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Abstract
Cloud computing is based on the notion of shared computational, storage, network, and
application resources provided by a third party. This paper explores in detail the concept
of cloud computing, its advantages and disadvantages and describes several existing cloud
computing platforms. It then discusses the results of quantitative experiments carried out
using PlanetLab, a cloud computing platform. The paper also discusses how the methods
of capacity planning are impacted by the advent of cloud computing from the point of view

of the cloud user and from the cloud provider.

1 Introduction

Cloud computing is a relatively new concept but has
its roots in many not so new technologies. One of the
main tenets of cloud computing is the sharing of comput-
ing resources among a community of users. A successful
predecessor of the idea is the Condor project that started
in 1988 at the University of Wisconsin-Madison [31]. This
project was motivated by the observation that a high per-
centage of the capacity of user’'s workstations is idle while
their users are away of their offices or doing other tasks such
as reading or talking on the phone. These idle cycles can
be harvested by the Condor system and made available to
users who need more computing power than that available
to them at their local workstations.

Another technology related to cloud computing is grid
computing. The grid is defined as a hardware and software
infrastructure that provides dependable, consistent, perva-
sive, and inexpensive access to high-end computational ca-
pabilities [14]. It became the main computing paradigm
for resource-intensive scientific applications and more re-
cently for commercial applications [11]. Fred Douglis points
out that although grid computing and cloud computing are
closely related, they are indeed truly distinct [6]. Resource
allocation issues are crucial to the performance of applica-
tions on the grid. See [12] for a description of heuristic
techniques for optimal allocation of resources (i.e., com-
puting, network, service providers, and secondary storage)
in grid computing.

One of the technologies that has enabled cloud com-
puting is virtualization because it allows for easy isolation

of applications within the same hardware platform and easy
migration for purposes of load balancing. Isolation is impor-
tant for security concerns and load balancing is important
for performance considerations. Service oriented architec-
tures (SOA) and Web services are also an important devel-
opment for building clouds that provide services as opposed
to just computing resources.

This paper discusses the concepts of cloud computing
as well as its advantages and disadvantages. In order to
provide a more concrete example of the benefits of cloud
computing, the paper shows results of experiments con-
ducted on PlanetlLab, a cloud infrastructure widely used
in academia. The paper then discusses how cloud users
can optimally select the values of Service Level Agreements
(SLAs) to be negotiated with cloud providers in order to
maximize their utility subject to cost constraints. A nu-
meric example is thoroughly discussed.

The rest of the paper is organized as follows. Section
2 discusses the definition of cloud computing as well as its
advantages and disadvantages. Section 3 briefly describes
some examples of cloud computing platforms. The next
section discusses the results of experiments carried out with
PlanetLab. Section 5 discusses capacity planning issues as
they apply to cloud computing. Section 6 presents some
concluding remarks.

2 What is Cloud Computing

Cloud computing has many different meanings for differ-
ent people. However, a basic definition that encompasses
virtually all definitions is the following: Cloud computing is
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a modality of computing characterized by on demand avail-
ability of resources in a dynamic and scalable fashion. The
term resource here could be used to represent infrastruc-
ture, platforms, software, services, or storage. The cloud
provider is responsible to make the needed resources avail-
able on demand to the cloud users. It is the responsibility
of the cloud provider to manage its resources in an efficient
way so that the user needs can be met when needed at
the desired Quality of Service (QoS) level. For example, an
infrastructure cloud offers computing infrastructure, typi-
cally in the form of virtual machines allocated to physical
servers, as needed by its users. Cloud users are charged, in
most cases, by how much resources they consume (e.g., $
per hour of CPU usage).

An analogy between cloud computing and the power
grid is useful to capture some of the similarities but also
some important distinctions. Consumers use electric en-
ergy on-demand according to their needs and pay based on
their consumption. The electric power utilities (analogous
to cloud providers) have to be able to determine at each
point in time how much energy to generate in order to be
able to match the demand. A variety of models that include
weather prediction models and historic data on power con-
sumption for each day of the year and each hour of the day
drive the decisions made by utilities.

