Since Experiment Start

(b) Sort Network Util.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400

C
P

U
/D

is
k
 U

ti
liz

a
ti
o

n
 [

%
]

Time Since Experiment Start

CPU Util.
Disk Util.

(c) Wordcount CPU/Disk Util.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400

N
e

tw
o

rk
 U

ti
liz

a
ti
o

n
 [

%
]

Time Since Experiment Start

(d) Wordcount Network Util.
Fig. 3. CPU, disk, and network utilization when running the sort (a and b) and the wordcount (c and d) benchmarks on the SNB cluster.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500 600 700

C
P

U
/D

is
k
 U

ti
liz

a
ti
o

n
 [

%
]

Time Since Experiment Start

CPU Util.
Disk Util.

(a) Sort CPU/Disk Util.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 200 400 600 800

N
e

tw
o

rk
 U

ti
liz

a
ti
o

n
 [

%
]

Time Since Experiment Start

(b) Sort Network Util.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400

C
P

U
/D

is
k
 U

ti
liz

a
ti
o

n
 [

%
]

Time Since Experiment Start

CPU Util.
Disk Util.

(c) Wordcount CPU/Disk Util.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400

N
e

tw
o

rk
 U

ti
liz

a
ti
o

n
 [

%
]

Time Since Experiment Start

(d) Wordcount Network Util.
Fig. 4. CPU, disk, and network utilization when running the sort (a and b) and the wordcount (c and d) benchmarks on the ZT cluster.

yi = β1xi1+β2xi2+ ...+βkxik+βk+1xi
2
1+ ...+β2kxi

2
k+ei

where the xi
2
k terms represent the quadratic effects of each

input parameter.

Multiple Linear Regression with Parameter Interac-
tions and Quadratic Effects (MLR-IQ): Finally, we have
also explored a regression model that captures both parameter
interactions and quadratic effects.

Artificial Neural Networks (ANN): ANNs are one of
the powerful learning models for general nonlinear regression
between multiple input and output variables. ANNs have
several desirable properties for performance modeling that
motivated us to assess ANNs for auto-tuning purposes. First,
ANNs are learning models that adjust their internal state to the
data without any assumptions about the data. Second, ANNs
can represent any function to arbitrary precision making them
universal function approximators [9]. Third, ANNs can capture
complex relationships between the input and output variables,
such as nonlinearity and parameter interactions, making them
suitable for practical performance modeling. Finally, ANNs
have been shown to be useful for performance modeling in
several previous studies (Section VII).

Model Trees (M5Tree): Model trees are an important class
of machine learning algorithms for constructing tree models
from data. In particular, we have used the M5’ model tree
algorithm provided by the Weka toolkit [8].

Support Vector Regression (SVR): Support Vector Ma-
chines (SVM) are a set of machine learning algorithms used
for classification and regression. In the context of regression
SVMs are called Support Vector Regression (SVR). Two
unique features of SVR have motivated us to explore it for
performance modeling. First, SVR is considered as a powerful
learning algorithm that has good generalization capabilities and
has less risk of overfitting than the other approaches. Second,
unlike ANNs, SVR is faster to train (see Section IV-E), and
there is no local minima problem during the training phase
as SVR transforms the regression problem into a convex
optimization problem where all local minima are guaranteed

to be global minimums.

B. Experimental Setup

Workloads: We have used the wordcount and the sort
benchmarks from the HiBench benchmark suite [10]. Our
motivation for using these benchmarks is threefold. First, these
workloads are simple, and hence, easy to reason about. Second,
these benchmarks are representative of real MapReduce appli-
cations as the computation performed by these benchmarks are
common use cases of MapReduce, namely extracting a small
amount of data from a large dataset and transforming data from
one representation to another, respectively. Second, these two
benchmarks have different characteristics in terms of resource
requirements; wordcount is a CPU bound benchmark while the
sort benchmark is mostly I/O bound as shown in Figure 3.

Clusters: We have assessed our models using data col-
lected from two different clusters: SandyBridge (SNB) cluster
and ZT cluster. The SNB cluster comprises eight machines
connected through a 1 Gbps Ethernet switch, and each machine
has a four-core Intel R© Core

TM
i7-2600 processor running at

3.4 GHz, has 16GB main memory and three rotational drives
that serve the HDFS data. The ZT cluster has more resources
than the SNB cluster; it comprises eight machines connected
through a 10 Gbps Ethernet switch, and each machine has
a sixteen-core Intel R© Xeon R© E5-2670 processor running at
2.6 GHz, has 64GB main memory and three rotational drives
that serve the HDFS data. In our experiments we have used
Hadoop 0.20.2 and the master node running the job tracker and
the name node were also responsible for running application
tasks.

