
AA-Dedupe: An Application-Aware Source Deduplication Approach for Cloud
Backup Services in the Personal Computing Environment

Yinjin F , Hong Jian , Nong Xiao , Lei Tian , Fang Liu

School of Computer, National University of Defense Technology,
Changsha, Hunan, 410073, China

yinjinfu@gmail.com, {nongxiao, liufang}@nudt.edu.cn
Department of Computer Science & Engineering, University of Nebraska-Lincoln,

Lincoln, NE, 68588, USA
{jiang, tian, yfu}@cse.unl.edu

Abstract—The market for cloud backup services in the personal
computing environment is growing due to large volumes of
valuable personal and corporate data being stored on desktops,
laptops and smartphones. Source deduplication has become a
mainstay of cloud backup that saves network bandwidth and
reduces storage space. However, there are two challenges facing
deduplication for cloud backup service clients: (1) low
deduplication efficiency due to a combination of the resource-
intensive nature of deduplication and the limited system
resources on the PC-based client site; and (2) low data transfer
efficiency since post-deduplication data transfers from source to
backup servers are typically very small but must often cross a
WAN. In this paper, we present AA-Dedupe, an application-
aware source deduplication scheme, to significantly reduce the
computational overhead, increase the deduplication throughput
and improve the data transfer efficiency. The AA-Dedupe
approach is motivated by our key observations of the substantial
differences among applications in data redundancy and
deduplication characteristics, and thus is based on an
application-aware index structure that effectively exploits this
application awareness. Our experimental evaluations, based on
an AA-Dedupe prototype implementation, show that our scheme
can improve deduplication efficiency over the state-of-art source-
deduplication methods by a factor of 2-7, resulting in shortened
backup window, increased power-efficiency and reduced cost for
cloud backup services.

I. INTRODUCTION

Nowadays, the ever-growing volume and value of digital
information have raised a critical and increasing requirement
for data protection in the personal computing environment.
According to IDC research [2], digital data is doubling every
18 months, and more than 30% of the information created
requires high standards of protection. Personal computing
systems, such as desktops, laptops, tablets, smartphones and
personal digital assistants (PDAs), have become primary
platforms for many users, increasing the importance of data on
these devices. Recent studies indicate that, while 31% of
personal computer (PC) users have lost all of their PCs’ files
to events beyond their control [23], the cost of a lost,
unprotected laptop is roughly $49,000 [3]. To avoid data loss
due to hardware failures, accidental deletion of data, or device
theft/loss, enterprises and individuals have increased their use

of data protection and recovery tools in the personal
computing environment.

Cloud backup service has become a cost-effective choice
for data protection of personal computing devices. In recent
years, similar to cloud computing, cloud storage has received
increasing attention from industry and academia as it offers
virtually infinite storage resources that are available on
demand and charged according to usage [4]. Since traditional
backup services require data to be backed up to dedicated
external drives, which can be inconvenient or costly to the
users, data backup for personal computing has emerged to be
a particularly attractive application for outsourcing to the
cloud storage providers because users can manage data much
more easily without having to worry about maintaining the
backup infrastructure. This is possible because the centralized
cloud management has created an efficiency and cost
inflection point, and offers simple offsite storage, always a
critical concern for data backup.

Data deduplication, an effective data compression approach
that exploits data redundancy, partitions large data objects into
smaller parts, called chunks, and represents and replaces these
chunks by their fingerprints (i.e., generally a cryptographic
hash of the chunk data) for the purpose of communication or
storage efficiency. Depending on the location where
redundant data is eliminated, deduplication can be categorized
into source deduplication that applies data deduplication at the
client site and target deduplication that eliminates redundant
data at the backup server site. Since data backup for personal
computing in the cloud storage environment implies a
geographic separation between the client and the service
provider that is usually bridged by wide area networks
(WANs), source deduplication is obviously preferred to target
deduplication due to the former’s ability to significantly
reduce the amount of data transferred over WAN with low
communication bandwidth. However, data deduplication is a
resource-intensive process, which entails the CPU-intensive
hash calculations for fingerprinting and the I/O-intensive
operations for identifying and eliminating duplicate data.
Unfortunately, such resources are limited in a typical personal
computing device. Therefore, it is desirable to achieve an

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.20

112

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.20

112

optimal tradeoff between deduplication effectiveness and
deduplication overhead for personal computing devices with
limited system resources.

In this paper, we propose AA-Dedupe, an application-
aware source deduplication scheme, to achieve high
deduplication efficiency based on a number of key
observations drawn from our preliminary and experimental
study of data deduplication in the personal computing
environment. This study (detailed in Section II) motivates our
AA-Dedupe design by the following four observations of
deduplication for cloud backup services in the personal
computing environment:

O1: The majority of storage space is occupied by a small
number of compressed files with low sub-file
redundancy.
O2: Static chunking (SC) [8] method can outperform
content defined chunking (CDC) [15] in deduplication
effectiveness for static application data and virtual
machine images.
O3: The computational overhead for deduplication is
dominated by data capacity.
O4: The amount of data shared among different types of
applications is negligible.