The analogy breaks in some of important aspects. The
product delivered by the power grid is homogeneous (e.g.,
110 V of alternating current at 60 Hz). On the other hand,
computing clouds offer a variety of resources on demand.
Another important difference has to do with the interface
and plug-compatibility. One can plug any appliance to the
power grid and it will work seamlessly as long as it conforms
to a very simple specification of voltage and frequency. The
same is not true with computing clouds. The APIs of-
fered by cloud providers are not standardized and may be
very complicated in many cases. In other words, computing
clouds are not “plug-and-play” yet.

The following are some of the advantages of cloud com-

puting:

e Pay as you go: Companies can avoid capital expen-
ditures by using cloud resources on an as needed ba-
sis. In the owned approach, the total cost of owner-
ship (TCO) is a function of three main components:
1) initial capital investment for hardware, software,
networking, facilities infrastructure including cooling
and power, 2) operational costs which includes hard-
ware and software maintenance, personnel cost (in-
cluding system, network, database administrators, ca-
pacity planning analysts), power consumption, and de-
preciation, 3) system upgrades required to cope with
the growth of existing workload and/or new workloads.

e No need to provision for peak loads: If cloud com-
puting resources are used, the responsibility to support

peak loads at agreed upon service levels rests with the
cloud computing provider.

e Time to market: Because users of cloud computing
resources do not need to procure, install, and test all
the infrastructure including middleware and applica-
tions in many cases, they can be up and running in
very little time.

e (Consistent performance and availability: When ser-
vices are provided by the cloud under strict SLAs that
are specific on response time and availability, users do
not need to worry so much about maintaining ade-
quate levels for these metrics. This burden is shifted
to the cloud, which, by virtue of managing a typically
large infrastructure may be able to autonomically shift
resources (e.g., virtual machines) to keep up with vary-
ing and unpredictable workloads [7].

The potential drawbacks and or concerns regarding cloud
computing are:

e Privacy and security: Many organizations may be
concerned about having their sensitive data living in
the same platforms as that of their competitors. There
may be concerns regarding exposing a company's pri-
vate data to the cloud computing provider. In some
cases, a company may be bound to several types of
regulations (e.g., HIPPA) whose responsibility cannot
be easily delegated to a third party provider.

e External dependency for mission critical applications:
Even when cloud providers offer to adhere to strict
SLAs and pay penalties for non-compliance, cloud users
may be concerned about trusting some of their mission
critical applications to a third party.

e Disaster recovery: Users of resources in a cloud need
to have guarantees that the provider has adequate
backup and disaster recovery plans that will prevent
a disruption of a user’s activities in the face of natural
or man-made disasters.

e Monitoring and Enforcement of SLAs: Negotiating,
monitoring, and enforcing SLAs may be challenging
in cloud computing because cloud resources and ser-
vices are shared by a multitude of users and because
providers have little control over the workload intensity
of the different cloud applications.

3 Examples of Cloud Computing Plat-
forms

This section discusses some examples of cloud comput-
ing platforms.



3.1 PlanetLab

PlanetLab is a virtual lab network that builds on top of
the concepts of grid computing, distributed computing,
and utility computing to support large-scale research and
development using the service-on-demand paradigm [24].
Since its establishment in March of 2002, PlanetLab has
grown tremendously from just over 40 sites and 100 nodes
to 425 active sites [25] with 985 nodes [26] that scatter
across 40 countries. PlanetLab currently hosts over 246
active research projects and experiments from various disci-
plines [27]. Many researchers around the world use Planet-
Lab as an overlay testbed to conduct scientific experiments,
gather statistical data, and validate the results.

PlanetLab affords experimental researchers the possi-
bility of conducting computationally intensive experiments
they were not able to conduct before due to the lack of
supercomputing power. By taking advantage of shared re-
sources, such as CPU cycles, storage, and memory, com-
bined from multiple nodes in the PlanetLab environment,
researchers are able to run their experiments in a distributed
and parallel fashion with less cost. Also, because of the
distributed nature of cloud computing, PlanetLab is able to
improve scalability, availability, reliability, and performance.

PlanetLab provides common abstractions to use its re-
sources via the PlanetLab Central API[29]. This API allows
users to create automated scripts to ease the deployment
and monitoring of applications running at multiple nodes.
Researchers can create a script to monitor node availability
and take appropriate actions based on predefined criteria.
If the monitoring process detects that a node is down, it
can dynamically find another, add it to the set of already
allocated PlanetLab resources, install any needed tools, and
then deploy the applications to it. This way, an application
can be up and running within minutes.

