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Abstract—The market for cloud backup services in the personal 
computing environment is growing due to large volumes of 
valuable personal and corporate data being stored on desktops, 
laptops and smartphones. Source deduplication has become a 
mainstay of cloud backup that saves network bandwidth and 
reduces storage space. However, there are two challenges facing 
deduplication for cloud backup service clients: (1) low 
deduplication efficiency due to a combination of the resource-
intensive nature of deduplication and the limited system 
resources on the PC-based client site; and (2) low data transfer 
efficiency since post-deduplication data transfers from source to 
backup servers are typically very small but must often cross a 
WAN. In this paper, we present AA-Dedupe, an application-
aware source deduplication scheme, to significantly reduce the 
computational overhead, increase the deduplication throughput 
and improve the data transfer efficiency. The AA-Dedupe 
approach is motivated by our key observations of the substantial 
differences among applications in data redundancy and 
deduplication characteristics, and thus is based on an 
application-aware index structure that effectively exploits this 
application awareness. Our experimental evaluations, based on 
an AA-Dedupe prototype implementation, show that our scheme 
can improve deduplication efficiency over the state-of-art source-
deduplication methods by a factor of 2-7, resulting in shortened 
backup window, increased power-efficiency and reduced cost for 
cloud backup services. 

I. INTRODUCTION

Nowadays, the ever-growing volume and value of digital 
information have raised a critical and increasing requirement 
for data protection in the personal computing environment. 
According to IDC research [2], digital data is doubling every 
18 months, and more than 30% of the information created 
requires high standards of protection. Personal computing 
systems, such as desktops, laptops, tablets, smartphones and 
personal digital assistants (PDAs), have become primary 
platforms for many users, increasing the importance of data on 
these devices. Recent studies indicate that, while 31% of 
personal computer (PC) users have lost all of their PCs’ files 
to events beyond their control [23], the cost of a lost, 
unprotected laptop is roughly $49,000 [3]. To avoid data loss 
due to hardware failures, accidental deletion of data, or device 
theft/loss, enterprises and individuals have increased their use 

of data protection and recovery tools in the personal 
computing environment. 

Cloud backup service has become a cost-effective choice 
for data protection of personal computing devices. In recent 
years, similar to cloud computing, cloud storage has received 
increasing attention from industry and academia as it offers 
virtually infinite storage resources that are available on 
demand and charged according to usage [4]. Since traditional 
backup services require data to be backed up to dedicated 
external drives, which can be inconvenient or costly to the 
users, data backup for personal computing has emerged to be 
a particularly attractive application for outsourcing to the 
cloud storage providers because users can manage data much 
more easily without having to worry about maintaining the 
backup infrastructure. This is possible because the centralized 
cloud management has created an efficiency and cost 
inflection point, and offers simple offsite storage, always a 
critical concern for data backup.  

Data deduplication, an effective data compression approach 
that exploits data redundancy, partitions large data objects into 
smaller parts, called chunks, and represents and replaces these 
chunks by their fingerprints (i.e., generally a cryptographic 
hash of the chunk data) for the purpose of communication or 
storage efficiency. Depending on the location where 
redundant data is eliminated, deduplication can be categorized 
into source deduplication that applies data deduplication at the 
client site and target deduplication that eliminates redundant 
data at the backup server site. Since data backup for personal 
computing in the cloud storage environment implies a 
geographic separation between the client and the service 
provider that is usually bridged by wide area networks 
(WANs), source deduplication is obviously preferred to target 
deduplication due to the former’s ability to significantly 
reduce the amount of data transferred over WAN with low 
communication bandwidth. However, data deduplication is a 
resource-intensive process, which entails the CPU-intensive 
hash calculations for fingerprinting and the I/O-intensive 
operations for identifying and eliminating duplicate data. 
Unfortunately, such resources are limited in a typical personal 
computing device. Therefore, it is desirable to achieve an 
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optimal tradeoff between deduplication effectiveness and 
deduplication overhead for personal computing devices with 
limited system resources. 

In this paper, we propose AA-Dedupe, an application-
aware source deduplication scheme, to achieve high 
deduplication efficiency based on a number of key 
observations drawn from our preliminary and experimental 
study of data deduplication in the personal computing 
environment. This study (detailed in Section II) motivates our 
AA-Dedupe design by the following four observations of 
deduplication for cloud backup services in the personal 
computing environment: 

O1: The majority of storage space is occupied by a small 
number of compressed files with low sub-file 
redundancy.  
O2: Static chunking (SC) [8] method can outperform 
content defined chunking (CDC) [15] in deduplication 
effectiveness for static application data and virtual 
machine images. 
O3: The computational overhead for deduplication is 
dominated by data capacity. 
O4: The amount of data shared among different types of 
applications is negligible. 