These observations reveal a significant difference among
different types of applications in the personal computing
environment in terms of data redundancy, sensitivity to
different chunking methods, independence in the dedupli-
cation process. Thus, the basic idea of AA-Dedupe is to
effectively exploit this application difference and awareness
by treating different types of applications differently and
adaptively during the deduplication process to significantly
improve the deduplication efficiency and reduce the overhead.

The main contributions of our paper include:
A new metric, “bytes saved per second”, is proposed
to measure the efficiency of different deduplication
schemes on the same platform.
According to our observations on the application-
oriented deduplication effectiveness, an intelligent
deduplication scheme with application-aware index
structure is presented to improve the deduplication
efficiency for personal computing devices.
To improve data transfer efficiency, a container
management strategy is proposed to aggregate small
data packet transfers into a single larger one for cloud
storage.
Our prototype implementation of AA-Dedupe and real
dataset driven evaluations show that it outperforms the
existing state-of-the-art source deduplication schemes
in terms of backup window, power efficiency, and cost
saving for the high deduplication efficiency in cloud
backup services.

The remainder of this paper is organized as follows. In the
next section, we provide the necessary background on source
deduplication and conduct a preliminary quantitative study on
data backup for personal computing in cloud storage to
motivate our research. In Section III, we describe the system
architecture of AA-Dedupe, and detail the design of an

intelligent deduplication scheme with application-aware index
structure. We evaluate AA-Dedupe on its prototype imple-
mentation with real datasets, by comparing it with the existing
state-of-the-art schemes in terms of deduplication efficiency,
backup window size, cloud storage cost and energy efficiency
in Section IV. We discuss related work in Section V and
conclude with remarks on future work in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we provide the necessary background on
technologies related to our research and present key
observations drawn from our preliminary study to motivate
our research in the application-aware source deduplication for
cloud backup services.

A. Cloud Backup
Cloud is a new business model wrapped around new

technologies to reduce the cost of using IT resources [1]. It
refers to both the applications delivered as services over the
Internet and the hardware and systems software in data centers
that provide such services. Recent interest in cloud storage has
been driven by new offerings of storage resources that are
attractive due to per-use pricing and elastic scalability,
providing a significant advantage over the typical acquisition
and deployment of equipment or infrastructure that was
previously required [4]. In the personal computing environ-
ment, cloud backup, from an end user’s perspective, is nothing
but an unlimited amount of online storage space that is secure,
inexpensive and highly available to backup data from personal
computing devices. Different from traditional backup that
requires dedicated and high bandwidth network connectivity
between the client machines and the servers, cloud backup
significantly relaxes this requirement and thus is suitable for
environments with reasonable network connectivity but limit-
ed bandwidth and low data change rate in small dataset, such
as the typical personal computing environment.

B. Source Deduplication
In source deduplication, elimination of duplicate data

occurs close to where data is created, rather than where data is
stored as in the case of target deduplication. Performing
deduplication at the source can dramatically improve IT
economics by minimizing storage requirements and network
bandwidth consumption since the redundant data is eliminated
prior to its traverse across the network to the target backup
server [6]. Based on different deduplication granularities,
source deduplication can be further divided into source file-
level deduplication [26] and source chunk-level deduplication
[12][24], where the former removes duplicate data at the file
granularity with low duplicate elimination effectiveness and
low computational overhead, while the latter removes the
duplicate data at the sub-file (that is, chunk) level with high
duplicate elimination effectiveness and high computational
overhead. To achieve high effectiveness of deduplication,
source chunk-level deduplication has become popular and
represents state of the art. However, such fine-grained data
deduplication is very expensive in terms of memory and
processing especially on resource-constrained clients in the

113113

personal computing environment. Therefore it is desirable to
achieve an optimal tradeoff (i.e., efficiency) between data
deduplication effectiveness and deduplication overhead for
source deduplication in the personal computing environment.
Moreover, source deduplication faces another challenge in the
form of low data transfer efficiency, since post-deduplication
data transfers from source to target are typically very small
but must often traverse across a WAN. As the overhead of
lower layer protocols can be high for small data transfers [19],
source-side data aggregation strategies have become a
necessary consideration in existing techniques[12][20].

C. Motivational Observations
In this section, we will investigate how data redundancy,

space utilization efficiency of popular data chunking methods
and computational overhead of typical hash functions change
in different applications, through our preliminary experi-
mental study. In what follows, we draw the following
observations and analysis from this study to motivate our
research.
 Observation 1: A disproportionally large percentage of
storage space is occupied by a very small number of large
files with very low sub-file redundancy.
 Implication: File-level deduplication using weak hash
functions for these large files is sufficient to avoid hash
collisions for small datasets in the personal computing
environment.