3.1.1 Structure

Figure 1 illustrates the structure of PlanetLab, which con-
sists of a number of physical sites scattered all over the
world. Each site has at least one PlanetLab node, which
runs components of PlanetLab services. A slice is a set
of allocated resources distributed across PlanetLab nodes.
PlanetLab offers no guarantee related to the period of time
during which these resources will remain allocated. When
a user logs into a PlanetLab node, he or she has to com-
pete for resources with the current users. Therefore, with-
out fixed resources allocated to a slice on a particular time
interval, performance measurement of an application on
PlanetLab can be quite challenging.

3.1.2 Business Model

The PlanetLab Consortium is formed by trusted academic
institutions and research organizations around the world
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Figure 1: PlanetLab’s structure: nodes and slices.

that jointly provide a common platform for conducting re-
search and scientific experiments. Unlike most other cloud
computing platforms, PlanetLab does not follow the pay-as-
you-go model. The consortium consists of five membership
levels [28]:

1. Charter ($300K annual dues): affords a permanent
seat on the Steering Committee, unlimited number of
slices, access to PlanetLab events, research papers,
and working groups.

2. Full ($75K annual dues): provides a rotating seat on
the Steering Committee, a maximum of 10 slices, ac-
cess to PlanetLab events, research papers, and working
groups.

3. Associate ($25K annual dues): provides up to 2 slices
and access to PlanetLab events, research papers, and
working groups.

4. Sponsor ($10k annual dues): provides access to Plan-
etLab events and research papers.

5. Academic (no annual dues): provides a seat on the
Steering Committee by invitation, up to 10 slices, and
access to PlanetLab events, research papers, and work-

ing groups.

3.2 Amazon’s Elastic Compute Cloud (EC2)

Amazon is a leading-edge company in the cloud computing
space. In August, 2006, Amazon released Amazon Elas-
tic Cloud Computing (Amazon EC2) to the public. Ama-
zon's EC2 is a virtual site farm that allows a company to
outsource its Information Technology infrastructure so that
their resources can be concentrated on other initiatives vital
to the company’s success. Users can dynamically determine



the number and type of compute instances needed to sup-
port their infrastructure. There are two types of instances:
standard and high-CPU. Within each category there are dif-
ferent sizes of instances depending on the amount of main
memory, number of compute units, and amount of sec-
ondary storage available. For example, a small standard
instance has 1.7 GB of main memory, 1 EC2 compute unit,
160 GB of secondary storage, all in a 32-bit platform.

Since its rollout, Amazon has improved the reliability of
their cloud infrastructure service with persistent storage ca-
pability via Elastic Block Storage (EBS) and the assignment
of static IP addresses in the dynamic cloud environment
via Elastic IP addresses. Other interesting features include
Amazon CloudWatch, a performance monitoring service,
and Auto Scaling, which allows the number of instances
to be automatically scaled up or down to maintain perfor-
mance goals.

3.2.1 Structure

With service-on-demand capability built into Amazon EC2,
customers have great flexibility to customize their IT needs
dynamically as their customer base increases. Amazon's
EC2 centers around the idea of providing “Anything as a
Service” which is potentially a game-changing technology
that could reshape IT [4]. EC2 implements three important
basic services: Infrastructure as a Service (laaS), Platform
as a Service (Paa$S), and Software as a Service (SaaS) [3]:

1. Infrastructure as a Service (laaS): laaS clouds aim at
the hardware level and make the provisioning of cus-
tomer resources such as servers, connections, storage,
and related tools easy and affordable. This allows de-
velopers to quickly and cost-effectively build applica-
tion environments from scratch. Building an IT infras-
tructure to provide IT services can be quite complex; it
becomes even more complex when the infrastructure is
large-scale, highly-distributed, and multi-regional-site.
Yet, with the complexity of such infrastructure comes
a high degree of flexibility. Companies are able to scale
up or down their resources depending on the current
workloads within minutes.

