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Abstract– While today’s virtual datacenters have hypervi-
sor based mechanisms to partition compute resources be-
tween the tenants co-located on an end host, they provide
little control over how tenants share the network. �is opens
cloud applications to interference from other tenants, re-
sulting in unpredictable performance and exposure to de-
nial of service attacks. �is paper explores the design space
for achieving performance isolation between tenants. We
�nd that existing schemes for enterprise datacenters su�er
from at least one of these problems: they cannot keep up
with the numbers of tenants and the VM churn observed
in cloud datacenters; they impose static bandwidth limits
to obtain isolation at the cost of network utilization; they
require switch and/or NIC modi�cations; they cannot tol-
erate malicious tenants and compromised hypervisors. We
propose Seawall, an edge-based solution, that achieves max-
min fairness across tenant VMs by sending tra�c through
congestion-controlled, hypervisor-to-hypervisor tunnels.

. Introduction
By consolidating applications onto a common infrastruc-

ture, cloud datacenters achieve higher e�ciency from the
same resource pool and can scale up (or down)with changes
in demand []. Commodity virtualization stacks (e.g., Xen,
HyperV) let existing applications run on the cloud with few
modi�cations. A key remaining obstacle, however, is the
disparity in performance guarantees between the cloud and
traditional datacenters.
Since public clouds run arbitrary tenant code, they are at

risk frommalicious or subverted nodes. For instance, Ama-
zon Web Services (AWS) has already been used by spam-
mers [] and been subject to denial of service attacks [].
�e incentive to break cloud-hosted applications is rising as
high-value applications move to the cloud. Attacks from in-
side a cloud datacenter can pose greater threat, since they
bene�t from plentiful internal bandwidth. Market research
and experimental studies report high performance variation
over time [] and user concerns regarding availability of
shared services and consistent performance [].
Network performance isolation between tenants can be

an important tool for both minimizing disruption from le-
gitimate tenants that run network-intensive workloads and
protecting against malicious tenants that launch DoS at-
tacks. Without such isolation, a tenant that sends a high
volume of tra�c to shared services can deny service to ten-
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ants that happen to be co-located at either end or share in-
termediate links.
Perhaps because there has never been a need to keep apart

many interacting parties, the commonly available tech-
niques for network-level separation in Ethernet-based net-
works, VLANs and CoS (Class of Service) tags, cannot scale
to cloud datacenters. Every major cloud provider [, ] re-
ports O(105) servers,  to  cores/server and O(104) ten-
ants, while Amazon reports that  of its cores are utilized
on average. In comparison, the number of VLANs possible
is  and most switches support  classes. Mapping ten-
ants onto a small number of isolation primitives leads to fate
sharing between tenants on the same VLAN/class.
Churn makes the problem worse. �e pay-as-you-go

model encourages tenants to grow and shrink on demand.
AWS reports ~K new instances created per day, or one
new VM per server per day. Modifying VLANs on all
switches and hosts in the network upon each tenant change
is unlikely to keep up with this churn. In our enterprise
the procedure for changing VLANs takes several days due
to many human steps involved in checking against policy.
OpenFlow/NOX [, ] based centralized solutions, if well
engineered to keep the work and state changes required
per update small, may keep up. However, doing so implies
changing all the networking gear in the datacenter.
�ere is a trade-o� between ensuring isolation and re-

taining high network utilization. Bandwidth reservations,
as realized by a host of mechanisms including RSVP and
MPLS-TE, are either overly conservative at low load, thus
achieving poor network utilization, or overly lenient at high
load, thus achieving poor isolation. It is preferable to en-
force isolation only when congestion happens and allow
best-e�ort use of spare bandwidth at other times.
Max-min fair allocation �ts this bill, which can be accom-

plished by running only tra�c that is TCP or TCP-friendly
(e.g., TFRC, DCCP). However, in a cloud datacenter, the
tenant controls the applications and tra�c, and, in some
cases, may also control the networking stack in the guest
OS. We have found in interviews with users that banning
tra�c, such as UDP, that is potentially unfriendly to TCP
is undesirable because it may force code changes. Further,
even while conforming to the hose model, i.e., not sending
more tra�c than the recipient can drain, a tenant can launch
many concurrent TCP �ows, avail of TCP’s per-�ow fair di-
vision of bandwidth and stomp on other users.
Datacenter network topologies that provide full bisection

bandwidth [, ], by using more switches and links in the
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Figure : Mandatory use ofTCPdoes not achieve performance
isolation, evenwith a non-oversubscribed core. In this example,
a sel�sh client acquiresmore network capacity by openingmore
TCP connections.