To reveal the relationship between file size and storage
capacity, we collect statistics on the distribution of files and
storage space occupied by files of different sizes in 3 desktops
and 7 laptops of 10 users and show the results in Fig. 1 and
Fig. 2. We observe that about 61% of all files are smaller than
10KB, accounting for only 1.2% of the total storage capacity,
and only 1.4% files are larger than 1MB but occupy 75% of
the storage capacity. These results are consistent with
previously published studies [8][9]. This suggests that tiny
files can be ignored during the deduplication process as so to
improve the deduplication efficiency, since it is the large files
in the tiny minority that dominate the deduplication efficiency.
The achieved data deduplication ratio (DR, i.e., the ratio of the
amounts of data before and after deduplication) actually
depends on which data is deduplicated and on the
effectiveness and efficiency of the specific technologies used
to perform capacity optimization. To verify the data
redundancy observed from our intuitive scenarios, we carried
out chunk-level deduplication using Static Chunking (SC) of
8KB chunk size and Content Defined Chunking (CDC) of
8KB average chunk size (Min: 2 KB, Max: 16 KB) after file-
level deduplication in about 41 GB data of typical PC applica-
tions, respectively. From the statistics shown in Table 1, we
observe that different applications or data types have different
levels of data redundancy, where almost all data types with
low chunk-level data redundancy are related to applications
using compression, while files in these applications are of
large average file sizes. It is similar to the results in [7]. In the
datasets of 10 PCs mentioned above, compressed files larger
than 1 MB occupy 53% storage space. This is consistent with
the results in the published research [8] indicating that the

deduplication ratio begins to decrease when the file size is
larger than 8MB. For low sub-file data redundancy, file-level
deduplication can achieve almost the same effectiveness of
data reduction as chunk-level deduplication, and it can also
enhance the lookup speed for duplicate data because of
reduced metadata overhead. In the file-level deduplication
process of compressed files, a weak hash function is sufficient
to avoid hash collisions due to the very small number of large
files in the personal computing environment.

File Size

Fi
le

 C
ou

nt

Fig. 1. File count in the PC datasets

File Size

St
or

ag
e

C
ap

ac
ity

(G
B

)

Fig. 2. Storage capacity in the PC datasets

TABL I

CHUNK LEVEL DATA REDUNDANCY IN TYPICAL PC APPLICATIONS

File
Type

Dataset
Size(MB)

Mean File
Size (B)

SC
DR

CDC
DR

AVI 2243 198 M 1.0002 1.0002

MP3 1410 5 M 1.001 1.002

ISO 1291 646 M 1.002 1.002

DMG 1032 86 M 1.004 1.004

RAR 1452 12 M 1.008 1.008

JPG 1797 2 M 1.009 1.009

PDF 910 403 K 1.015 1.014

EXE 400 298 K 1.063 1.062

VMDK 28473 312 M 1.286 1.168

DOC 550 180 K 1.231 1.234

TXT 906 615 K 1.232 1.259

PPT 320 977 K 1.275 1.3

114114

Observation 2: The amount of data shared among different
types of applications is negligible.

Implication: Application-aware deduplication has a
potential to improve the efficiency of deduplication by
eliminating redundancy in each application independently and
in parallel.

We compare the chunk fingerprints of datasets used in
Observation 1 after intra-application deduplication using
chunk-level deduplication with 8 KB chunk size in different
applications, including TXT, DOC, PPT, PDF, JPG, DMG,
MP3, ISO, EXE, AVI and RAR files, and find that only one
16 KB chunk is a duplicate. This comes from the difference in
data content and format among these applications. As the data
sharing among different applications is negligible, applica-
tion-aware deduplication is poised to eliminate redundancy in
each application independently and in parallel without
reducing the effectiveness of data deduplication. As a result,
the full fingerprint index can be divided into small independ-
ent indices according to the data type information in different
applications, enabling it to greatly benefit from small indices
to avoid on-disk index lookup bottlenecks [13][15] while
exposing higher index access parallelism.
 Observation 3: SC can outperform CDC on deduplication
effectiveness for static application data or virtual machine
disk images.
 Implication: Despite of the fact that CDC-based
deduplication is traditionally considered the best strategy in
finding redundancy in data deduplication, SC-based methods
may be preferred in deduplicating datasets of static
applications or VM disk images.

To find the sub-file redundancy, we can use SC-based or
CDC-based deduplication schemes. The effectiveness of the
former lies in its simplicity in splitting files into small chunks
with a fixed chunk size. The latter partitions data into variable
size chunks based on the data content rather than the data
position to avoid the chunk boundary-shifting problem [14]
caused by data updates. In the datasets of static applications
where data updating operations are infrequent, or some
specific data format, like virtual machine disk images [22], we
observe that SC-based deduplication can approach or even
outperform CDC-based deduplication in deduplication
effectiveness. Table 1 also shows that SC-based deduplication
performs similar or even better than CDC-based deduplication
on the effectiveness of data reduction for PDF, EXE and
VMDK files because a large number of chunks are cut
forcibly when reaching the maximum length in the CDC
processing. This suggests that we can choose to deduplicate
these kinds of files using SC-based methods in application-
aware deduplication to improve the efficiency.

Observation 4: The computational overhead of dedupli-
cation is determined by data capacity, not the granularity of
deduplication.

Implication: The use of weaker hash functions for more
coarse-grained chunks is the only way to reduce the computa-
tional overhead.