2. Platform as a Service (PaaS): PaaS is the integra-
tion between infrastructure and a commercial devel-
opment platform to build and launch applications or
services from. PaaS clouds, working in combination
with laa$S clouds, have the benefit of making deploy-
ment and scalability trivial and ensuring that costs are
linearly incremental and reasonably predictable. Com-
panies such as Oracle, Microsoft, Google, and Sales-
Force have enabled their software to be used in the
cloud as an increasing number of users perceive the ef-
fectiveness and cost saving of cloud computing. Exam-
ples of Paa$ include Google App Engine (Python), Mi-
crosoft's Azure (.Net), and Force.com (Appexchange).

Many more are in the process of converting their plat-
form software services to be cloud enabled.

3. Software as a Service (SaaS): SaaS aims at the applica-
tion-level software used by cloud users to achieve their
mission. It ranges from office software to financial
software such as tax preparation and budgeting. The
term Saa$S has been around for quite a while but cloud
computing has revitalized the SaaS model by reducing
the cost of producing a SaaS application. Saa$S serves
as a stepping stone in the evolution of cloud computing
in terms of resource management and allocation.

3.2.2 Business Model

Amazon adopts a pay-as-you-grow paradigm to lease ser-
vices provided by EC2. Depending on the instances being
requested, Amazon EC2 provides flexible plans of service
to meet all types of customers from small startup of a sin-
gle individual developer to a large-scale corporation that
has multiple distributed locations around the world. Usage
of resources is calculated and billed on a per hour basis.
As of now, Amazon EC2 is strictly for commercial users
and not available for academic institutions at a discounted
price. However, many academic institutions are consider-
ing Amazon EC2 as a promising solution for their future IT
needs.

3.3 Google’s App Engine

Google's App Engine is a cloud infrastructure that has
gained significant attention and market share in the cloud
computing space. App Engine helps to eliminate or reduce
the IT infrastructure at the local or office level while pro-
viding high reliability, availability, scalability, and integrity.
Yet, Google provides a wide range of development tools
that can be leased as a service and are very elementary and
trivial to use for application deployment and maintenance.
These tools scale as the needs to serve a higher number of
concurrent customers increases.

3.3.1 Structure

Google developed its own distributed storage system called
Bigtable [2]. Bigtable's data model is a sparse, distributed,
multidimensional map indexed by a row key, a column key,
and a timestamp. To achieve Google's goals of providing
wide applicability, scalability, high performance and high
availability infrastructure, Google developed an SQL-like
query language for Bigtable called “GQL". Unlike SQL,
GQL does not support join statements and has restrictions
on the where clause to>, <, <, < operations on one column
only [16]. Google also provides the non-relational Bigtable
API, similar but not identical to the SQL API, which sup-
ports datastore transaction and query.



App Engine currently supports two runtime environ-
ments: Java and Python and provides standard protocols
and a number of tools for web development [15]. Applica-
tions are deployed and run in the secure environment that
permits restricted access to the host operating system. This
restricted access allows App Engine to distribute requests
to multiple servers and makes it possible to start and stop
servers to meet the traffic demand [15].

3.3.2 Business Model

Google applies the "Pay for What You Use” business model.
There is no fee to start an App Engine account. The usage
of resources such as storage and bandwidth is measured
in gigabytes. Google App Engine gives developers total
control of the resources that they are using and allows them
to set the maximum allowed usage to avoid surprises when
they receive the monthly bills. Developers can develop and
deploy at no charge applications that utilize at most 500MB
of disk space and enough CPU and bandwidth to serve up
to 5 million page views a month [15]. Google also allows
developers to enable a billing capability that monitors if the
usage of the environment exceeds the free limit. Users are
only charged for the use of resources that exceeds the free
levels [15].

3.4 Microsoft’s Azure

Windows Azure is an open cloud computing platform built
into the operating system that “serves as the development,
service hosting, and service management environment for
Azure Services Platform” [17]. Microsoft provides a data
center to host web applications that can scale in terms of
computing power and data storage on demand. Microsoft
plans to release the initial commercial version of Windows
Azure at the end of 2009. Since Windows Azure is an open
platform, it supports both Microsoft proprietary and other
commercial languages and development environments. The
Azure Service Platform provides a set of Microsoft core
developer services such as Live, .Net, SQL, SharePoint, and
Dynamic CRM Services that will be run on Windows Azure
operating system [18].