Finally, to give an idea about the workload characteristics
and our cluster configurations, we present the resource utiliza-
tions when running the sort and wordcount benchmarks with
80GB input in Figures 3 and 4. While the sort benchmark is
mostly network I/O bound on the SNB cluster, it achieves a
speedup of around 35% on the ZT cluster where the network
is no longer a bottleneck. Similarly, on the SNB cluster the
wordcount benchmark is CPU bound, but on the ZT cluster

14

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

��
��

�
��

�
�
��

�
�
��

��
�
��

��
�

��� ����� ����! �����! �"" �#$��� %&�

�
�

�
�

�
�

�
�

�
�

�
�

'���
'�*+��
���+��

(a) Sort benchmark on SNB cluster
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

��
��

�
��

�
�
��

�
�
��

��
�
��

��
�

��� ����� ����! �����! �"" �#$��� %&�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

'���
'�*+��
���+��

(b) Sort benchmark on ZT cluster

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
	

�
�

��
��

�
��

�
�
��

�
�
��

��
�
��

��
�

��� ����� ����! �����! �"" �#$��� %&�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� '���
'�*+��
���+��

(c) Wordcount benchmark on SNB
cluster

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
	

�
�

��
��

�
��

�
�
��

�
�
��

��
�
��

��
�

��� ����� ����! �����! �"" �#$��� %&�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� '���
'�*+��
���+��

(d) Wordcount benchmark on ZT
cluster

Fig. 5. The distributions of the absolute percentage error for the sort and wordcount benchmarks on the SNB (a,c) and ZT clusters (b,d).

the CPU is not a bottleneck anymore. We also observe that
the resources on the ZT cluster are utilized less than the SNB
cluster as the ZT cluster has more resources.

C. Methodology

Data Collection: To train our models we have collected
data from real sort and wordcount executions on the SNB
and ZT clusters. During training an important question to
address is which parameter values should we explore while
collecting the training data. Since our parameter space is huge
we have used a sparse sampling approach. In particular, we
have collected data both with exhaustive search over different
small subsets of the parameter space (exploring a specific range
of parameter values) and with random explorations, where we
have picked parameter values uniformly random from different
range of values. The former approach is guided by our domain
knowledge when choosing the specific parameter ranges while
the latter approach provides us unbiased observations from
the real performance surface of the application. We expect
that these two approaches together provide more insights into
the real performance surface than the individual approaches.
During data collection the clusters were dedicated to our
workloads. For each benchmark and each cluster we have
explored the same parameter values to collect the training data,
and to capture the performance variability we have executed
the benchmarks three times for every parameter configuration
resulting in around 400 training points for each benchmark.

Training and Testing: After we have collected the raw data
we have split the dataset randomly into an 80% training set and
a 20% test set. We have trained the models with the training
set, and we have evaluated their accuracy with the test set. We
have performed this train-test cycle five times with different
random splits, and then we report the average performance
metrics. To build our models we have used both the Weka
toolkit [8] and the R statistical software environment [11].

Model Tuning: Our models have various parameters, such as
the number of hidden layers in the ANN and the maximum
tree depth of the M5Tree. As these parameters depend on the
nature of the data there is no simple way to determine the
best parameter values. Therefore, we have used five-fold cross-
validation and exhaustive search to find the best parameter
values for our models. In particular, we have used a subset
of one of the training sets as the validation set, and we have
performed exhaustive search using cross-validation to identify
the model parameters that yield the minimum error.

Metrics: We have assessed both the computational perfor-
mance and the accuracy of our models as both are important
when using the models for auto-tuning. To characterize the
computational performance we have evaluated the time it takes
to build the model and the time it takes to make a single
prediction using the model. To characterize the accuracy we
have used the absolute percentage error, the R2 statistic, and
the root mean squared error (RMSE) statistic.

The absolute percentage error for the ith prediction is
defined as |Pi−Oi

Oi

| ∗ 100 where Pi is the ith predicted value
and Oi is the ith observation in the test set. We also present the
mean absolute percentage error (MAPE), which is the mean of
the absolute percentage error values computed over all the data
points in the test set. The smaller the absolute percentage error
the better; in particular a zero absolute percentage error denotes
a perfect prediction. The R2 is defined as R2 = 1−SSerr

SStot

where
SSerr is the residual sum of squares and SStot is the total sum
of squares. SSerr is defined as SSerr =

∑

i

(Pi − Oi)
2, and

SStot is defined as SStot =
∑

i

(Oi−Ō)2, where Ō is the mean

of the observed values in the test set. R2 simply shows the
predictive power of a model. Models with R2 values close to
1 are considered as better models in terms of predictive power.
Finally, the RMSE statistic is defined as the square root of the

mean squared error, which is defined as

∑

i

|Pi−Oi|
2

N
, where N

is the number of data points in the test set. A smaller RMSE
value denotes a more accurate model.