To evaluate the computational overhead of typical hash
functions, we measured the execution times of the Rabin hash,

MD5 and SHA-1 hash algorithms on a laptop for Whole File
Chunking (WFC)-based deduplication, which is a variant of
CDC-based methods that uses an entire file as the basis for
duplicate detection [8], and SC-based deduplication with 8KB
fixed chunk size in a 60MB dataset. Rabin hash is a rolling
hash function with lower computational overhead than
cryptographic hash functions (e.g., SHA-1 and MD5), and we
choose a 96-bit extended hash value to keep a low probability
of hash collisions. The results are shown in Fig. 3. The total
execution time of file-level deduplication (WFC) is almost the
same as that of chunk-level deduplication (SC), since the bulk
of the processing time is spent on the hash calculation itself
and not on storing hash values. The insight obtained here is
consistent to the findings reported in [10]. In other words, the
use of weaker hash functions for more coarse-grained chunks
is an effective way to reduce the computational overhead. The
experimental results, shown in Fig. 4, compare the deduplica-
tion throughputs of three typical data chunking methods, WFC,
SC and CDC, when applied with the three hash functions,
Rabin hash, MDS and SHA-1, for chunk fingerprinting,
respectively. The deduplication strategy based on simpler
chunking schemes (e.g., WFC or SC) can achieve a higher
throughput because of their lower metadata overhead, while
deduplication strategies with weaker hash functions (e.g.,
Rabin hash) obtain a higher throughput because of their lower
computational overhead. This suggests that we may employ
WFC-based deduplication with the Rabin hash function for
compressed files to enhance deduplication throughput, and
SC-based deduplication using the MD5 hash function for
static application data or virtual machine disk images.
Nevertheless, we should still use the SHA-1 hash function for
CDC-based deduplication because most of its computational
overhead is on identifying the chunk boundaries instead of
chunk fingerprinting.

Fig. 3. Computational overhead of typical hash functions

Fig. 4. Deduplication throughputs of different implementations

115115

III. DESIGN AND IMPLEMENTATION OF AA-DEDUPE

To achieve high data transfer rates, cloud clients require
significant processing to deduplicate data in cloud backup
services, resulting in index size and performance challenges.
Traditional approaches to meeting these challenges are to use
methods that incur lower computational load but weaker data
redundancy detection. Those approaches typically result in a
reduction in data deduplication ratio. AA-Dedupe, motivated
in part by our observations made in Section II, is designed to
meet the requirement of deduplication efficiency. The main
idea of AA-Dedupe is to reduce the computational overhead
by employing an intelligent data chunking scheme and the
adaptive use of hash functions based on application awareness,
and to mitigate the on-disk index lookup bottleneck by
dividing the full index into small independent and application-
specific indices in an application-aware index structure.

A. An Architectural Overview
An architectural overview of AA-Dedupe is illustrated in

Fig. 5, where tiny files are first filtered out by file size filter
for efficiency reasons, and backup data streams are broken
into chunks by an intelligent chunker using an application-
aware chunking strategy. Data chunks from the same type of
files are then deduplicated in the application-aware dedupli-
cator by looking up their hash values in an application-aware
index that is stored in the local disk. If a match is found, the
metadata for the file containing that chunk is updated to point
to the location of the existing chunk. If there is no match, the
new chunk is stored based on the container management in the
cloud, the metadata for the associated file is updated to point
to it and a new entry is added into the application-aware index
to index the new chunk. We will now describe the dedupli-
cation process in more detail in the rest of this section.

B. File size filter
Most of the files in the PC dataset are tiny files that only

occupy a negligibly small percentage of the storage capacity.
As shown in our statistical evidences (In Section II), about
61% of all files are no larger than 10KB, accounting for only
1.2% of the total storage capacity of the dataset. To reduce the
metadata overhead, AA-Dedupe filters out these tiny files (i.e.,
less than 10KB in file size) in file size filter before the
deduplication process, an approach like SAM [11], and groups
data from many tiny files together into larger units of about
1MB each in the container store, similar to Cumulus [12], to
increase the data transfer efficiency over WAN.

C. Intelligent data chunking
Data chunking has a significant impact on the efficiency of

deduplication. In general, the deduplication ratio is inversely
proportional to the average chunk size. On the other hand, the
average chunk size is also inversely proportional to the space
overhead due to file metadata and chunk index in storage
systems. This implies that a smaller average chunk size
translates to a higher processing cost for data packets during
transfer and a lower compression ratio for each chunk. The
deduplication efficiency of data among different applications

Fig. 5. An architectural overview of the AA-Dedupe design

differs greatly as we discussed in Section II. Depending on
whether the file type is compressed or whether it is frequently
edited, we divide files into three main categories: compressed
files, static uncompressed files, and dynamic uncompressed
files. To strike a better tradeoff between deduplication ratio
and deduplication overhead, we deduplicate compressed files
with WFC for its low sub-file redundancy, separate static
uncompressed files into fix-sized chunks with SC, and break
dynamic uncompressed files into variable-sized chunks using
CDC based on the Rabin fingerprinting function to identify
chunk boundaries.

D. Hash function selection in Deduplicator
Most of the computational overhead in deduplication is

spent on the calculation of chunk fingerprinting for WFC and
SC. Comparing with the overhead of identifying chunk
boundaries based on the Rabin fingerprinting, the computa-
tional overhead for chunk fingerprinting in CDC is only a
small part of deduplication overhead. Since compressed files
with WFC have large chunk sizes, an extended 12B Rabin
hash value is employed as chunk fingerprint to reduce the
computational overhead, and it is justified by the fact that the
probability of hash collisions in TB-scale PC datasets is
smaller than the probability of hardware error by many orders
of magnitude. For the same reason, a 16B MD5 hash value of
chunks serves as chunk fingerprint of SC in static
uncompressed files. We employ a 20B SHA-1 hash value to
provide high data integrity for dynamic uncompressed files
with only a slight increase in overhead because chunk
fingerprint calculation is only a small part of the total
computational overhead in CDC.