Windows Azure targets all kinds of users ranging from
novice computer users and hobbyists to web, software, and
corporate developers, or anyone in between, providing scal-
ability and flexibility to an increasing demand of outsourc-
ing the local and corporate development environment [18].
The experience that Microsoft has gained over the years in
building operating systems and development tools has con-
verged into the release of Windows Azure. With Microsoft’s
proprietary .NET environment and Visual Studio tools, de-
velopers can create any type of application: gaming, wire-
less device applications, web authoring, or combinations
of everything. Developers can also use non-Microsoft lan-
guages such as Ruby, PHP and Python, and environments

such as Eclipse and NetBeans to build their applications.
Windows Azure not only provides a set of available services
for consumers, but also facilitates the composition of more
complex services tailored to their needs [18].

3.4.1 Structure

Microsoft Azure relies on several core services: Live, SQL,
.NET, SharePoint, and Dynamic CRM services. These core
services are used to facilitate, develop, manage, compose,
and monitor services and the communication between ser-
vices.

Live services handle user data and application resources
and allow developers to communicate with web audiences
via digital devices and access social networking services such
as chat and e-mail.

SQL services extend Microsoft SQL Server to cloud-
enabled capabilities as a web-based and distributed rela-
tional database with enhanced security, availability, scala-
bility, and reliability. Microsoft SQL Data Services (SDS)
is a cloud-based relational database platform built on SQL
Server technologies. With SDS, customers can maximize
the benefits and capabilities to provision and deploy the
relational database to highly distributed data centers [21].

.NET services enable hosting, scalability, and developer-
oriented capabilities that serve as the foundation for many
cloud-based and cloud-aware applications [22]. Microsoft is
working on adding more services as core services for .NET
Services. It currently supports three core services: Access
Control, Service Bus, and Workflow [22].

SharePoint and Dynamic CRM Services allow customers
to access SharePoint and CRM functionalities to collabo-
rate and share information among different entities. Devel-
opers can utilize the capabilities provided in SharePoint and
CRM cloud-enabled services to build applications quickly by
extending from these services [18].

3.4.2 Business Model

Windows Azure Service Platform targets all types of cus-
tomers for its business model, which is built from four prin-
ciples: pay to use, the price to use the service must be
attractive and affordable to the market, the opportunity to
grow and expand to become Microsoft service partners, and
the ease of tracking and accessing via web interface or the
existing channels [19].

Services in the Azure Services Platform will be initially
available in the Community Technology Preview (CTP)
phase with certain constraints for everyone at no cost. Mi-
crosoft will use the feedback from the CTP to evaluate
and build an affordable business model to meet everyone's
needs in terms of the usage, pricing, and services [19]. Af-
ter the CTP, Microsoft will launch Azure services commer-
cially, which then will be charged and licensed based on a
consumption-based model. Microsoft provides tools in the



Azure Services Platform to monitor, increase and decrease
resource usage based on user's business requirements. Fur-
thermore, these tools allows customers to expand or limit to
certain capacities the services so that costs do not exceed
the allowed budget.

3.5 NSF’s Cloud Computing Research Initia-
tive

Recently, the National Science Foundation (NSF) has in-
vested in the area of cloud computing research projects or
projects that take advantage of a cloud computing infras-
tructure to help solve problems that would be impossible
to handle with the computing power that resides locally.

NSF just awarded $5 million in grants to 14 universities
around the United States through its Cluster Exploratory
(CIuE) program on April 23rd, 2009 [23]. These universi-
ties will participate in the IBM/Google Cloud Computing
University Initiative, which started in 2007 to help students
from various disciplines utilize cloud benefits and gain in-
valuable skills to build applications. The awardees are en-
gaged in various research areas in high data-intensive com-
puting including image processing, studies for comparative
large-scale data analysis, Internet improvement studies, and
medical studies of human genome sequencing [23]. These
research projects will utilize the existing cloud infrastructure
provided by IBM and Google. The main foci are to explore
novel concepts for solving challenging problems using the
parallel and distributed cloud environment.