These observations reveal a significant difference among 
different types of applications in the personal computing 
environment in terms of data redundancy, sensitivity to 
different chunking methods, independence in the dedupli-
cation process. Thus, the basic idea of AA-Dedupe is to 
effectively exploit this application difference and awareness 
by treating different types of applications differently and 
adaptively during the deduplication process to significantly 
improve the deduplication efficiency and reduce the overhead.  

The main contributions of our paper include: 
A new metric, “bytes saved per second”, is proposed 
to measure the efficiency of different deduplication 
schemes on the same platform. 
According to our observations on the application-
oriented deduplication effectiveness, an intelligent 
deduplication scheme with application-aware index 
structure is presented to improve the deduplication 
efficiency for personal computing devices. 
To improve data transfer efficiency, a container 
management strategy is proposed to aggregate small 
data packet transfers into a single larger one for cloud 
storage.  
Our prototype implementation of AA-Dedupe and real 
dataset driven evaluations show that it outperforms the 
existing state-of-the-art source deduplication schemes 
in terms of backup window, power efficiency, and cost 
saving for the high deduplication efficiency in cloud 
backup services. 

The remainder of this paper is organized as follows. In the 
next section, we provide the necessary background on source 
deduplication and conduct a preliminary quantitative study on 
data backup for personal computing in cloud storage to 
motivate our research. In Section III, we describe the system 
architecture of AA-Dedupe, and detail the design of an 

intelligent deduplication scheme with application-aware index 
structure. We evaluate AA-Dedupe on its prototype imple-
mentation with real datasets, by comparing it with the existing 
state-of-the-art schemes in terms of deduplication efficiency, 
backup window size, cloud storage cost and energy efficiency 
in Section IV. We discuss related work in Section V and 
conclude with remarks on future work in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we provide the necessary background on 
technologies related to our research and present key 
observations drawn from our preliminary study to motivate 
our research in the application-aware source deduplication for 
cloud backup services.

A. Cloud Backup 
Cloud is a new business model wrapped around new 

technologies to reduce the cost of using IT resources [1]. It 
refers to both the applications delivered as services over the 
Internet and the hardware and systems software in data centers 
that provide such services. Recent interest in cloud storage has 
been driven by new offerings of storage resources that are 
attractive due to per-use pricing and elastic scalability, 
providing a significant advantage over the typical acquisition 
and deployment of equipment or infrastructure that was 
previously required [4]. In the personal computing environ-
ment, cloud backup, from an end user’s perspective, is nothing 
but an unlimited amount of online storage space that is secure, 
inexpensive and highly available to backup data from personal 
computing devices. Different from traditional backup that 
requires dedicated and high bandwidth network connectivity 
between the client machines and the servers, cloud backup 
significantly relaxes this requirement and thus is suitable for 
environments with reasonable network connectivity but limit-
ed bandwidth and low data change rate in small dataset, such 
as the typical personal computing environment. 

B. Source Deduplication 
In source deduplication, elimination of duplicate data 

occurs close to where data is created, rather than where data is 
stored as in the case of target deduplication. Performing 
deduplication at the source can dramatically improve IT 
economics by minimizing storage requirements and network 
bandwidth consumption since the redundant data is eliminated 
prior to its traverse across the network to the target backup 
server [6]. Based on different deduplication granularities, 
source deduplication can be further divided into source file-
level deduplication [26] and source chunk-level deduplication 
[12][24], where the former removes duplicate data at the file 
granularity with low duplicate elimination effectiveness and 
low computational overhead, while the latter removes the 
duplicate data at the sub-file (that is, chunk) level with high 
duplicate elimination effectiveness and high computational 
overhead. To achieve high effectiveness of deduplication, 
source chunk-level deduplication has become popular and 
represents state of the art. However, such fine-grained data 
deduplication is very expensive in terms of memory and 
processing especially on resource-constrained clients in the 
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personal computing environment. Therefore it is desirable to 
achieve an optimal tradeoff (i.e., efficiency) between data 
deduplication effectiveness and deduplication overhead for 
source deduplication in the personal computing environment. 
Moreover, source deduplication faces another challenge in the 
form of low data transfer efficiency, since post-deduplication 
data transfers from source to target are typically very small 
but must often traverse across a WAN. As the overhead of 
lower layer protocols can be high for small data transfers [19], 
source-side data aggregation strategies have become a 
necessary consideration in existing techniques[12][20]. 