core, only partially solve the problem. Even if the core of the
network has su�cient bandwidth to not be the bottleneck,
topologies such as fat-tree and VL retain hotspots on the
network path between the core and the receiver. As shown
in Figure , by selective targeting, an attacker can make a
server or an entire rack unresponsive.
An ideal isolation solution for cloud datacenters has to

scale, keep up with churn and retain high network utiliza-
tion. It has to do so without assuming well-behaved or TCP
conformant tenants. Since changes to theNICs and switches
are expensive, take some time to standardize and deploy,
and are hard to customize once deployed, edge or so
ware
based solutions are preferable.
�is paper presents an initial design of Seawall that sat-

is�es these constraints and requirements. Seawall relies on
running rate controllers at end hosts, to provide a scal-
able enforcement mechanism; and so
ware-based network
monitoring, to provide �exible, low cost end-to-end feed-
back. Seawall places the rate controllers in the hypervisor
to protect it against malicious tenant code. Seawall employs
recent advances in exploiting multi-queue NICs and multi-
core CPUs to achieve low overhead on end hosts. Seawall is
designed to be retro�tted to real-world virtualized datacen-
ters, providing performance isolation with no additional as-
sumptions about hardware functionality and requiring only
a small number of incremental changes to end host so
-
ware and switch con�guration. Unlike other end host ap-
proaches, which assume that hypervisors are trusted, Sea-
wall can continue to guarantee performance isolation even
when hypervisors are compromised.

. Isolation mechanisms
�is section examines existing schemes to apportion net-

work bandwidth between di�erent users in a cloud datacen-
ter. We outline the capabilities and shortcomings of exist-
ingmechanisms, the functionality that is already available at
switches and end hosts (Table ). We classify existingmech-
anisms as those that are local to a switch or a link and those
that are end-to-end.

2.1 Local mechanisms

Ethernet provides VLANs and .p CoS tags to seg-
regate di�erent users and types of tra�c. VLANs pro-
vide reachability separation between di�erent applications,
such as wireless vs. wired, management vs. data, however,
switches enforce no performance isolation between di�er-
ent VLANs that share the same Ethernet trunk. .p,
when used with .qaz, provides performance isolation
of special tra�c classes, such as FCoE []. Neither the
VLAN address space, nor the numbers of supported .p
tags, scale to the number of tenants in today’s cloud data-
centers. �e scalability of .p is constrained by both tag
address space limitations and hardware. Typical switches
support up to eight tags, limited by the number of hardware
queues. �ey map tra�c with each tag to a hardware queue
and apply strict prioritization or de�cit round robin (DRR)
between the queues. Tra�c mapped to the same tag shares
fate since misbehaving or unresponsive tra�c can drown
out other tra�c that is mapped to the same queue.
High end Layer  switches found in the core can po-

lice large numbers of �ows, for example, K with Cisco
Nexus  []. Policers are token bucket �lters: they track
the bandwidth utilization of each �ow and mark or cap the
bandwidth above a certain rate. Such switches are expen-
sive and the majority of datacenter switches do not support
policing. Tra�c along paths with no policer receives no
protection. Even where available, token bucket �lters suf-
fer from being unable to con�gure rates for all �ows that
achieves fairness across tenants. For instance, to achieve
high network utilization, an operator might con�gure po-
licers to mark, rather than cap, �ows above a certain thresh-
old to harvest residual capacity. However, the operator has
no way to prevent a single sel�sh �ow from consuming the
residual capacity.
Compute nodes include virtual switches to multiplex

their physical network connections between virtual ma-
chines. Virtual switches have similar features as physical
switches [, ], however, con�guring large rule-sets can
add CPU overhead. NICs provide o�oad hardware for �l-
tering, rate limiting, and DRR that can reduce overhead,
however currentNICs support only a small number of hard-
ware queues for DRR and less expressive �ltering and rate
limiting rules than datacenter switches.