4 Experiments with PlanetLab

To demonstrate the power of a cloud platform we con-
ducted some experiments that are reported in this section.
The experiments use a simple application, namely the par-
allel computation of the number w. The computation of 7
can be approximated by observing that « is the area of a
circle of radius equal to one. Therefore, 7 is equal to four
times the area of a quadrant with radius one. Figure 2 in-
dicates a number of randomly generated points in a square
of unit area in the x-y coordinate plane. Also shown in
the figure is a quadrant of a circle with unit radius. The
Monte Carlo approach for computing the area of the circle
quadrant is simply based on determining the fraction of all
randomly generated points that fall within the quadrant of
a circle.

More specifically, the following Monte Carlo based al-
gorithm can be used to estimate 7:

1. NumPointsInQuadrant « 0;
2. Repeat (a) and (b) m times.

(a) Randomly select a point (x,y) such that x and
y are random numbers uniformly distributed in
[0,1].

(b) If /22 +y? <1 then

NumPointsInQuadrant «+— NumPointsInQuadrant
+ 1.

3. ™ « 4 x NumPointsInQuadrant/m.

Figure 2: Monte Carlo computation of .

The larger the number of times m that step 2 is re-
peated, the better is the approximation for m computed in
step 3. The precision of the computation can be increased
without significantly increasing the computation time by
executing steps 2 at n nodes in parallel and then combin-
ing the values of NumPointsInQuadrant reported by each
node. Thus, the distributed version of the above algorithm
is as follows.

1. (At the master node). Send m and n to all n slave
nodes.

2. (At each slave node i, i = 1,---,n).
NumPointsInQuadrant, < 0.

3. (At each slave node 4, i = 1,---,n). Repeat (a) and
(b) m/n times.

(a) Randomly select a point (x,y) such that = and
y are random numbers uniformly distributed in
[0,1].

(b) If /22 +y? <1 then
NumPointsInQuadrant, <
NumPointsInQuadrant; + 1.

4. (At each slave node i,i =1,---,n).
Send NumberPointsInQuadrant, to the master node.



5. (At the master node).
7 — 4 x > 1" NumPointsInQuadrant, /m.

We implemented the distributed algorithm in PlanetLab
with a number of nodes n varying from 1 to 10. The value
of m was set to 10? (i.e., 1 billion) and each node executes
steps 3 of the distributed algorithm m/n times. In our
experiments, all nodes have the following characteristics:
2 Intel(R) Core(TM)2 Duo E6550 processors at 2.33 GHz
with 3.44 GB of main memory. The ten nodes that partic-
ipated in the experiments were spread around the country
according to Table 1. The last column in the table shows
the participation of a node in the experiments. For exam-
ple, node UP1 participated in all experiments in which n
varied from 1 to 10. Node GMU4 participated in the exper-
iments in which n varied from 6 to 10. Node VT was only
included in the experiment with 10 nodes. So, when we
ran experiments with 5 nodes, the nodes that participated
were UP1, UP2, GT1, GT2, and GMU3.

Node Name | Location Participation
UP1 Univ. Pennsylvania 1-10
UP2 Univ. Pennsylvania 2-10
GT1 Georgetown University 3-10
GT2 Georgetown University 4-10
GMU3 George Mason University 5-10
GMU4 George Mason University 6-10
CT1 Caltech 7-10
CT2 Caltech 8-10
CN4 Cornell University 9-10
VT Virginia Tech 10

Table 1: Distribution of the 10 nodes for the experiment.

For each value of the number of nodes n, 100 runs were
made and the execution time E of the algorithm was mea-
sured as the time needed for all n nodes to complete their
execution. Figure 3 shows the variation of the average exe-
cution time for the 100 runs as a function of the number of
nodes used. The figure also shows 95% confidence intervals
for the average. A regression analysis shows that a power
curve approximates reasonably well (i.e., R? = 0.9055) the
variation of the execution time E with the number of nodes
n. The regression curve is

E = 124,828 x n~ 07319, (1)

The execution time decreases as n increases according to
a power relationship. For example, with a single node, the
computation of 7 takes 2 minutes on average while with
ten nodes it takes 20 seconds on average.