C. Motivational Observations 
In this section, we will investigate how data redundancy, 

space utilization efficiency of popular data chunking methods 
and computational overhead of typical hash functions change 
in different applications, through our preliminary experi-
mental study. In what follows, we draw the following 
observations and analysis from this study to motivate our 
research. 
    Observation 1: A disproportionally large percentage of 
storage space is occupied by a very small number of large 
files with very low sub-file redundancy. 
    Implication: File-level deduplication using weak hash 
functions for these large files is sufficient to avoid hash 
collisions for small datasets in the personal computing 
environment. 

To reveal the relationship between file size and storage 
capacity, we collect statistics on the distribution of files and 
storage space occupied by files of different sizes in 3 desktops 
and 7 laptops of 10 users and show the results in Fig. 1 and 
Fig. 2. We observe that about 61% of all files are smaller than 
10KB, accounting for only 1.2% of the total storage capacity, 
and only 1.4% files are larger than 1MB but occupy 75% of 
the storage capacity. These results are consistent with 
previously published studies [8][9]. This suggests that tiny 
files can be ignored during the deduplication process as so to 
improve the deduplication efficiency, since it is the large files 
in the tiny minority that dominate the deduplication efficiency. 
The achieved data deduplication ratio (DR, i.e., the ratio of the 
amounts of data before and after deduplication) actually 
depends on which data is deduplicated and on the 
effectiveness and efficiency of the specific technologies used 
to perform capacity optimization. To verify the data 
redundancy observed from our intuitive scenarios, we carried 
out chunk-level deduplication using Static Chunking (SC) of 
8KB chunk size and Content Defined Chunking (CDC) of 
8KB average chunk size (Min: 2 KB, Max: 16 KB) after file-
level deduplication in about 41 GB data of typical PC applica-
tions, respectively. From the statistics shown in Table 1, we 
observe that different applications or data types have different 
levels of data redundancy, where almost all data types with 
low chunk-level data redundancy are related to applications 
using compression, while files in these applications are of 
large average file sizes. It is similar to the results in [7]. In the 
datasets of 10 PCs mentioned above, compressed files larger 
than 1 MB occupy 53% storage space. This is consistent with 
the results in the published research [8] indicating that the 

deduplication ratio begins to decrease when the file size is 
larger than 8MB. For low sub-file data redundancy, file-level 
deduplication can achieve almost the same effectiveness of 
data reduction as chunk-level deduplication, and it can also 
enhance the lookup speed for duplicate data because of 
reduced metadata overhead. In the file-level deduplication 
process of compressed files, a weak hash function is sufficient 
to avoid hash collisions due to the very small number of large 
files in the personal computing environment. 

File Size

Fi
le

 C
ou

nt
   

  

Fig. 1.  File count in the PC datasets 
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Fig. 2.  Storage capacity in the PC datasets 

TABL I

CHUNK LEVEL DATA REDUNDANCY IN TYPICAL PC APPLICATIONS

File 
Type 

Dataset 
Size(MB) 

Mean File 
Size (B) 

SC
DR

CDC
DR

AVI 2243 198 M 1.0002 1.0002 

MP3 1410 5 M 1.001 1.002 

ISO 1291 646 M 1.002 1.002 

DMG 1032 86 M 1.004 1.004 

RAR 1452 12 M 1.008 1.008 

JPG 1797 2 M 1.009 1.009 

PDF 910 403 K 1.015 1.014 

EXE 400 298 K 1.063 1.062 

VMDK 28473 312 M 1.286 1.168 

DOC 550 180 K 1.231 1.234 

TXT 906 615 K 1.232 1.259 

PPT 320 977 K 1.275 1.3 

114114



Observation 2: The amount of data shared among different 
types of applications is negligible. 

Implication: Application-aware deduplication has a 
potential to improve the efficiency of deduplication by 
eliminating redundancy in each application independently and 
in parallel.

We compare the chunk fingerprints of datasets used in 
Observation 1 after intra-application deduplication using 
chunk-level deduplication with 8 KB chunk size in different 
applications, including TXT, DOC, PPT, PDF, JPG, DMG,  
MP3, ISO, EXE, AVI and RAR files, and find that only one 
16 KB chunk is a duplicate. This comes from the difference in 
data content and format among these applications. As the data 
sharing among different applications is negligible, applica-
tion-aware deduplication is poised to eliminate redundancy in 
each application independently and in parallel without 
reducing the effectiveness of data deduplication. As a result, 
the full fingerprint index can be divided into small independ-
ent indices according to the data type information in different 
applications, enabling it to greatly benefit from small indices 
to avoid on-disk index lookup bottlenecks [13][15] while 
exposing higher index access parallelism. 
    Observation 3: SC can outperform CDC on deduplication 
effectiveness for static application data or virtual machine 
disk images. 
    Implication: Despite of the fact that CDC-based 
deduplication is traditionally considered the best strategy in 
finding redundancy in data deduplication, SC-based methods 
may be preferred in deduplicating datasets of static 
applications or VM disk images.