2.2 End to end mechanisms
CoS and policing only rate limit based on the local state

of the network and do not consider downstream conges-
tion. End-to-end, feedback-based mechanisms, such as
QCN and TCP, are more scalable, since rate controller state
is held only at the edge, and more precise, since they can
control individual �ows without harming other �ows.
QCN is an emerging Ethernet standard for congestion con-
trol in datacenter networks []. In QCN, switches can
send congestion feedback directly to senders: upon detect-
ing a congested link, the switch sends feedback to the heavy
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Scheme Number of
classi�ers Type of control Required topology,

hardware, so
ware
Known vulnerabili-
ties

Churn recon-
�guration

.p,
.qaz  per switch port DRR rates, elastic Switches support

.p/.qaz
Unresponsive senders
can over�ow queues

Update all
switches

Policer  per switch Static rate limit between
VLANs or subnets L switches

For portion of band-
width assigned
statically: not work
conserving. Remain-
ing bandwidth has no
protection

Update all
switches

QCN

In NIC:  rate
limiters.
In so
ware: scales
to DC size.

Middle to end feedback,
elastic

Switches support QCN;
single L domain.

Disable hw rate lim-
iter or ignore feed-
back.

Hardware: Al-
locate rate lim-
iter. So
ware:
None

Rate limiter
(NIC or
hypervisor)

In NIC:  rate
limiters.
In hypervisor:
scales to DC size.

In NIC: Static rate limit
per source VM.
In hypervisor: static
rate limit per virtual
switch �ow.

NIC support for rate
limiter.

Disable hw or sw rate
limiter.

NIC: Allocate
rate limiters.
Hypervisor:
none

TCP In so
ware: scales
to DC size.

End to end feedback,
elastic None

Modify network
stack, open many
TCP connections, or
run non-TCP.

None

Reservations
(MPLS,
RSVP)

Can scale to DC
size []

Static rate limit per
tunnel

Switches with tra�c
engineering upgrade.
For routes, setup/tear
tunnels in
switches/central
controller

Static guarantees are
not work conserving

Con�g MPLS-
lite tunnel for
new VM

Table : Summary of existing approaches to performance isolation. No approach satis�es the scale, cost, and security requirements
of cloud datacenters.

senders. �e feedback packet uniquely identi�es the �ow,
enabling senders that receive feedback to rate limit speci�c
�ows. Since QCN feedback packets encode more detailed
feedback about link utilization, QCN senders have more re-
sponsive control loops than those of TCP.�ough the QCN
standard speci�es implementing hardware-based rate con-
trollers in NICs, recent work has proposed processing QCN
feedback in so
ware, which can support an arbitrary num-
ber of �ows and more �exible reaction algorithms [].
Despite these advantages, QCN fails to meet the topol-

ogy agnostic requirement. To achieve full performance iso-
lation, all links should support QCN. However, it is un-
clear whether QCN will become a standard feature on fu-
ture commodity switches. Because QCN operates at Layer
, while most datacenters contain many Layer  domains
joined by a Layer  core, �ows that span multiple subnets
cannot receive QCN feedback without extensions to the
protocol and gateways.
TCP andUDP: TCP is scalable tomany endpoints, achieves
fair bandwidth allocation, avoids congestion, and supports
arbitrary topologies. Since UDP provides no rate control
properties, some clouds, such as Azure, disallow tenants
from using UDP []. However, allowing only TCP traf-
�c does not solve performance isolation since tenants can
run any TCP stack they choose. Malicious tenants can
overwhelm the network by simply generating a �ood of
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Figure : (A) Flow-level fairness (e.g., TCP). (B)VM-level fair-
ness. �e larger tenant is allotted more bandwidth in (A) than
in (B). [each box represents one VM]