Figure 4 shows the variation of the speedup, defined
as the ratio between the average execution time with one
node E; and the execution time FE, with n nodes. For
example, when 10 nodes are used, the application runs 6.3
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Figure 3: Execution time (in msec) vs. number of nodes.
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Figure 4: Speedup vs. number of nodes.



times faster than if a single node were used. The speedup
increases with n. A linear regression shows that the rela-
tionship between the speedup S and the number of nodes
n can be reasonably approximated as

S =0.5391 x n + 0.4461 (2)

with a coefficient of determination R? equal to 0.9435.

While the example above is relatively simple, it illus-
trates how computations can be performed on top of a
cloud platform. However, many organizations are moving
significantly complex applications to the cloud. This re-
quires that capacity planning issues—usually handled within
the confines of an organization—be tackled from an exter-
nal perspective.

5 Capacity Planning for the Cloud

How does the traditional notion of capacity planning
change when using cloud computing? There are two points
of view to consider: one from the user of cloud services and
the other from the provider.

5.1 From the Cloud User’s Point of View

When services are executed on demand using cloud re-
sources, the burden of capacity planning shifts to the provider
of the cloud services. However, cloud users have to be able
to negotiate SLAs with cloud service providers. Since there
may be SLAs for different QoS metrics, cloud users should
consider using the notion of wtility function to determine
the combined usefulness of cloud services as a function of
the various SLAs. Utility functions are used quite often in
economics and have been extensively used by the first au-
thor of this paper in autonomic computing [1, 8, 9, 10, 13].
However, the use of utility functions to determine the op-
timal mix of SLAs in cloud computing as presented here is
novel.

We introduce the following notation to formalize the
problem of optimal selection of SLAs to be negotiated with
the provider of cloud services. Let,

e SLA,: SLA (in seconds) on the average response time
per transaction.

e SLA,: SLA (in tps) on the transaction throughput.
e SLA,: SLA on the cloud availability.

e C.(SLA,): per transaction cost (in cents) when the
negotiated response time SLA is SLA,.

e C,(SLA): per transaction cost (in cents) when the
negotiated throughput SLA is SLA,.

e C,(SLA,): per transaction cost (in cents) when the
negotiated availability SLA is SLA,.

e U: global utility. The global utility function is com-
posed of terms that represent the utility for various
metrics such as response time, throughput, and avail-
ability. The utility is a dimensionless number in the
[0,1] range.

® w,, W,,W,: Weights associated to response time, through-

put, and availability, respectively, used to compute the
global utility. w, + w, +w, = 1.

The cost functions used in the following example are:

C,(SLA,) e Pr ShAr
C.(SLA,) = a, SLA,
Co(SLA,) = P SLAa _ 095 ST A >0.9. (3)

As it can be seen, the response time cost decreases
exponentially as the SLA for response time increases. The
throughput cost increases linearly with the throughput SLA
and the availability cost increases exponentially as the avail-
ability SLA goes from 0.9 to 1.0.

We used the following utility function:

2.0 ¢ SLA:
w, 22
r 1+87$LAr

we(1 — e SEA) Loy, (10 SLA, — 9). (4)

U

The first term in Eq. (4) is the response time utility func-
tion, the second term is the throughput utility function,
and the third is the availability utility function (see Fig. 5).
Because each of these individual utility functions have their
values in the [0, 1] range and because w, + w, + w, = 1,
U €[0,1].

A cloud user is now faced with the problem of selecting
the optimal values of the SLAs that maximize the utility
function subject to SLA and cost constraints. This can be
cast as the (generally) non-linear constraint optimization
problem shown below.

maximize U = f(SLA,,SLA,,SLA,)

subject to
AT < SLA, < e
i < SLA, < e
min < SLA, < ymax
Cr(SLA,) + C.(SLAy)+ C.(SLA,) < Cras

(5)

The optimization problem above indicates that values
of the SLAs for response time, throughput, and availability
have to obtained so that the utility function is maximized.
The SLAs have constraints (minimum and maximum val-
ues), which may be inherent to what the cloud provider can
offer. There is also a maximum cost constraint C,, 4.

We provide here a numeric solution for this problem with
the following set of parameters: o, = 0.4,5, = 0.1, a, =
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Figure 5: Utility functions for response time, throughput, and availability.

0.03, B, = 0.8, 7% = 1 sec, ymax
AmaxX — oo Amin — ()92 and yMaX = (.999.