To find the sub-file redundancy, we can use SC-based or 
CDC-based deduplication schemes. The effectiveness of the 
former lies in its simplicity in splitting files into small chunks 
with a fixed chunk size. The latter partitions data into variable 
size chunks based on the data content rather than the data 
position to avoid the chunk boundary-shifting problem [14] 
caused by data updates. In the datasets of static applications 
where data updating operations are infrequent, or some 
specific data format, like virtual machine disk images [22], we 
observe that SC-based deduplication can approach or even 
outperform CDC-based deduplication in deduplication 
effectiveness. Table 1 also shows that SC-based deduplication 
performs similar or even better than CDC-based deduplication 
on the effectiveness of data reduction for PDF, EXE and 
VMDK files because a large number of chunks are cut 
forcibly when reaching the maximum length in the CDC 
processing. This suggests that we can choose to deduplicate 
these kinds of files using SC-based methods in application-
aware deduplication to improve the efficiency.

Observation 4: The computational overhead of dedupli-
cation is determined by data capacity, not the granularity of 
deduplication. 

Implication: The use of weaker hash functions for more 
coarse-grained chunks is the only way to reduce the computa-
tional overhead. 

To evaluate the computational overhead of typical hash 
functions, we measured the execution times of the Rabin hash, 

MD5 and SHA-1 hash algorithms on a laptop for Whole File 
Chunking (WFC)-based deduplication, which is a variant of 
CDC-based methods that uses an entire file as the basis for 
duplicate detection [8], and SC-based deduplication with 8KB 
fixed chunk size in a 60MB dataset. Rabin hash is a rolling 
hash function with lower computational overhead than 
cryptographic hash functions (e.g., SHA-1 and MD5), and we 
choose a 96-bit extended hash value to keep a low probability 
of hash collisions. The results are shown in Fig. 3. The total 
execution time of file-level deduplication (WFC) is almost the 
same as that of chunk-level deduplication (SC), since the bulk 
of the processing time is spent on the hash calculation itself 
and not on storing hash values. The insight obtained here is 
consistent to the findings reported in [10].  In other words, the 
use of weaker hash functions for more coarse-grained chunks 
is an effective way to reduce the computational overhead. The 
experimental results, shown in Fig. 4, compare the deduplica-
tion throughputs of three typical data chunking methods, WFC, 
SC and CDC, when applied with the three hash functions, 
Rabin hash, MDS and SHA-1, for chunk fingerprinting, 
respectively. The deduplication strategy based on simpler 
chunking schemes (e.g., WFC or SC) can achieve a higher 
throughput because of their lower metadata overhead, while 
deduplication strategies with weaker hash functions (e.g., 
Rabin hash) obtain a higher throughput because of their lower 
computational overhead. This suggests that we may employ 
WFC-based deduplication with the Rabin hash function for 
compressed files to enhance deduplication throughput, and 
SC-based deduplication using the MD5 hash function for 
static application data or virtual machine disk images. 
Nevertheless, we should still use the SHA-1 hash function for 
CDC-based deduplication because most of its computational 
overhead is on identifying the chunk boundaries instead of 
chunk fingerprinting. 

Fig. 3.  Computational overhead of typical hash functions 

Fig. 4.  Deduplication throughputs of different implementations 
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III. DESIGN AND IMPLEMENTATION OF AA-DEDUPE

To achieve high data transfer rates, cloud clients require 
significant processing to deduplicate data in cloud backup 
services, resulting in index size and performance challenges. 
Traditional approaches to meeting these challenges are to use 
methods that incur lower computational load but weaker data 
redundancy detection. Those approaches typically result in a 
reduction in data deduplication ratio. AA-Dedupe, motivated 
in part by our observations made in Section II, is designed to 
meet the requirement of deduplication efficiency. The main 
idea of AA-Dedupe is to reduce the computational overhead 
by employing an intelligent data chunking scheme and the 
adaptive use of hash functions based on application awareness, 
and to mitigate the on-disk index lookup bottleneck by 
dividing the full index into small independent and application-
specific indices in an application-aware index structure. 