E. Application-aware index structure
As with traditional deduplication schemes, AA-Dedupe

requires a chunk index, which maps each chunk hash to where
that chunk is stored in the cloud storage, in order to determine
which chunks have already been stored. If there is a match in
the index, the incoming chunk contains redundant data and
can be deduplicated to avoid transmitting it; if not, the chunk
needs to be added to the cloud storage and its hash and
metadata inserted into the index. The metadata contains the

116116

SHA-1
Rabin
12B

.DOC Index .MP3 Index

Rabin
12B

.AVI Index

.RAR Index

WFC+Rabin hash

...

.DOC .PPT .TXT .EXE.VMDK .MP3 .AVI .RAR ...
...

File Index

SHA-1

.PPT Index

File Index.TXT Index

SC MD5

File Index

SC MD5

File Index

.VMDK Index
.EXE Index

Subfile Level
Chunk Index

Subfile Level
Chunk Index

CDC+SHA-1 SC+MD5

File Level
Chunk Index

.PDF Index

.PDF

Fig. 6. Application-aware index structure

information such as chunk length and location. In AA-Dedupe,
the selection for the proper chunking methods and hash
functions in deduplication is entirely based on file type. An
application-aware index structure for AA-Dedupe is construct-
ed as shown in Fig. 6. According to the accompanied file type
information, the incoming chunk is directed to the chunk
index with the same file type. Comparing with traditional
deduplication mechanisms, AA-Dedupe can achieve high
deduplication throughput by looking up chunk fingerprints
concurrently in small indices classified by applications rather
than the single full, unclassified index. Furthermore, a periodi-
cal data synchronization scheme is also proposed in AA-
Dedupe to backup the application-aware index in the cloud
storage to protect the data integrity of the PC backup datasets.

F. Container management
Because large sequential writes are transformed into small

random writes by the deduplication process, AA-Dedupe will
often group data from many smaller files and chunks into
larger units called container before these data are transferred
over WAN. A container is a self-describing data structure in
that a metadata section includes the chunk descriptors for the
stored chunks. An open chunk container is maintained for
each incoming backup data stream, appending each new
chunk or tiny file to the open container corresponding to the
stream it is part of. When a container fills up with a
predefined fixed size (e.g., 1MB), a new one is opened up. If a
container is not full but needs to be written to disk, it is
padded out to its full size. This process uses chunk locality [20]
to group chunks likely to be retrieved together so that the data
restoration performance will be reasonably good. Supporting
deletion of files requires an additional process in the
background. The scheme is also adopted in the state-of-the-art
schemes such as DDFS [15] and Sparse Indexing [20] to
improve manageability and performance. Aggregation of data
produces larger files for the cloud storage, which can be
beneficial in avoiding high overhead of lower layer protocols
due to small transfer sizes, and in reducing the cost of the
cloud storage. Amazon S3, for example, has both a per-
request and a per-byte cost when storing a file, which
encourages the use of files greater than 100 KB in size.

IV. EVALUATIONS

We have built a prototype of AA-Dedupe in approximately
2300 lines of C++ code and fed the real-world datasets to
evaluate the use of cloud backup services in a personal
computing environment. Our goal in this evaluation is to
answer the following questions:

How effective is AA-Dedupe in striking a reasonable
tradeoff between the deduplication effectiveness and
deduplication overhead with real world datasets?
How well does AA-Dedupe work in terms of shortening
the backup window?
What are the monetary costs for cloud backup services
based on AA-Dedupe in the given datasets?
How much energy does AA-Dedupe save compared with
traditional source deduplication based cloud backup
services?

The following evaluation subsections will answer these
questions, beginning with a description of the experiment
platform with PC backup datasets we use as inputs to the
experiments and the evaluation metric we propose to quantify
deduplication efficiency.

A. Experiment Platform and Datasets
Our experiments were performed on a MacBook Pro with

2.53 GHz Intel Core 2 Duo processor, 4 GB RAM, and one
250 GB SATA disk, and it can reach about 500KB/s average
upload speed and 1MB/s average download speed with the
AirPort Extreme 802.11g wireless card. We use backup
datasets in the user directory of one of the author’s PCs as
workloads to drive our evaluations, and model the use of
remote backup. There are 10 consecutive weekly full backups
in the workloads with a total of 351GB data consisting of
68,972 files in 12 applications.

We compare AA-Dedupe against a number of state-of-the-
art schemes, including Jungle Disk [25], a file incremental
cloud backup scheme, BackupPC [26], a source file-level
deduplication based cloud backup, Avamar [24], a source
chunk-level deduplication based cloud backup, and SAM [11],
a hybrid source deduplication based cloud backup scheme.
The comparisons are based on measures of deduplication
efficiency, backup window size, cloud storage cost and energy
consumption. In all experiments, we choose a fixed chunk size
of 8KB for SC-based deduplication strategies, and an
expected chunk size of 8 KB (with a 2 KB minimum and 16
KB maximum) for CDC-based method with Rabin
fingerprinting that uses a 48-byte fixed sliding window size
and 1-byte step size. Table II shows some parameters to
model deduplication efficiency, backup window size and
cloud cost for cloud backup services.