Table 2 shows the results of solving the non-linear con-
strained optimization problem for various values of the max-
imum cost Cinez. The values of the weights w,., w,, w,
used are 0.4, 0.3, and 0.3, respectively. The maximum per-
transaction cost decreases from row 4 to row 1. When the
user is willing to spend 0.70 cents per transaction, the re-
sponse time SLA is the best possible (i.e., 1 second), the
throughput SLA is slightly above the worst possible value of
5 tps, and the availability is the best possible (i.e., 0.999).
As the user is less willing to spend more money per trans-
action, the SLAs to be negotiated with the cloud change.
For example, for Ci,q = 0.60 cents, the user will need to
settle for a response time SLA of 3.543 sec. The through-
put SLA goes down to its worst value (i.e., 5.0 tps). As
the Cipnaq is reduced, worse SLAs need to be negotiated as
shown by the table. As seen in the table, the cloud utility
value decreases as C,,, 4, decreases.

Many optimization solvers can be used to solve the type
of non-linear optimization problem discussed above. The
NEOS Server for Optimization (see http://neos.mcs.anl.gov/)
provides many such options. MS Excel’s Solver (under the
Tools menu) can also be used to solve medium scale opti-
mization problems. This is the solver that was used in the
numerical example discussed in this section.

= 4 sec, ymin

=5 tps,

Cmaz | Utility | SLA, | SLAx | SLA,
0.70 | 0.641 | 1.000 | 5.625 | 0.999
0.60 | 0.438 | 3.543 | 5.000 | 0.999
0.55 | 0.366 | 4.000 | 5.000 | 0.978
0.50 | 0.279 | 4.000 | 5.000 | 0.949

Table 2: Numeric results for optimal SLA selection. Cost
is in cents, SLA, in sec, and SLAy in tps.

5.2 From the Point of View of the Cloud Provider

From the point of view of the cloud infrastructure provider,
the workload is very unpredictable, exhibits a high time
variability, and tends to be very heterogeneous. The cloud
provider's infrastructure tends to be very large and very
complex with a myriad of parameter settings that can in-
fluence performance in a significant way. Therefore, it is
generally very difficult for system administrators to man-
ually change these parameters at run time to keep pace
with the variability of the workload in a way that meets
customer's SLAs.

The solution is for cloud providers to use autonomic
computing techniques [7]. Proposed autonomic techniques
for data centers are based on three types of methods: con-
trol theory [5], machine learning [30], and combinatorial



search methods combined with queuing network models [1,
8, 9, 10, 13]. The latter set of methods have been success-
fully applied by Menascé and his students and colleagues
in a variety of settings including e-commerce, virtualized
environments, and Internet data centers.

A platform that provides cloud computing services must
be able to dynamically provision its various resources (e.g.,
computing, storage, software licenses, and networking) to
its various users according to their instantaneous needs and
in compliance with negotiated SLAs. Autonomic comput-
ing techniques allow for resources to be dynamically shifted
without human intervention in a way that optimizes a cer-
tain objective function. Once again, utility functions are
very useful as an objective function to be maximized by an
autonomic controller such as the one in [1]. One can estab-
lish a global utility function for the cloud computing service
provider. This utility function takes into account the ne-
gotiated SLAs for each customer as well as their relative
importance.

The objective then is to design an autonomic controller
that determines the allocation of resources that maximizes
the global utility function of the cloud computing service
provider. The controller should run its algorithm periodi-
cally to dynamically track customer’s constant changes in
resource demands.

6 Concluding Remarks

This paper has discussed the concept of cloud comput-
ing as well as its advantages and disadvantages. Some ex-
amples of cloud computing infrastructures were presented.
The list is by no means exhaustive nor is there an implica-
tion that the examples discussed are representative of best
practices in the industry. We tried though to provide a di-
verse range of examples by including cloud platforms widely
used in academia and research as well as those provided by
companies.

In order to provide a more concrete example of the bene-
fits of cloud computing, we developed a parallel application
on top of PlanetLab and provided results on execution time
and speedup as a function of the number of nodes involved.

The paper then discussed the important issue of how
cloud users optimally select the values of SLAs to be ne-
gotiated with cloud providers in order to maximize their
utility subject to cost constraints. A numeric example was
thoroughly discussed.
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