A. An Architectural Overview 
An architectural overview of AA-Dedupe is illustrated in 

Fig. 5, where tiny files are first filtered out by file size filter 
for efficiency reasons, and backup data streams are broken 
into chunks by an intelligent chunker using an application-
aware chunking strategy. Data chunks from the same type of 
files are then deduplicated in the application-aware dedupli-
cator by looking up their hash values in an application-aware 
index that is stored in the local disk. If a match is found, the 
metadata for the file containing that chunk is updated to point 
to the location of the existing chunk. If there is no match, the 
new chunk is stored based on the container management in the 
cloud, the metadata for the associated file is updated to point 
to it and a new entry is added into the application-aware index 
to index the new chunk. We will now describe the dedupli-
cation process in more detail in the rest of this section.  

B. File size filter 
Most of the files in the PC dataset are tiny files that only 

occupy a negligibly small percentage of the storage capacity. 
As shown in our statistical evidences (In Section II), about 
61% of all files are no larger than 10KB, accounting for only 
1.2% of the total storage capacity of the dataset. To reduce the 
metadata overhead, AA-Dedupe filters out these tiny files (i.e., 
less than 10KB in file size) in file size filter before the 
deduplication process, an approach like SAM [11], and groups 
data from many tiny files together into larger units of about 
1MB each in the container store, similar to Cumulus [12], to 
increase the data transfer efficiency over WAN. 

C. Intelligent data chunking 
Data chunking has a significant impact on the efficiency of 

deduplication. In general, the deduplication ratio is inversely 
proportional to the average chunk size. On the other hand, the 
average chunk size is also inversely proportional to the space 
overhead due to file metadata and chunk index in storage 
systems. This implies that a smaller average chunk size 
translates to a higher processing cost for data packets during 
transfer and a lower compression ratio for each chunk. The 
deduplication efficiency of data among different applications  

Fig. 5.  An architectural overview of the AA-Dedupe design 

differs greatly as we discussed in Section II. Depending on 
whether the file type is compressed or whether it is frequently 
edited, we divide files into three main categories: compressed 
files, static uncompressed files, and dynamic uncompressed 
files. To strike a better tradeoff between deduplication ratio 
and deduplication overhead, we deduplicate compressed files 
with WFC for its low sub-file redundancy, separate static 
uncompressed files into fix-sized chunks with SC, and break 
dynamic uncompressed files into variable-sized chunks using 
CDC based on the Rabin fingerprinting function to identify 
chunk boundaries. 

D. Hash function selection in Deduplicator 
Most of the computational overhead in deduplication is 

spent on the calculation of chunk fingerprinting for WFC and 
SC. Comparing with the overhead of identifying chunk 
boundaries based on the Rabin fingerprinting, the computa-
tional overhead for chunk fingerprinting in CDC is only a 
small part of deduplication overhead. Since compressed files 
with WFC have large chunk sizes, an extended 12B Rabin 
hash value is employed as chunk fingerprint to reduce the 
computational overhead, and it is justified by the fact that the 
probability of hash collisions in TB-scale PC datasets is 
smaller than the probability of hardware error by many orders 
of magnitude. For the same reason, a 16B MD5 hash value of 
chunks serves as chunk fingerprint of SC in static 
uncompressed files. We employ a 20B SHA-1 hash value to 
provide high data integrity for dynamic uncompressed files 
with only a slight increase in overhead because chunk 
fingerprint calculation is only a small part of the total 
computational overhead in CDC.

E. Application-aware index structure 
As with traditional deduplication schemes, AA-Dedupe 

requires a chunk index, which maps each chunk hash to where 
that chunk is stored in the cloud storage, in order to determine 
which chunks have already been stored. If there is a match in 
the index, the incoming chunk contains redundant data and 
can be deduplicated to avoid transmitting it; if not, the chunk 
needs to be added to the cloud storage and its hash and 
metadata inserted into the index. The metadata contains the 
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Fig. 6.  Application-aware index structure 

information such as chunk length and location. In AA-Dedupe, 
the selection for the proper chunking methods and hash 
functions in deduplication is entirely based on file type. An 
application-aware index structure for AA-Dedupe is construct-
ed as shown in Fig. 6. According to the accompanied file type 
information, the incoming chunk is directed to the chunk 
index with the same file type. Comparing with traditional 
deduplication mechanisms, AA-Dedupe can achieve high 
deduplication throughput by looking up chunk fingerprints 
concurrently in small indices classified by applications rather 
than the single full, unclassified index. Furthermore, a periodi-
cal data synchronization scheme is also proposed in AA-
Dedupe to backup the application-aware index in the cloud 
storage to protect the data integrity of the PC backup datasets. 