TABLE II

PARAMETERS FOR CLOUD BACKUP SERVICES

DE Dedupe Efficiency SC Saved Capacity
DT Dedupe Throughput DS Dataset Size
NT Network Throughput DR Dedupe Ratio

BWS Backup Window Size SP Storage Price
OP Operation Price TP Transfer Price
OC Operation Count CC Cloud Cost

117117

B. Metric for Deduplication Efficiency
It is well understood that the deduplication efficiency is

proportional to deduplication effectiveness that can be defined
by deduplication ratio, and inversely proportional to
deduplication overhead that can be measured by deduplication
throughput. Based on this understanding and to better quantify
and compare deduplication efficiency of a wide variety of
deduplication techniques, we propose a new metric, called
“bytes saved per second”, to measure the efficiency of
different deduplication schemes in the same platform, similar
to the metric of “bytes saved per cycle” proposed in [16] that
estimates the computational overhead. “bytes saved per
second” is expressed as:

1(1)SC DTDE DT
DS DR
×= = − × .

C. Deduplication efficiency
Deduplication effectiveness is very important for both

cloud backup providers and users. Providers expect less data
stored in their data centers to reduce data storage and
management costs, whereas users prefer transferring less data
for shorter backup time and lower storage cost. Our experi-
mental results present both the cumulative cloud storage
capacity required of the providers and the deduplication
efficiency of each backup session for individual users
respectively. Fig. 7 compares the cumulative storage capacity
of the five cloud backup schemes. The four source dedup-
lication based backup schemes can outperform the incre-
mental backup scheme that is implemented in Jungle Disk,
especially for those based on fine-grained methods (e.g.,
Avamar) or semantic-aware deduplication scheme SAM. AA-
Dedupe achieves similar or better space efficiency than
Avamar and SAM. The high effectiveness of data dedupli-
cation of the fine-grained deduplication schemes comes at a
significant overhead that throttles the system throughput. We
present a comparison for deduplication efficiency of the five
cloud backup schemes in Fig. 8, and employ our proposed
new metric of “bytes saved per second” to measure the
efficiency of different deduplication approaches in the same
platform. AA-Dedupe performs much better than other backup
schemes on deduplication efficiency with a low overhead.
This significant advantage of AA-Dedupe is primarily attri-
buted to its application-awareness in the deduplication process.
We observe that the deduplication efficiency in AA-Dedupe is
2 times that of BackupPC, 5 times that of SAM and 7 times
that of Avamar on average, and it can also significantly
improve the space saving for some applications in backup
sessions 3, 4 and 10 that other approaches fail to achieve.

D. Backup Window
The backup window represents the time spent on sending a

backup dataset to cloud storage, which mainly depends on the
volume of the transferred dataset and available network
bandwidth. For the four source deduplication schemes
considered in this study, the backup window consists of two
parts: data deduplication time and data transfer time. Because
of our pipelined design for the deduplication processes and the

Fig. 7. Cloud storage capacity requirement

Fig. 8. Data deduplication efficiency of the backup dataset

data transfer operations, the backup window size of each
backup session can be calculated based on the expression
below:

1 1(,)BWS DS Max
DT DR NT

= ×
×

In our experimental results, shown in Fig. 9, Avamar
performs the worst in backup throughput due to the high
system overhead in fine-grained deduplication, which is even
worse than the full backup method in our test environment. In
other schemes, the backup window size is always determined
by the data transfer capacity after deduplication due to the low
upload bandwidth in WAN. AA-Dedupe consistently
performs the best among the five cloud backup schemes
owing to its high deduplication efficiency. We observe that
the backup window size of AA-Dedupe is shortened from
other schemes by about 10%-32% in our test environment.

E. Cloud Cost
Cloud backup as a service, however, comes at a price. In this
subsection, we calculate the monetary costs for our workload
models. To price cloud-based backup services attractively
requires minimizing the capital costs of data center storage
and the operational bandwidth costs of shipping the data back
and forth. We use the prices for Amazon S3 as an initial point
in the pricing space. As of April 2011, these prices are (in US
dollars): $0.14 per GB · month for storage, $0.10 per GB for
upload data transfer and $0.01 per 1000 upload requests. And
the cost of cloud backup services can be modelled as:

118118

Fig. 9. Backup window size of 5 backup sessions

Fig. 10. The cost of cloud backup techniques

()DSCC SP TP OC OP
DR

= × + + ×

Backing up the deduplicated datasets directly to Amazon
S3 can be very slow and costly due to the large number of I/O
operations and the way Amazon S3 charges for the uploads.
We estimate the cloud cost of our test datasets in one month,
as shown in Fig. 10. Comparing with the more space-efficient
schemes such as Avamar and SAM, file-granularity data
transfer in Jungle Disk and BackupPC can bring more cost
savings in request cost due to the large number of large files in
our datasets. AA-Dedupe can reduce the request cost signi-
ficantly by packing several KB-sized tiny files and chunks
into 1MB containers before sending them to the cloud. We
observe that the cloud cost of AA-Dedupe is lower than those
of other schemes by about 12%-29% for our backup datasets.