D. Model Accuracy

In this section we explore the accuracy of our models
using the data collected from two benchmarks on two different
clusters.

1) Sort Benchmark: Table II shows the basic statistics for
the absolute percentage error for all the models for the sort
benchmark, and Figure 5 (a) and (b) present the corresponding
box plots that show the distributions of the absolute percentage
error. In the box plots presented in this section, the outliers
are defined as points with values either less than Q1-1.5IQR
or greater than Q3+1.5IQR, where Q1 and Q3 are the first and
third quartiles, and IQR is the interquartile range (Q3-Q1).

As the multiple linear regression (MLR) model gets more
complex, from MLR to MLR-IQ, the model gets more accu-
rate; the mean model error decreases from 17% to 14% for
the SNB cluster, and from 23% to 18% for the ZT cluster.
Similarly, the median and the max errors also decrease as the

15

SNB Cluster ZT Cluster
Model

min Q1 median mean Q3 max IQR min Q1 median mean Q3 max IQR

MLR 0 7 15 17 23 68 16 0 8 18 23 33 117 25
MLR-I 0 6 14 16 22 69 16 0 8 17 22 31 129 23
MLR-Q 0 6 11 15 22 66 16 0 7 16 19 27 92 20
MLR-IQ 0 6 11 14 20 67 14 0 7 15 18 25 87 18

ANN 0 4 10 12 17 61 13 0 4 10 12 17 61 13
M5Tree 0 5 10 12 17 65 12 0 5 10 14 19 71 14

SVR 0 2 4 8 10 73 8 0 3 6 10 13 64 10

TABLE II. BASIC STATISTICS FOR THE ABSOLUTE PERCENTAGE ERROR [%] FOR THE SORT BENCHMARK ON THE SNB AND THE ZT CLUSTERS. THE

BEST PERFORMING MODEL IS DEPICTED WITH LIGHT GRAY. Q1, Q3, AND IQR DENOTE THE FIRST QUARTILE, THE THIRD QUARTILE, AND THE

INTERQUARTILE RANGE, RESPECTIVELY.

SNB Cluster ZT Cluster
Model R2 RMSE R2 RMSE

mean median mean median mean median mean median

MLR 0.79 0.8 179.23 160.69 0.76 0.73 199.75 213.65
MLR-I 0.81 0.81 170.8 155.9 0.79 0.8 184.38 190.91
MLR-Q 0.82 0.84 165.38 154.64 0.82 0.82 173.66 176.45
MLR-IQ 0.84 0.85 157.08 145.67 0.85 0.87 156.03 160.66

ANN 0.87 0.89 135.71 134.71 0.93 0.94 108.78 106.84
M5Tree 0.83 0.81 159.81 164.2 0.92 0.93 114.62 104.74

SVR 0.89 0.92 125.47 122.2 0.95 0.96 87.51 88.87

TABLE III. THE R2 AND RMSE STATISTICS FOR THE SORT BENCHMARK ON THE SNB AND THE ZT CLUSTERS. THE BEST PERFORMING MODEL IS

DEPICTED WITH LIGHT GRAY.

complexity of the MLR model increases. This result confirms
the presence of both nonlinearity and second order effects in
the actual performance surface, and further confirms that these
effects are captured by the complex MLR models. In general,
all machine learning models (ANN, M5Tree and SVR) have
better accuracy and lower variability (IQR) than the traditional
statistical models (MLR models). ANN and M5Tree models
have similar accuracy for both SNB and ZT clusters with a
MAPE of around 12% while SVR has a MAPE of 8% for the
SNB cluster and 10% for the ZT cluster. Moreover, SVR has
a significantly better median error than the other models with
a median error of 4% and 6% for the SNB and the ZT cluster,
respectively.

For the SNB cluster the minimum and the maximum
errors of different models are similar while this is not the
case for the ZT cluster; the same modeling techniques can
behave differently when trained with data collected from
different clusters. Therefore, it is important to assess machine
learning models with data from significantly different clusters.
In particular, the maximum error of the traditional statistical
models increase significantly with the data collected from the
ZT cluster whereas the maximum errors obtained with the
machine learning models increase only slightly, which shows
their robustness. Similarly, for the ZT cluster the MLR models
have higher variability (with an IQR of up to 25%) than the
machine learning models (with an IQR of 10% to 13%), but in
contrast this difference is less pronounced for the SNB cluster.