TCP-formatted packets, and sel�sh tenants can get better
throughput by running TCP stacks with congestion control
turned o�.
Flow- vs. VM-level fairness: Even if a datacenter carried
only well-behaved QCN or TCP �ows, bad tenants can still
hog bandwidth at the expense of other tenants. For in-
stance, a sel�sh large tenant can grabmore capacity by open-
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ing many TCP connections to the same destination. Even
if the network restricted tenants to a single additive in-
crease/multiplicative decrease (AIMD) �ow between every
source and destination VM, a tenant that controls O(N)
VMs can open O(N2) AIMD �ows between them. �us,
a large tenant can easily dominate a network bottleneck at
the expense of a small tenant (Figure A). By de�ning fair-
ness by the number ofVMs that share a link, rather than the
number of �ows, the network would constrain the tenant’s
share in proportion to its size in VMs (Figure B). �is no-
tion of fairness prevents the above attacks and is consistent
with how cloud providers allocate compute resources to a
tenant in proportion to the number of VMs that it pays for.
Billing: An economic incentive approach would count the
amount of tra�c contributed by each tenant and bill her ac-
cordingly. While billing disincentivizes tenants from waste
and is an additional source of revenue for the provider, it
is inadequate at enforcing isolation. First, network band-
width does not have a �xed cost: when a link is idle, the
marginal cost of network bandwidth is minimal. When the
link is congested, the cost of network bandwidth is high:
the performance of other tenants su�ers, potentially caus-
ing service failures and customer dissatisfaction. Billing
at a �at rate is either too expensive at low network loads
or not expensive enough when congestion happens. Fur-
ther, none of the cloud providers employ variable pricing
for bandwidth, perhaps because it is complicated to explain
and market. Hence, billing cannot penalize for the sever-
ity of the collateral damage. Second, billing operates on
long timescales and does not protect againstmalicious code.
While a tenant that contributes excessive tra�c will even-
tually have to pay, billing does not provide run-time guar-
antees such as freedom from starvation. Further, an at-
tacker could launch attacks from compromised VMs and
thus avoid being charged.
Reservations: Bandwidth reservations, using mechanisms
such asMPLS andRSVP, statically divide bandwidth among
tenants. While guaranteeing each tenant the bandwidth
they ask for, reservations are not work-conserving. A bot-
tlenecked tenant cannot use more than his reservation even
when there is spare capacity. �e variance in demands
makes reserving for peak usage wasteful and reserving for
average usage less performant. Further, by operating at a
higher granularity than that of a tenant’s tra�c, most reser-
vation schemes do not scale – MPLS, for example, is used
in ISPs to engineer inter-PoP tra�c across pre-determined
paths. Some recent work tackles this scaling problem [].

. Seawall: Hypervisor-based
rate controller

Seawall uses a hypervisor-based rate controller, driven by
feedback from the network and the receiving hypervisor,
that regulates all tra�c sent from a tenant. �us, Seawall

can control even tenants that sendUDP tra�c or usemisbe-
having TCP stacks; malicious tenants cannot attack the rate
controller directly by spoo�ng feedback packets and cannot
escape the rate controller without breaking hypervisor iso-
lation. �e rate controller also protects against direct denial
of service attacks: a recipient of unwanted tra�c can ask the
sender’s rate controller to block future tra�c to the recip-
ient. Seawall uses Layer  (IP) feedback signaling, which
can traverse arbitrary datacenter topologies. �is discus-
sion focuses on intra-datacenter tra�c; we assume that the
datacenter’s Internet gateway participates in Seawall like any
other compute node.

Seawall rate controllers are implemented in the virtual
NIC, the hypervisor component responsible for exporting a
network device interface to a guest’s network driver. A rate
controller takes as input the packets received and sent by the
compute node and congestion feedback from the network
and recipient. On the receive path, the virtual NIC checks
for congestion signals, such as ECN marks or lost packets,
and sends this feedback to the sender.
On the send path, the virtual NIC classi�es incoming

packets into per-(sourceVM, destinationVM, path) queues,
with external destinations mapped onto the Internet gate-
way. Path is needed for networks that use multipath (e.g.,
ECMP []) to assign packets with the same TCP/UDP -
tuple to di�erent paths. Rather than aliasing feedback infor-
mation from di�erent paths onto a common rate controller,
Seawall maps -tuples to queues via a �ow-traceroute. Since
ECMP deterministically maps a -tuple to a path, �ow-
traceroute uses the same source, destination, protocol, and
port numbers, in traceroute probes. In practice, we �nd that
this mapping changes rarely and Seawall can cache it.