F. Container management  
Because large sequential writes are transformed into small 

random writes by the deduplication process, AA-Dedupe will 
often group data from many smaller files and chunks into 
larger units called container before these data are transferred 
over WAN. A container is a self-describing data structure in 
that a metadata section includes the chunk descriptors for the
stored chunks. An open chunk container is maintained for 
each incoming backup data stream, appending each new 
chunk or tiny file to the open container corresponding to the 
stream it is part of. When a container fills up with a 
predefined fixed size (e.g., 1MB), a new one is opened up. If a 
container is not full but needs to be written to disk, it is 
padded out to its full size. This process uses chunk locality [20] 
to group chunks likely to be retrieved together so that the data 
restoration performance will be reasonably good. Supporting 
deletion of files requires an additional process in the 
background. The scheme is also adopted in the state-of-the-art 
schemes such as DDFS [15] and Sparse Indexing [20] to 
improve manageability and performance. Aggregation of data 
produces larger files for the cloud storage, which can be 
beneficial in avoiding high overhead of lower layer protocols 
due to small transfer sizes, and in reducing the cost of the 
cloud storage. Amazon S3, for example, has both a per-
request and a per-byte cost when storing a file, which 
encourages the use of files greater than 100 KB in size. 

IV. EVALUATIONS

We have built a prototype of AA-Dedupe in approximately 
2300 lines of C++ code and fed the real-world datasets to 
evaluate the use of cloud backup services in a personal 
computing environment. Our goal in this evaluation is to 
answer the following questions:  

How effective is AA-Dedupe in striking a reasonable 
tradeoff between the deduplication effectiveness and 
deduplication overhead with real world datasets? 
How well does AA-Dedupe work in terms of shortening 
the backup window? 
What are the monetary costs for cloud backup services 
based on AA-Dedupe in the given datasets?  
How much energy does AA-Dedupe save compared with 
traditional source deduplication based cloud backup 
services? 

The following evaluation subsections will answer these 
questions, beginning with a description of the experiment 
platform with PC backup datasets we use as inputs to the 
experiments and the evaluation metric we propose to quantify 
deduplication efficiency.

A. Experiment Platform and Datasets 
Our experiments were performed on a MacBook Pro with 

2.53 GHz Intel Core 2 Duo processor, 4 GB RAM, and one 
250 GB SATA disk, and it can reach about 500KB/s average 
upload speed and 1MB/s average download speed with the 
AirPort Extreme 802.11g wireless card. We use backup 
datasets in the user directory of one of the author’s PCs as 
workloads to drive our evaluations, and model the use of 
remote backup. There are 10 consecutive weekly full backups 
in the workloads with a total of 351GB data consisting of 
68,972 files in 12 applications.  

We compare AA-Dedupe against a number of state-of-the-
art schemes, including Jungle Disk [25], a file incremental 
cloud backup scheme, BackupPC [26], a source file-level 
deduplication based cloud backup, Avamar [24], a source 
chunk-level deduplication based cloud backup, and SAM [11], 
a hybrid source deduplication based cloud backup scheme. 
The comparisons are based on measures of deduplication 
efficiency, backup window size, cloud storage cost and energy 
consumption. In all experiments, we choose a fixed chunk size 
of 8KB for SC-based deduplication strategies, and an 
expected chunk size of 8 KB (with a 2 KB minimum and 16 
KB maximum) for CDC-based method with Rabin 
fingerprinting that uses a 48-byte fixed sliding window size 
and 1-byte step size. Table II shows some parameters to 
model deduplication efficiency, backup window size and 
cloud cost for cloud backup services. 

TABLE II

PARAMETERS FOR CLOUD BACKUP SERVICES

DE Dedupe Efficiency SC Saved Capacity 
DT Dedupe Throughput DS Dataset Size 
NT Network Throughput DR Dedupe Ratio 

BWS Backup Window Size SP Storage Price 
OP Operation Price TP Transfer Price 
OC Operation Count CC Cloud Cost 
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B. Metric for Deduplication Efficiency 
It is well understood that the deduplication efficiency is 

proportional to deduplication effectiveness that can be defined 
by deduplication ratio, and inversely proportional to 
deduplication overhead that can be measured by deduplication 
throughput. Based on this understanding and to better quantify 
and compare deduplication efficiency of a wide variety of 
deduplication techniques, we propose a new metric, called 
“bytes saved per second”, to measure the efficiency of 
different deduplication schemes in the same platform, similar 
to the metric of “bytes saved per cycle” proposed in [16] that 
estimates the computational overhead. “bytes saved per 
second” is expressed as: 

1(1 )SC DTDE DT
DS DR
×= = − × .