An important error statistic is the third quartile (Q3) of the
error distribution, which constitutes the bulk (75%) of the test
data. Our results reveal that at the third quartile machine learn-
ing models have smaller errors than the traditional statistical
models on both clusters (Table II). In particular, for the SNB
cluster 75% of the test data have an error of 20%-23% for
the MLR models and an error of 10%-17% for the machine
learning models. Similarly, for the ZT cluster 75% of the test
data have an error of 25%-33% for the MLR models while for

the machine learning models the error is 13%-17%.

Finally, Table III presents the R2 and RMSE statistics for
the sort benchmark on the two clusters. Similarly to the error
statistics presented in Table II, machine learning models have
higher R2 values and lower RMSE values confirming their bet-
ter predictive capabilities than the MLR models. Considering
the results in Table II and Table III we conclude that,
overall, machine learning models perform better than the
traditional statistical models, and in particular, SVR has
the best performance among the models we have explored
for the sort benchmark.

2) Wordcount Benchmark: Table IV presents the basic
statistics for the absolute percentage error for all the models
for the wordcount benchmark, and Figure 5 (c) and (d) present
the corresponding absolute percentage error distributions. Sim-
ilarly to the results for the sort benchmark, as the complexity
of the MLR model increases the mean/median error decreases
from 15%/13% to 12%/9% for the SNB cluster, and from
26%/20% to 12%/9% for the ZT cluster. The decreasing
error trends confirms that complex MLR models can capture
the nonlinearity and second order effects in the performance
surface also for the wordcount benchmark. In general, SVR
and ANN have better performance than the other models with
a median error of 1% and 6% for the SNB cluster, and 5% and
8% for the ZT cluster, respectively. A particularly interesting
result is that the M5Tree model performs worse than the
other machine learning models with a similar performance as
the MLR-IQ model. This result suggests that the workload
characteristics definitely have an impact on the performance of
different modeling techniques, since for the sort benchmark,
M5Tree model has a similar performance as the other machine
learning models. Therefore, it is important to assess the models
with data collected from workloads with different characteris-
tics.

When we look at the error IQRs, traditional statistical mod-
els tend to have a higher variability (IQR) than the machine

16

SNB Cluster ZT Cluster
Model

min Q1 median mean Q3 max IQR min Q1 median mean Q3 max IQR

MLR 0 7 13 15 21 94 14 0 9 20 26 32 181 23
MLR-I 0 6 12 14 18 187 12 0 9 17 22 27 208 18
MLR-Q 0 5 10 13 18 94 13 0 7 14 19 27 169 20
MLR-IQ 0 4 9 12 16 133 12 0 4 9 12 16 133 12

ANN 0 2 6 8 12 92 10 0 4 8 10 13 71 9
M5Tree 0 3 9 12 17 124 14 0 4 9 11 16 72 15

SVR 0 0 1 4 2 91 2 0 1 5 9 12 70 11

TABLE IV. BASIC STATISTICS FOR THE ABSOLUTE PERCENTAGE ERROR [%] FOR THE WORDCOUNT BENCHMARK ON THE SNB AND THE ZT
CLUSTERS. THE BEST PERFORMING MODEL IS DEPICTED WITH LIGHT GRAY. Q1, Q3, AND IQR DENOTE THE FIRST QUARTILE, THE THIRD QUARTILE, AND

THE INTERQUARTILE RANGE, RESPECTIVELY.

SNB Cluster ZT Cluster
Model R2 RMSE R2 RMSE

mean median mean median mean median mean median

MLR 0.45 0.51 241.98 193.85 0.45 0.47 234.24 246.8
MLR-I 0.45 0.48 242.13 194.29 0.53 0.54 215.02 230.04
MLR-Q 0.6 0.72 206.78 142.16 0.67 0.75 174.57 193.76
MLR-IQ 0.59 0.74 209.38 134.38 0.69 0.76 169.93 193.85

ANN 0.73 0.88 162.83 80.36 0.87 0.95 96.77 76.71
M5Tree 0.48 0.5 233.9 192.1 0.83 0.91 115.23 110.67

SVR 0.76 0.95 147.8 56.35 0.81 0.83 131.66 137.92

TABLE V. THE R2 AND RMSE STATISTICS FOR THE WORDCOUNT BENCHMARK ON THE SNB AND THE ZT CLUSTERS. THE BEST PERFORMING

MODELS ARE DEPICTED WITH LIGHT GRAY.

learning models. For the SNB cluster the best performing
machine learning model, SVR, has an IQR of 2%, but in
contrast the best performing MLR model, MLR-IQ, has an
IQR of 12%. Likewise, for the ZT cluster, the best performing
machine learning model, ANN, has an IQR of 9% while the
best performing MLR model, MLR-IQ, has an IQR of 12%.
Since 50% of the predictions have an error in the range Q1 to
Q3 (the IQR), a smaller IQR for the machine learning models
confirms their better robustness than the traditional models.