Control algorithms.
Seawall can use any rate control algorithm, such as TCP,

TFRC, or QCN, to determine the rate of service for the
transmit queues. Such algorithms vary in their stability, re-
action time, and tolerance to bandwidth delay products. We
defer choosing an appropriate algorithm for future work.
We note that TCP-like rate control achieves max-min

fairness between each contender. In typical use, each con-
tender is a �ow, but as described above, each contender is a
communicating pair of VMs. It is easy to deduce that a ten-
ant with N VMs can grab up to an N2 proportion of band-
width by communicating between all pairs. Tomitigate this,
Seawall uses path feedback to estimate TCP-like fair rate for
each (senderVM, link), i.e., a VM’s share on each link along
the path is independent of the destination. �e rate of ser-
vice for each transmit queue is the minimum of the rates of
links along the corresponding path.

Interaction with guest OS.
Since the rate controller changes the order in which pack-

ets drain from the virtual NIC it can cause head-of-line
blocking in the guest’s NIC driver. �e virtual NIC driver
blockswaiting for the virtualNIC to acknowledge that pack-





ets have been sent to prevent over�owing theNIC bu�er be-
fore sending more packets.
Fully solving this problem requires some participation

from the guest: the rate controller could send positive or
negative feedback (e.g., with window size or ECN) to an un-
modi�ed guest running TCP, expose �ow-speci�c queues to
the guest, or apply backpressure on a per-socket, rather than
a per-NIC, basis [, ]. Since the same problem occurs with
QCN, the same so
ware modi�cations to virtual NIC in-
terface, network stack, and applications will work for both
Seawall and QCN.

3.1 HyperV prototype
We have built a prototype rate controller for HyperV

[]. �e implementation does not depend on any HyperV-
speci�c functionality and only requires that the hypervisor
provide a high-resolution timer and allow in-place modi�-
cations of packets from the guest. �us, we expect our tech-
niques to generalize to other hypervisors.
To ease development, deployment, and distribution, the

rate controller was implemented as an NDIS packet �lter
driver rather than as changes to the virtual NIC. Should we
need to send control messages between the guest VM and
�lter driver, we plan to tunnel them over Ethernet. �e im-
plementation took  lines of code, compared with 
for the sample pass-through packet �lter. We have not yet
implemented the extensions to prevent head of line block-
ing in the guest OS.
�e rate controller installs directly above the physical

NIC driver, where it interposes on all sent and received
packets. It implements a TCP-like algorithm and applies
an encapsulation header around the transport headers, con-
sisting of packet sequence number, packet acknowledgment
number, and a single entry SACK.
To verify performance isolation, we ran competing TCP

and UDP �ows over a  Mb/s bottleneck link. Enabling
the rate controller on the UDP source forced the �ow to be
TCP-friendly, allowing the TCP connection to acquire its
fair share of bandwidth.

3.1.1 The impact of encapsulation on performance
Our prototype, which is an unoptimized work-in-

progress, is CPU-bound, achieving only Mb/s through-
put on a  Gb/s link. Since this is below our performance
requirements, we are redesigning the rate controller tomin-
imize CPU overhead. Our preliminary e�orts suggest that
changing the way the rate controller inserts data into pack-
ets will enable us to both exploit NIC o�oads and reduce
the complexity of our code. By using a “bit-stealing” ap-
proach ( §..), our newer prototype achieves  Mb/s.
Using encapsulation breaks NIC o�oads, since NICs

need to parse packet headers to implement o�oads. To de-
termine the importance of preserving NIC o�oads, we ran
the NTttcp [] micro-benchmark to measure the through-
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Figure : CPU utilization of a TCP sender under di�erent
NIC o�oad con�gurations; “non-virtualized” denotes the na-
tive performance of the machine, without any virtualization.
To minimize overhead, rate controller implementations would
need to be compatible with segmentation o�oad.