C. Deduplication efficiency 
Deduplication effectiveness is very important for both 

cloud backup providers and users. Providers expect less data 
stored in their data centers to reduce data storage and 
management costs, whereas users prefer transferring less data 
for shorter backup time and lower storage cost. Our experi-
mental results present both the cumulative cloud storage 
capacity required of the providers and the deduplication 
efficiency of each backup session for individual users 
respectively. Fig. 7 compares the cumulative storage capacity 
of the five cloud backup schemes. The four source dedup-
lication based backup schemes can outperform the incre-
mental backup scheme that is implemented in Jungle Disk, 
especially for those based on fine-grained methods (e.g., 
Avamar) or semantic-aware deduplication scheme SAM. AA-
Dedupe achieves similar or better space efficiency than 
Avamar and SAM. The high effectiveness of data dedupli-
cation of the fine-grained deduplication schemes comes at a 
significant overhead that throttles the system throughput. We 
present a comparison for deduplication efficiency of the five 
cloud backup schemes in Fig. 8, and employ our proposed 
new metric of “bytes saved per second” to measure the 
efficiency of different deduplication approaches in the same 
platform. AA-Dedupe performs much better than other backup 
schemes on deduplication efficiency with a low overhead. 
This significant advantage of AA-Dedupe is primarily attri-
buted to its application-awareness in the deduplication process. 
We observe that the deduplication efficiency in AA-Dedupe is 
2 times that of BackupPC, 5 times that of SAM and 7 times 
that of Avamar on average, and it can also significantly 
improve the space saving for some applications in backup 
sessions 3, 4 and 10 that other approaches fail to achieve. 

D. Backup Window
The backup window represents the time spent on sending a 

backup dataset to cloud storage, which mainly depends on the 
volume of the transferred dataset and available network 
bandwidth. For the four source deduplication schemes 
considered in this study, the backup window consists of two 
parts: data deduplication time and data transfer time. Because 
of our pipelined design for the deduplication processes and the  

Fig. 7.  Cloud storage capacity requirement 

Fig. 8.  Data deduplication efficiency of the backup dataset 

data transfer operations, the backup window size of each 
backup session can be calculated based on the expression 
below: 

1 1( , )BWS DS Max
DT DR NT

= ×
×

In our experimental results, shown in Fig. 9, Avamar 
performs the worst in backup throughput due to the high 
system overhead in fine-grained deduplication, which is even 
worse than the full backup method in our test environment. In 
other schemes, the backup window size is always determined 
by the data transfer capacity after deduplication due to the low 
upload bandwidth in WAN. AA-Dedupe consistently 
performs the best among the five cloud backup schemes 
owing to its high deduplication efficiency. We observe that 
the backup window size of AA-Dedupe is shortened from 
other schemes by about 10%-32% in our test environment. 

E. Cloud Cost 
Cloud backup as a service, however, comes at a price. In this 
subsection, we calculate the monetary costs for our workload 
models. To price cloud-based backup services attractively 
requires minimizing the capital costs of data center storage 
and the operational bandwidth costs of shipping the data back 
and forth. We use the prices for Amazon S3 as an initial point 
in the pricing space. As of April 2011, these prices are (in US 
dollars): $0.14 per GB · month for storage, $0.10 per GB for 
upload data transfer and $0.01 per 1000 upload requests. And 
the cost of cloud backup services can be modelled as: 
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Fig. 9.  Backup window size of 5 backup sessions 

Fig. 10.  The cost of cloud backup techniques 

( )DSCC SP TP OC OP
DR

= × + + ×

Backing up the deduplicated datasets directly to Amazon 
S3 can be very slow and costly due to the large number of I/O 
operations and the way Amazon S3 charges for the uploads. 
We estimate the cloud cost of our test datasets in one month, 
as shown in Fig. 10. Comparing with the more space-efficient 
schemes such as Avamar and SAM, file-granularity data 
transfer in Jungle Disk and BackupPC can bring more cost 
savings in request cost due to the large number of large files in 
our datasets. AA-Dedupe can reduce the request cost signi-
ficantly by packing several KB-sized tiny files and chunks 
into 1MB containers before sending them to the cloud. We 
observe that the cloud cost of AA-Dedupe is lower than those 
of other schemes by about 12%-29% for our backup datasets. 