Similarly to the results of the sort benchmark, machine
learning models also tend to have smaller errors at the third
quartiles for the wordcount benchmark (Table IV). For the
traditional statistical models, 75% of the predictions have an
error in the range 16%-21% for the SNB cluster and 16%-
32% for the ZT cluster. On the other hand, for the machine
learning models 75% of the predictions have an error in the
range 2%-12% for the SNB cluster and 12%-16% for the ZT
cluster. We conclude that machine learning models have better
accuracy than the traditional statistical models for the 75% of
the predictions, which constitute the bulk of the test data.

Finally, Table V shows the R2 and RMSE statistics for
wordcount. Similarly to the error statistics presented in Ta-
ble IV and similarly to the results for sort (Table III), machine
learning models have higher R2 values and lower RMSE
values confirming their better predictive capabilities than the
traditional models. In particular, SVR performs the best for the
SNB cluster while ANN is the best modeling approach for the
ZT cluster. This result is particularly interesting as it demon-
strates the impact of the workload and cluster characteristics
on the predictive power of the models. When we consider the
results for sort and wordcount together, overall, machine
learning models have better predictive capabilities than
the traditional models. In particular, SVR is the best
performing model except for the dataset collected from
the ZT cluster using the wordcount benchmark, for which
ANN performs slightly better.

E. Computational Performance of the Models

In an auto-tuner, the computational performance of the
models also matters. To this end, in this section we assess the
time to train our models and the time it takes to make a single
prediction with each model. We perform the measurements
on a machine that has a dual-core Intel R© Core

TM
i5-2540M

processor running at 2.60 GHz and 4GB main memory, and
we report the average of ten measurements. We present the
computational performance of the models only for the SNB
cluster using the sort benchmark as the results are similar for
the other datasets.

Figure 6 (top) shows the time to train the models, which
is measured using the whole dataset; the final models that will
be used in the auto-tuner will also be trained using the whole
dataset. As the multiple linear regression models get more
complex, from MLR to MLR-IQ, the training time increases
by 2.08x, from 2.5ms to 5.2ms.

Machine learning models have significantly longer training
times than multiple linear regression models with ANN having
the longest training time (˜29s), SVR having a training time of
˜1s, and M5Tree having the shortest training time (˜100ms).
Overall, we find that all traditional statistical models are
relatively lightweight to train. Among the machine learning
models, ANN takes the longest time to train as we train the
ANN for 100,000 epochs, and for each epoch the network
weights are updated using gradient descent, which is a com-
putationally intensive operation. Finally, as shown with the
vertical lines in Figure 6 all models have little variability in
their training times.

Figure 6 (bottom) shows the time to make a single pre-
diction using the models. Similarly to the results for the
training time, as the multiple linear regression models get more
complex, the time to make a single prediction increases by
2x, from 2.5ms to 5ms. On the other hand, although machine
learning models take significantly longer time to train they

17

10
0

10
1

10
2

10
3

10
4

10
5

MLR MLR-I MLR-Q MLR-IQ ANN M5Tree SVR

T
ra

in
in

g
 T

im
e

 [
m

s
]

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

MLR MLR-I MLR-Q MLR-IQ ANN M5Tree SVR

P
re

d
ic

ti
o

n
 T

im
e

 [
m

s
]

Fig. 6. Time to train the models (top) and to make a single prediction
(bottom) for all models. Please note that the vertical axis has a logarithmic
scale for the top graph.

are relatively lightweight when making predictions with a
prediction time of less than a millisecond for all the machine
learning models.

F. Model Sensitivity to Training Data Size

In this section we explore the sensitivity of the models to
the size of the training data. To this end, we have trained the
models using only a fraction of the data, that is 25%, 50%,
75%, and 100% of the data. For each fraction we have applied
the same modeling method described in Section IV-C. Figure 7
presents the results for the sort and wordcount benchmarks
on the SNB cluster. The results are similar for the datasets
collected from the ZT cluster. Among the multiple linear
regression models, we only present the sensitivity of the MLR-
IQ model as it performs the best.

For sort, as the training set size increases MAPE decreases
for all the models, by 3% for MLR-IQ, 2% for ANN, 1%
for M5Tree, and 7% for SVR. Similarly, for wordcount as the
size of the training set increases MAPE decreases by 26% for
MLR-IQ, 14% for ANN, 16% for M5Tree, and 6% for SVR.
Based on these results we conclude that our models can benefit
from additional data; if we further increase our training set size
we expect the accuracy of our models to increase.