put and CPU overhead of a TCP sender running on a ma-
chine equipped with a quad core . Intel Core Duo and
an Intel LMNIC connected to a receiver over a  Gb/s
link. Like most commodity NICs, this NIC o�oads check-
summing and transmit segmentation of TCP packets.
While NTttcp achieves line rate (above  Mb/s) in all

o�oad con�gurations, the CPU utilization varies consider-
ably. Segmentation o�oad decreases overhead by allowing
the network stack to handle the same volume of tra�c with
less bookkeeping. When segmentation o�oad is enabled,
the network stack can divide the tra�c into packets larger
than the MTU, thus reducing the total number of packets
that pass through the so
ware stack. �e NIC hardware
chops these large packets down to the MTU to maintain
compatibility with the network.
Segmentation o�oad reduces overhead in both the guest

and hypervisor. Running segmentation o�oad in the guest
reduces overhead even in the absence of hardware support
[]. However, these savings are minimal on our platform,
only reducing utilization from. to . (Figure ). By
comparison, the reduction fromenabling o�oad in both the
guest and the hypervisor is signi�cantly higher, dropping
utilization to .. Segmentation o�oad has the greatest
impact; enabling just this reduces utilization to ..

3.1.2 Offload-compatible encapsulation
To achieve our performance requirement, we will need

to �nd an alternate, o�oad-compatible way to encode data
from the rate controller. An encoding breaks o�oad if the
hardware cannot parse the resulting packet header. Con-
versely, o�oad hardware can break an encoding if it over-
writes or discards data.
�e rate controller can satisfy both requirements by

“stealing bits” from unused, redundant, or predictable bits
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in the TCP/IP headers. For instance, a rate controller can
encode data in any �eld, such as the IP ID and TCP times-
tamp so long as it () accounts for how the network andNIC
interpret and update those �elds, and () upon receiving
a packet, restores these �elds to reasonable values for the
guest. To minimize the required space, the rate controller
only encodes a sequence number, which su�ces for detect-
ing losses. Other information, such as acknowledgments
and RTT estimates, is exchanged on a separate connection
between the source and destination hypervisors.
Bit-stealing can only encode a limited amount of data,

which can limit future improvements to the rate controller.
Placing rate controller data in the packet payload, i.e. af-
ter the transport layer headers, yields more space with-
out breaking segmentation. However, segmentation o�oad
breaks this encoding, since the data would only be included
in one of the output packets. Encoding the data as a TCPop-
tion solves this problem, since the o�oad hardware would
copy it to all output packets as part of the transport header.
Changing the length of a packetmay require allocating an

additional packet bu�er, which adds CPU overhead com-
pared to the bit stealing approach. Modifying the guest net-
work stack to leave extra space in packets for hypervisor-
level data avoids this. �is optimization is straightforward
and is an instance of device paravirtualization [].
In addition to enabling segmentation o�oad, both en-

codings preserve compatibility with important switch func-
tionality, such as ACLs, that reference TCP and UDP port
numbers, and load balancing functionality, such as ECMP
and receive side scaling [], which spread load using both
IP addresses and TCP/UDP port numbers.

Virtualization-aware NICs.
NICs for virtualized datacenters include additional hard-

ware o�oads that allow guest VMs to directly access the
hardware, bypassing the CPU and latency overheads of
passing packets through the hypervisor. Using the PCI
SR-IOV interface, the hypervisor can bind VMs to dedi-
cated virtual contexts that each provide the abstraction of
a dedicated NIC []. To prevent starvation and to provide
proportional resource allocation, hypervisors can con�gure
NICs to enforce rate limits for each virtual context.