F. Energy Efficiency 
Energy efficiency has become a critical issue and its 

importance seems to be more pronounced in the personal 
computing environment, especially for mobile devices like 
laptops, tablets, smartphones and PDAs due to the limited 
energy in battery. As the deduplication process is a compute-
intensive application, energy consumption becomes a 
challenge for source deduplication based cloud backup in the 
personal computing environment. In our experiment, we 
compare the power consumptions of the four source dedupli-
cation based cloud backup schemes during the deduplication 
process, measured by an electricity usage monitor on the 
whole PC. Fig. 11 shows the energy consumptions of the four 
cloud backup schemes as a function of backup sessions. 
Existing highly space-efficient approaches, such as Avamar 
and SAM, incur high-level power consumptions due to their  

Fig. 11.  Power consumption of source deduplication schemes 

significant computational overhead during the deduplication
process. AA-Dedupe incurs only one fourth of the power 
consumption of Avamar and one third of that of SAM by 
adaptively using weaker hash functions in deduplication. 

V. RELATED WORK

In cloud backup, performing deduplication at the source 
can dramatically improve IT economics by minimizing 
storage requirements, backup windows and network 
bandwidth utilization because redundant data is eliminated 
prior to its traverse across the network to the backup server. 
Comparing with traditional incremental cloud backup schemes, 
like Jungle Disk [25], source deduplication can achieve higher 
space efficiency to reduce cloud storage cost, and the 
deduplication efficiency becomes critical for cloud clients in 
the personal computing environment due to its limited system 
resources. BackupPC [26] performs deduplication at the file 
level to achieve low lookup overhead by reducing metadata, 
but at the cost of space efficiency. To achieve high space 
efficiency, EMC Avamar [24] applies CDC-based chunk-level 
deduplication with high computational overhead and lookup 
overhead, and ADMAD [17] improves redundancy detection 
by application-specific chunking methods that exploit the 
knowledge about concrete file formats. Intuitively, different 
applications and data types tend to have different levels of 
data redundancy. SAM [11] designs a hybrid source 
deduplication scheme, combining file-level and chunk-level 
deduplication schemes based on file semantics to mitigate 
lookup overhead by reducing metadata, and has been shown to 
have very little negative impact on deduplication effectiveness. 
In contrast, AA-Dedupe improves deduplication efficiency 
significantly by intelligent data chunking methods with 
application awareness. 

In additional to the granularity of data chunking, the search 
speed of duplicate data and the computational complexity of 
hash functions all play important roles in the deduplication 
efficiency. Unlike Avamar, Cumulus [12] aggregates data 
from small files for remote storage, and limits the search for 
unmodified data to the chunks in the previous versions of the 
file to reduce the lookup overhead in deduplication, but leaves 
open the challenge of how to identify file versions. AA-
Dedupe is inspired by Cumulus, but exploits application-
awareness by limiting the search for redundant data to the 
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chunks within the same kind of applications specified by the 
file format information. Unlike the traditional source-
deduplication schemes, EndRE [5] employs a weak finger-
printing scheme rather than strong cryptographic hash such as 
SHA-1 in redundancy elimination to improve the dedupli-
cation efficiency for mobile smartphone. AA-Dedupe differs 
from EndRE in that it adopts weak hash functions for coarse-
grained data to reduce the computational overhead and 
employs strong hash functions for fine-grained data to avoid 
hash collisions. 

VI. CONCLUSIONS AND FUTURE WORK

Motivated by the key observations drawn from our 
preliminary experimental study, we propose AA-Dedupe, an 
application-aware source-deduplication scheme for cloud 
backup in the personal computing environment to improve 
deduplication efficiency. An intelligent deduplication strategy 
in AA-Dedupe is designed to exploit file semantics to 
minimize computational overhead with negligible loss in 
deduplication effectiveness. The novel data structure in AA-
Dedupe, application-aware index structure, can significantly 
relieve the disk index lookup bottleneck by dividing a central 
index into many independent small indices to optimize lookup 
performance. In our prototype, AA-Dedupe is shown to 
improve the deduplication efficiency of the state-of-the-art 
source-deduplication approaches by a factor of 2-7, and 
shorten the backup window size by 10%-32%, improve 
power-efficiency by a factor of 3-4, and save 12%-29% cloud 
cost for the cloud backup service. As a direction of future 
work, we plan to investigate the secure deduplication issue in 
cloud backup services of the personal computing environment 
and further explore and exploit index lookup parallelism 
availed by the application-aware index structure of AA-
Dedupe in a multi-core or many-core system. 
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