V. MACHINE LEARNING-BASED VS. COST-BASED
MODELS

In this section, we compare our SVR model against the
cost-based model of the Starfish auto-tuner [4] to assess how
much performance improvement we can get with each ap-
proach. We have performed the experiments in our SNB cluster
using two different datasets (80GB and 240GB). Therefore, for
each dataset we have a different SVR performance model as
the job input size is one of the model parameters. To find the
completion time with our approach, first we have identified
the best configuration by performing exhaustive search over
the performance surface generated by our model, then we have
measured the completion time with this configuration. We have
compared the completion time of our approach against the
completion time achieved with the configuration recommended
by Starfish.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

25 % 50 % 75 % 100 %

M
A

P
E

 [
%

]

Fraction of data used

MLR-IQ
ANN

M5Tree
SVR

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

25 % 50 % 75 % 100 %

M
A

P
E

 [
%

]

Fraction of data used

MLR-IQ
ANN

M5Tree
SVR

Fig. 7. Accuracy of the models for various training data sizes for the sort
(top) and wordcount (bottom) benchmarks on the SNB cluster.

An important difference between Starfish’s cost-model and
our model is that the cost-based model uses fourteen Hadoop
parameters while our model uses five parameters, which gives
the cost-based model more flexibility when exploring the
available headroom for performance improvement as it has
more knobs to tune. Consequently, the absolute completion
time numbers are not directly comparable, and for a fair
comparison we have normalized the completion time with
respect to the completion time obtained with the rules of thumb
settings. In addition, we have also compared our approach
against the default parameter settings; we refer to Table I for
our model parameters, and their default and rules of thumb
values.

Figure 8 shows the results of our comparison. For the sort
benchmark, our SVR model has improved the performance
more than Starfish for the 80GB input. While Starfish has
improved the performance by 13% over rules of thumb,
our SVR model has provided a 39% improvement. For the
240GB input, both models perform similarly and improve
the performance around 40%. Similarly, for the wordcount
benchmark, both models have relatively similar performance
improvements with Starfish being slightly better (˜5%). Since
our model has a smaller number of inputs than the cost-
based model, we expect that increasing the number of model
inputs will provide more flexibility for parameter tuning and
help further improve the performance. As expected, for both
benchmarks the default settings perform significantly worse
than both approaches as default settings do not involve any
tuning at all. Our results reveal that compared with the cost-
based model our SVR model achieves comparable or in some
cases even better performance improvements.

One limitation of our approach may be the time it takes
to collect the training data. However, in a real deployment
we expect the training to be done once per application on a
particular cluster—in practice applications rarely change, but
rather their inputs change, and this is easily captured by our
models as job input size is one of our model parameters.
Moreover, the training time can be further reduced by using
the logs of the completed jobs in a Hadoop cluster.

18

0.5

1

1.5

2

Default Rules
of

Thumb

SVR Starfish

N
o
rm

a
liz

e
d
 J

o
b

C
o
m

p
le

ti
o
n
 T

im
e

11

(a) Sort with 80GB input

0.5

1

1.5

2

Default Rules
of

Thumb

SVR Starfish

N
o
rm

a
liz

e
d
 J

o
b

C
o
m

p
le

ti
o
n
 T

im
e

9

(b) Sort with 240GB input

0.5

1

1.5

2

Default Rules
of

Thumb

SVR Starfish

N
o
rm

a
liz

e
d
 J

o
b

C
o
m

p
le

ti
o
n
 T

im
e

(c) Wordcount with 80GB input

0.5

1

1.5

2

Default Rules
of

Thumb

SVR Starfish

N
o
rm

a
liz

e
d
 J

o
b

C
o
m

p
le

ti
o
n
 T

im
e

(d) Wordcount with 240GB input
Fig. 8. The normalized job completion times with respect to the rules of thumb settings for the sort (a and b) and wordcount benchmarks (c and d). For figures
a and b, the numbers on the Default bar show the normalized completion time with the default settings.

Benchmarks

 Use smart sampling

to collect training data

Determine model

parameters

Train the machine

 learning model

Evaluate

 accuracy

 Generate

 parameter space

Use smart search to
explore the parameter
space for the optimal

parameter values

Run the job with optimal

parameter values

Model Building Parameter Optimization

Performance

Model

N
o

t
A

c
c
u

ra
te

 E
n

o
u

g
h

Fig. 9. A practical end-to-end machine learning-based auto-tuning flow.