F. Energy Efficiency
Energy efficiency has become a critical issue and its

importance seems to be more pronounced in the personal
computing environment, especially for mobile devices like
laptops, tablets, smartphones and PDAs due to the limited
energy in battery. As the deduplication process is a compute-
intensive application, energy consumption becomes a
challenge for source deduplication based cloud backup in the
personal computing environment. In our experiment, we
compare the power consumptions of the four source dedupli-
cation based cloud backup schemes during the deduplication
process, measured by an electricity usage monitor on the
whole PC. Fig. 11 shows the energy consumptions of the four
cloud backup schemes as a function of backup sessions.
Existing highly space-efficient approaches, such as Avamar
and SAM, incur high-level power consumptions due to their

Fig. 11. Power consumption of source deduplication schemes

significant computational overhead during the deduplication
process. AA-Dedupe incurs only one fourth of the power
consumption of Avamar and one third of that of SAM by
adaptively using weaker hash functions in deduplication.

V. RELATED WORK

In cloud backup, performing deduplication at the source
can dramatically improve IT economics by minimizing
storage requirements, backup windows and network
bandwidth utilization because redundant data is eliminated
prior to its traverse across the network to the backup server.
Comparing with traditional incremental cloud backup schemes,
like Jungle Disk [25], source deduplication can achieve higher
space efficiency to reduce cloud storage cost, and the
deduplication efficiency becomes critical for cloud clients in
the personal computing environment due to its limited system
resources. BackupPC [26] performs deduplication at the file
level to achieve low lookup overhead by reducing metadata,
but at the cost of space efficiency. To achieve high space
efficiency, EMC Avamar [24] applies CDC-based chunk-level
deduplication with high computational overhead and lookup
overhead, and ADMAD [17] improves redundancy detection
by application-specific chunking methods that exploit the
knowledge about concrete file formats. Intuitively, different
applications and data types tend to have different levels of
data redundancy. SAM [11] designs a hybrid source
deduplication scheme, combining file-level and chunk-level
deduplication schemes based on file semantics to mitigate
lookup overhead by reducing metadata, and has been shown to
have very little negative impact on deduplication effectiveness.
In contrast, AA-Dedupe improves deduplication efficiency
significantly by intelligent data chunking methods with
application awareness.

In additional to the granularity of data chunking, the search
speed of duplicate data and the computational complexity of
hash functions all play important roles in the deduplication
efficiency. Unlike Avamar, Cumulus [12] aggregates data
from small files for remote storage, and limits the search for
unmodified data to the chunks in the previous versions of the
file to reduce the lookup overhead in deduplication, but leaves
open the challenge of how to identify file versions. AA-
Dedupe is inspired by Cumulus, but exploits application-
awareness by limiting the search for redundant data to the

119119

chunks within the same kind of applications specified by the
file format information. Unlike the traditional source-
deduplication schemes, EndRE [5] employs a weak finger-
printing scheme rather than strong cryptographic hash such as
SHA-1 in redundancy elimination to improve the dedupli-
cation efficiency for mobile smartphone. AA-Dedupe differs
from EndRE in that it adopts weak hash functions for coarse-
grained data to reduce the computational overhead and
employs strong hash functions for fine-grained data to avoid
hash collisions.

VI. CONCLUSIONS AND FUTURE WORK

Motivated by the key observations drawn from our
preliminary experimental study, we propose AA-Dedupe, an
application-aware source-deduplication scheme for cloud
backup in the personal computing environment to improve
deduplication efficiency. An intelligent deduplication strategy
in AA-Dedupe is designed to exploit file semantics to
minimize computational overhead with negligible loss in
deduplication effectiveness. The novel data structure in AA-
Dedupe, application-aware index structure, can significantly
relieve the disk index lookup bottleneck by dividing a central
index into many independent small indices to optimize lookup
performance. In our prototype, AA-Dedupe is shown to
improve the deduplication efficiency of the state-of-the-art
source-deduplication approaches by a factor of 2-7, and
shorten the backup window size by 10%-32%, improve
power-efficiency by a factor of 3-4, and save 12%-29% cloud
cost for the cloud backup service. As a direction of future
work, we plan to investigate the secure deduplication issue in
cloud backup services of the personal computing environment
and further explore and exploit index lookup parallelism
availed by the application-aware index structure of AA-
Dedupe in a multi-core or many-core system.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and other members in
ADSL of CSE in UNL for their helpful suggestions. This
research was partially supported by the Program for New
Century Excellent Talents in University of China under Grant
No. NCET-08-0145, the 973 Program of China under Grant
No. 2011CB302301,the National Natural Science Foundation
of China under Grants No. 60736013, 61025009, 60903040
and 61070198, 863 Program 2009AA01A402, and the US
NSF under Grants NSF-IIS-0916859, NSF-CCF-0937993 and
NSF-CNS-1016609.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia,
“Above the Clouds: A Berkeley View of Cloud Computing,” UC
Berkeley Reliable Adaptive Distributed Systems Laboratory. Tech. rep.
Feb. 2009.