Seawall is compatible with virtual contexts given appro-
priateNIC or network support. Our current prototype splits
the rate controller into two components. A rate selector
outside the forwarding path (in HyperV, running in a user-
space process within the root partition) continuously up-
dates the rate limits for each �ow based on congestion sig-
nals. A rate limiter on the forwarding path (in HyperV, run-
ning in the �lter driver) enforces these limits. For guests that
directly use a virtual context, the rate selector would instead
con�gure the corresponding NIC rate limiter. Alternatively,
the rate selector could con�gure a matching policer in an
upstream switch.
�e rate limiters on existing SR-IOVNICs lack two pieces

of functionality necessary to support Seawall. First, Sea-
wall’s so
ware rate limiter passes congestion signals, based
on monitoring received packets, to the rate selector so that
the rate selector can determine the appropriate rate. NIC
rate limiters do not provide this monitoring functionality.
Second, the so
ware rate limiter enforces a separate rate
limit for each destination and path. NIC rate limiters are
not su�ciently selective: they enforce rate limits based only
on source and are not multi-path aware.
Hypervisor virtual switches are becoming increasingly

sophisticated; this trend will likely enhance the capabili-
ties of SR-IOV NICs. In particular, Seawall can use hard-
ware support for port mirroring, already available in SR-
IOV NICs, to monitor congestion signals [].

. Tolerating Compromised Hypervisors
Hypervisor compromise is a growing concern for cloud

computing []. Existing networks that shi
 trusted net-
work functionality to end hosts typically rely on attestation
to check the boot-time integrity of the hypervisor and its
network stack []. Due to the lack of performant mech-
anisms for detecting hypervisors that are compromised at
runtime, Seawall uses defense in depth to limit the potential
damage from such attacks.
At a high level, Seawall preserves performance isolation

by forcing compromised hypervisors to behave like uncom-
promised hypervisors in many situations. Seawall achieves
this by using uncompromised hypervisors to detect misbe-
havior, such as not reducing send rate in response to con-
gestion feedback. Upon detecting misbehavior, hypervisors
report it to Seawall, which then contains or shuts down the
compromised hypervisor.

Seawall uses additional low level network invariants to
prevent compromised hypervisors from escaping detection.
Compromised hypervisors might spoof packets to make it
harder to detect an attack, or worse, falsely incriminate an
innocent hypervisor, causing Seawall to shut it down. A
compromised hypervisor might also send packets, such as
those with invalid destination addresses or with low TTLs,
that are invisible to detection because they never reach an
end host. Seawall uses existing switch security features to
prevent all of these attacks.

Protecting against false accusations.
Responding quickly to an attack helps tominimize its im-

pact but doing so makes the system vulnerable to false ac-
cusations. Seawall requires a threshold of reports from f
unique hypervisors before shutting down a hypervisor. �is
requires the attacker to compromise f hypervisors before
it can trick the hypervisor, but it also slows down the re-
sponse to a real attack. To mitigate this, Seawall incremen-
tally sandboxes purported attackers with network packet �l-
ters to prevent them from sending more packets to their
accusers. �is approach can provide a substantial security
margin with existing datacenter switches.





. Related work
ETTM [] is similar in attempting to push functionality

towards the edges. It leverages virtualization at the endhosts
to implement NAT functionality among other things. Un-
like Seawall, it does not focus on performance isolation and
is targeted at a di�erent domain (branch o�ces and home
networks) that lets it focus less on performance overheads
and the possibility of hypervisor compromises. So
UDC
used hypervisor rate limiters to control the network uti-
lization of di�erent tenants within a shared datacenter [].
Seawall extends this work with an exploration of the design
space given the constraints of deployed cloud datacenters.
Recent work in hypervisor, network stack, and so
ware

routers have shown that so
ware-based network process-
ing, like that used in Seawall for monitoring and rate limit-
ing, can be substantially more �exible than hardware-based
approaches, yet achieve high performance. [] presents
several so
ware optimizations of a hypervisor virtual switch
and network stack to achieve comparable performance to
direct I/O. �e Sun Crossbow network stack provides an
arbitrary number of bandwidth-limited virtual NICs [].
Crossbow provides identical semantics regardless of under-
lying physical NIC and transparently leverages o�oads to
improve performance. Seawall’s sender-side rate controller
can be incorporated into both of these network stacks.

. Conclusion
�is paper proposes Seawall, a scalable performance iso-

lation system for cloud datacenter networks that fairly al-
locates network capacity between tenants; achieves elastic,
network utilization; and is robust against malicious tenants.
Performance variation and service availability remain key
concerns when deploying and maintaining cloud applica-
tions. Since Seawall requires no special support from the
network, it can be deployed in existing datacenters to im-
prove both of these metrics.
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