VI. TOWARDS A PRACTICAL MACHINE
LEARNING-BASED AUTO-TUNER

A practical auto-tuner has to implement the model building
and parameter optimization phases shown in Figure 9. So in ad-
dition to the performance model several additional components
are required to implement this end-to-end auto-tuning flow. In
this section, we propose a practical auto-tuning approach that
realizes this flow using machine learning-based performance
models and smart search techniques, which are used both
in the model building phase for training the models and in
the parameter optimization phase for exploring the parameter
space.

Our machine learning-based auto-tuning approach learns
the underlying performance model from the training data
collected from benchmark executions, and thus, is flexible and
robust when dealing with different applications and clusters.
One of the major challenges with our approach is to train
a relatively accurate performance model quickly. Random
sampling, which is a simple approach to collect unbiased
observations from the performance surface of an application,
has been used to collect training datasets in previous stud-
ies [12], [13]. However, based on our experience random
sampling may require a large number of samples to build
an accurate model, and since the overall tuning time is an
important consideration in an auto-tuner a long training time
can reduce its effectiveness.

To address the above challenge, we propose using smart
sampling techniques during the model building phase to reduce

the model training time. With smart sampling we employ
a direct search algorithm rather than random sampling. The
direct search method focuses on regions of interest (e.g., a
region with good performance) and searches towards such
regions for finding the parameter configuration that yields the
best performance. Unlike random sampling, this method can
reduce the number of samples required to accurately represent
the features of the performance surface in those regions. As
our results have already shown that the performance surfaces of
MapReduce applications are usually nonlinear and multimodal,
we apply a global search algorithm, such as a genetic algorithm
or recursive random sampling, to avoid being trapped in a
local minimum. The smart search algorithm collects training
samples and trains the performance model using these samples
as it searches through the actual performance surface of the
application (Figure 9). Then, the auto-tuner evaluates the
accuracy of the performance model and stops the sampling
process if the model is accurate enough (e.g., 90%). Otherwise,
sampling continues until either the search algorithm converges,
reaches the search budget or the model is accurate enough.

After building a reasonably accurate performance model,
the auto-tuner proceeds to the parameter optimization phase. In
this phase, the auto-tuner generates a parameter search space
and explores it using smart search techniques, and it uses the
performance model to find the parameter configuration that
has the best predicted performance. When the search algorithm
finds the best parameter configuration it terminates, and finally
the auto-tuner starts the job with the best configuration.

VII. RELATED WORK

Closest to our work are the previous research efforts on ma-
chine learning-based performance modeling and performance
auto-tuning, which we describe in turn.

Machine Learning-Based Performance Modeling Ma-
chine learning has been successfully used to model the per-
formance of diverse applications. ANNs and multiple linear
regression have been shown to be effective for modeling the
performance of parallel applications [14]. Similarly, ANNs and
M5’ model trees have been used to model the performance of
virtualized systems [15] and utility computing systems [16],
respectively. ANNs, support vector machines, and decision
trees have also been used for optimizing the performance of
data center applications [17]. Our work contributes to this
body of work by applying machine learning to model the
performance of an interesting class of applications, namely
MapReduce applications, with the goal of performance auto-
tuning.

19

Performance Auto-tuning Previous studies have used
different approaches to performance auto-tuning. Cost-based
approaches have been successfully used in query optimization
in traditional database systems [18]. With this approach, the
cost model is the most important component of the optimizer
as the accuracy of a cost model directly impacts the resulting
performance. Empirical auto-tuning, which is based on an
empirical search of the best parameter configuration, has
been used in systems such as Atlas [19] and PHiPAC [20].
However, one major drawback of this approach is the long
search time for large search spaces, which is usually the
case in practice. To auto-tune the performance of MapRe-
duce applications, Babu [21] proposes a competition-based
approach where two copies of the same task are started with
different parameter configurations and the best configuration is
identified empirically. Similarly, Kambatla et al. [22] propose
a history-based approach where the system keeps a history
of job executions, and similar jobs are executed with the
same optimal configuration. Finally, machine learning-based
approaches have also been used successfully for auto-tuning
the performance of parallel applications [14] and data center
applications [17].