[2] “IDC: Digital Data to Double Every 18 Months,” Information
Management Journal, Sep. 2009, vol. 43/5 Docstoc page 20.

[3] L. Ponemon, “The Cost of a Lost Laptop,” Intel Corporation, Apr. 22,
2009.

[4] “Cloud Storage for Cloud Computing,” SNIA: Advancing storage &
information technology, Sep. 2009. www.snia.org/
cloud/CloudStorageForCloudComputing.pdf

[5] B. Agarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C.
Muthukrishnan, R. Ramjee and G. Varghese. “EndRE: An End-System
Redundancy Elimination Service for Enterprises,” in Proceedings of
the Second Symposium on Networked Systems Design and
Implementation (NSDI ’10), 2010, pp. 419-432.

[6] L. D. Bois and R. Amatruda, “Backup and Recovery: Accelerating
Efficiency and Driving Down IT Costs Using Data Deduplication,”
EMC Corporation, Feb. 2010.

[7] D. T. Meyer and W. J. Bolosky, “A Study of Practical Deduplication,”
in Proceedings of the 9th USENIX Conference on File and Storage
Technologies (FAST’11), 2011, pp. 1-14.

[8] D. Meister and A. Brinkmann, “Multi-level comparison of data
deduplication in a backup scenario,” in Proceedings of the 2nd Annual
International Systems and Storage Conference (SYSTOR’09), Haifa,
Israel: ACM, 2009.

[9] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, “A Five-
Year Study of File-System Metadata,” in Proceedings of the 5th
USENIX Conference on File and Storage Technologies (FAST’07),
Feb. 2007, pp. 31-45.

[10] C. Dubnicki, K. Lichota, E. Kruus and C. Ungureanu, “Methods and
systems for data management using multiple selection criteria,” United
States Patent 7844581, Nov. 30, 2010.

[11] Y. Tan, H. Jiang, D. Feng, L. Tian, Z. Yan and G. Zhou, “SAM: A
Semantic-Aware Multi-tiered Source De-duplication Framework for
Cloud Backup,” in Proceedings of the 39th International Conference
on Parallel Processing (ICPP’10), 2010, pp. 614 - 623.

[12] M. Vrable, S. Savage and G. M. Voelker, “Cumulus: Filesystem
Backup to the Cloud,” in Proceedings of the 7th USENIX Conference
on File and Storage Technologies (FAST’09), Feb. 2009, pp. 225–238.

[13] D. Bhagwat, K. Eshghi, D. D. Long and M. Lillibridge, “Extreme
Binning: Scalable, Parallel Deduplication for Chunkbased File
Backup,” HP Laboratories, Tech. Rep. HPL-2009-10R2, Sep. 2009.

[14] K. Eshghi, “A framework for analyzing and improving content based
chunking algorithms,” Tech. Rep. HPL-2005-30 (R.1), Hewlett
Packard Laboratories, Palo Alto, 2005.

[15] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the
Data Domain deduplication file system,” in Proceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST’08), Feb.
2008, pp. 269-282.

[16] P. Kulkarni, F. Douglis, J. Lavoie, and J. M. Tracey, “Redundancy
elimination within large collections of files,” in Proceedings of the
annual conference on USENIX Annual Technical Conference
(ATC’04), 2004, pp. 59-72.

[17] C. Liu, Y. Lu, C. Shi, G. Lu, D. Du, and D.-S. Wang, “ADMAD:
Application-driven metadata aware de-deduplication archival storage
systems,” in Proceedings of the 5th IEEE International Workshop on
Storage Network Architecture and Parallel I/Os (SNAPI’08), 2008,
pp.29-35.

[18] N. Xiao, Z. Chen, F. Liu, M. Lai, L. An, “P3Stor: A parallel, durable
flash-based SSD for enterprise-scale storage systems,” Science China
Information Sciences, vol. 54, No. 6, Jun. 2011, pp.1129-1141. DOI:
10.1007/s11432-011-4266-z.

[19] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula and D. Estrin,
“A First Look at Traffic on Smartphones,” in Proceedings of the 10th
annual conference on Internet measurement (IMC’10), Nov.2010, pp.
281-287.

[20] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise and
P. Camble, “Sparse Indexing: Large Scale, Inline Deduplication Using
Sampling and Locality,” in Proceedings of the 7th USENIX Conference
on File and Storage Technologies (FAST’09), 2009, pp. 111-123.

[21] P. Anderson and L. Zhang, “Fast and Secure Laptop Backups with
Encrypted De-duplication,” in Proceedings of the 24th international
conference on Large Installation System Administration (LISA'10),
2010, pp. 29-40.

[22] VMware Inc. “Virtual disk format.” http://www.vmware.com/
interfaces/vmdk.html, Nov. 2007.

[23] “Data Loss Statistics,” http://www.bostoncomputing.net/consul
tation/databackup/statistics/

[24] EMC Avamar. http://www.emc.com/avamar.
[25] Jungle disk. http://www.jungledisk.com/.
[26] BackupPC. http://backuppc.sourceforge.net/.

120120