Closest to our work is the Starfish auto-tuner [4], which
relies on a cost-based performance model. However, building
a cost model that is accurate, robust, and flexible at the
same time is challenging for a complex system such as
Hadoop. Although cost-based models provide deep insights
into a system’s internals, one of their main limitations is their
flexibility; a change in the scheduling policies, the Hadoop
framework internals, or the cluster requires the cost models to
be rebuilt. However, our approach does not have this limitation,
because addressing such a change with our approach only
requires the models to be retrained, and model retraining is
easier than building a new cost-model. Moreover, Starfish only
models the performance impact of job-level parameters (mostly
memory-related), and it does not model various important
cluster-level parameters, such as the number of map and reduce
slots. Finally, our findings show that a machine learning-based
approach yields comparable and in some cases better perfor-
mance improvements than Starfish’s cost-based approach.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have explored various machine learning-
based performance models for auto-tuning Hadoop MapRe-
duce. We have shown that support vector regression model
(SVR) has good accuracy and computational performance
across diverse workloads and clusters. We have then compared
our auto-tuning approach, which uses the SVR performance
model, against the Starfish auto-tuner, which uses a cost-based
model. Our findings reveal that the SVR model is able to
achieve comparable and in some cases even better performance
than Starfish by considering less parameters. Unlike the cost-
based approach, our approach is more robust and flexible as it
is easier to adapt to changes; our models learn the performance
surface of the applications rather then being hardwired as is
the case for the cost-based models. Our results demonstrate
that it is possible to build an effective auto-tuner with a black
box approach, that is, by only using observations from the
system and without getting exposed to its internals. Finally,
we have also proposed a practical end-to-end auto-tuning flow
by combining our models with smart search algorithms.

REFERENCES

[1] ”Apache Hadoop Project”, http://hadoop.apache.org/.

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, Jan. 2008.

[3] “Facebook, hadoop, and hive,” 2009, http://www.dbms2.com/2009/05/
11/facebook-hadoop-and-hive/.

[4] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A self-tuning system for big data analytics,” in CIDR,
2011, pp. 261–272.

[5] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin,
“Incoop: Mapreduce for incremental computations,” in Proc. of the 2nd
ACM Symposium on Cloud Computing (SOCC), 2011, pp. 1–14.

[6] “7 tips for improving mapreduce perfor-
mance,” 2012, http://www.cloudera.com/blog/2009/12/
7-tips-for-improving-mapreduce-performance/.

[7] “Optimizing hadoop deployments,” 2010, http://software.intel.com/file/
31124.

[8] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[9] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Netw., vol. 4, no. 2, pp. 251–257, Mar. 1991.

[10] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench bench-
mark suite: Characterization of the mapreduce-based data analysis,” in
Intl. Conference on Data Engineering Workshops, march 2010, pp. 41
–51.

[11] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2008, ISBN 3-900051-07-0. [Online]. Available: http://www.
R-project.org

[12] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, E. Bonilla, J. Thomson, H. Leather, C. Williams,
M. O’Boyle, P. Barnard, E. Ashton, E. Courtois, and F. Bodin,
“MILEPOST GCC: machine learning based research compiler,” in
Proc. of the GCC Developers’ Summit, 2008. [Online]. Available:
http://hal.inria.fr/inria-00294704/fr/

[13] J. Cavazos and M. F. P. O’Boyle, “Method-specific dynamic compilation
using logistic regression,” SIGPLAN Not., vol. 41, no. 10, pp. 229–240,
Oct. 2006.

[14] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An approach
to performance prediction for parallel applications,” in Proc. of the 11th
Intl. Euro-Par Conference on Parallel Processing, 2005, pp. 196–205.

[15] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao, “Application
performance modeling in a virtualized environment,” in Proc. of the
High Performance Computer Architecture (HPCA), 2010, pp. 1–10.

[16] J. Wildstrom, P. Stone, and E. Witchel, “Carve: A cognitive agent
for resource value estimation,” in Proc. of the Intl. Conference on
Autonomic Computing, ser. ICAC, 2008, pp. 182–191.

[17] S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou,
“Machine learning-based prefetch optimization for data center appli-
cations,” in Proc. of the Conference on High Performance Computing
Networking, Storage and Analysis (SC), 2009, pp. 56:1–56:10.

[18] S. Chaudhuri, “An overview of query optimization in relational sys-
tems,” in Proc. of the 17th ACM symposium on Principles of database
systems (PODS), 1998, pp. 34–43.

[19] R. C. Whaley and J. J. Dongarra, “Automatically tuned linear algebra
software,” in Proc. of the ACM/IEEE Conference on Supercomputing
(SC), 1998, pp. 1–27.

[20] J. Bilmes, K. Asanovic, C. W. Chin, and J. Demmel, “Optimizing matrix
multiply using PHiPAC: a portable, high-performance, ANSI C coding
methodology,” in Proc. of the 11th Intl. Conference on Supercomputing
(ICS), 1997, pp. 340–347.

[21] S. Babu, “Towards automatic optimization of mapreduce programs,” in
Proc. of the 1st ACM symposium on Cloud computing (Socc), 2010, pp.
137–142.

[22] K. Kambatla, A. Pathak, and H. Pucha, “Towards optimizing hadoop
provisioning in the cloud,” in Proc. of the Conference on Hot topics in
cloud computing (HotCloud), 2009.

20

