
Cost Effective Storage using Extent Based Dynamic Tiering

Jorge Guerra†, Himabindu Pucha∗, Joseph Glider∗, Wendy Belluomini∗, Raju Rangaswami†
†Florida International University, IBM Research Almaden∗

Abstract
Multi-tier systems that combine SSDs with SAS/FC and/or
SATA disks mitigate the capital cost burden of SSDs, while
benefiting from their superior I/O performance per unit cost and
low power. Though commercial SSD-based multi-tier solutions
are available, configuring such a system with the optimal num-
ber of devices per tier to achieve performance goals at mini-
mum cost remains a challenge. Furthermore, these solutions
do not leverage the opportunity to dynamically consolidate load
and reduce power/operating cost.

Our extent-based dynamic tiering solution, EDT, addresses
these limitations via two key components of its design. A Con-
figuration Adviser EDT-CA determines the adequate mix of
storage devices to buy and install to satisfy a given workload
at minimum cost, and a Dynamic Tier Manager EDT-DTM per-
forms dynamic extent placement once the system is running to
satisfy performance requirements while minimizing dynamic
power consumption. Key to the cost minimization of EDT-CA
is its ability to simulate the dynamic extent placement afforded
by EDT-DTM. Key to the overall effectiveness of EDT-DTM is
its ability to consolidate load within tiers when feasible, rapidly
respond to unexpected changes in the workload, and carefully
control the overhead due to extent migration. Our results us-
ing production workloads show that EDT incurs lower capital
and operating cost, consumes less power, and delivers similar
or better performance relative to SAS-only storage systems as
well as other simpler approaches to extent-based tiering.

1 Introduction
Enterprise storage systems strive to provide performance
and reliability at minimum capital and operating cost.
These systems use high performance disk drives (e.g.
SCSI/SAS/FC) to provide that performance. However,
solid-state drives (SSDs) offering superior random ac-
cess capability per GByte have become increasingly af-
fordable. On the other hand, SATA drives offering supe-
rior cost per GByte are also attractive for mass storage.
Systems with only SSDs are still too expensive, and those
built using only SATA would not provide enough perfor-
mance/GByte for most enterprise workloads. Multi-tier
systems containing a mix of devices can provide high
performing and lower cost storage by utilizing SSDs only
for the subset of the data that needs SSD performance.

Current commercial SSD-based multi-tier systems
from IBM [29], EMC [17], 3PAR [23] and Compel-

lent [24] provide performance gains and cost savings.
However, customer adoption has been slow. One of the
reasons for this is the difficulty in determining what mix
of devices will perform well at minimum cost in the
customer’s data center. This optimization task is highly
complex because of the number of device types available
along with the variability of workloads in the data center.

To address this challenge, two things are needed: con-
figuration tools to assist in building such systems and to
demonstrate potential benefits based on customer work-
load, and capabilities in the storage systems that can opti-
mize placement of data in the tiers of storage. The place-
ment should ensure that actively accessed data is co-
located to minimize latency while lightly accessed data is
placed most economically. There is also an opportunity
to improve operating cost by placing data on the min-
imum set of devices that can serve the workload while
powering down the rest. Current products address some
but not all of these challenges. Determining which mix
of devices to buy remains a difficult problem, and im-
provement of operating cost by consolidation and power
management has not yet been tackled.

To address these gaps, we develop an Extent-based
Dynamic Tiering (EDT) system that includes: 1) a
Configuration Adviser tool EDT-CA to calculate cost-
optimized mixes of devices that will service a customer’s
workload, and 2) a Dynamic Tier Management EDT-
DTM component that runs in the configured storage sys-
tem to place data by dynamically moving extents (fixed-
size portions of a volume) to the most suitable tiers
given current workload. EDT-CA works by simulating
the dynamic placement of extents within tiers that offer
the lowest cost to meet an extent’s I/O requirements as
they change over time, and thus suitably size each tier.
EDT-DTM monitors active workload and manages ex-
tent placement and migration in such a way that per-
formance goals are met while optimizing operating cost
where feasible by consolidating data into fewer devices
within each tier and powering off the rest.

We evaluated EDT-CA and EDT-DTM, using both
production and synthetic workloads on a storage system
with SSDs, SAS, and SATA drives. Our results show
that multi-tier systems using EDT have a device mix that
saves between 5% to 45% in cost, consume up to 54%

1

less peak power, and an additional 15-30% lower dy-
namic power (instantaneous power averaged over time),
at a better or comparable performance compared to a ho-
mogeneous SAS storage system. EDT’s design choices
are critical in achieving these savings. Dynamic extent
placement saves 25% in cost compared to a static extent-
based system. Including metrics in addition to IOPS in
EDT’s placement provides a 2× performance improve-
ment compared to a dynamic tiering system that allocates
extents based on IOPS alone.

Our work makes the following contributions:

• EDT is the first publicly available work that formal-
izes and explores the design space for storage con-
figuration and dynamic tier management in SSD-
based multi-tier systems. (Section 2)
• EDT consists of a novel configuration algorithm for

dynamic tiered systems that outputs lower cost con-
figurations. (Sections 3, 4)
• EDT proposes a novel dynamic placement algo-

rithm to satisfy performance requirements while
minimizing dynamic power. (Section 5)
• EDT outperforms SAS-only and other simpler

extent-based tiering approaches across a variety of
workloads in both cost and power. (Section 6)

2 Multi-Tiering: Design Choices
This section describes important design choices for a
multi-tier system that enable efficient use of the tiers.

2.1 Extent-based Tiering
The first we consider the granularity of data placement.
Previous studies [7, 11] suggest that I/O activity is highly
variable across LBAs in a volume. Therefore, if data
were placed at a volume level based on average volume
workload characteristics, a large percentage of the tier
will hold data that does not require the tier’s capabilities.

Thus, we perform data placement at the granularity of
an extent, a fixed-size portion of a volume. The smaller
the extent size, the more efficient will be the data place-
ment. However, operating at the extent level incurs meta-
data overhead to keep track of extent locations and other
statistics and this overhead increases as extent size is de-
creased. We choose an extent size with an acceptable
system overhead (details in § 6.2). Note that we expect
the extent size to be larger than the typical file system
block size and hence extents are not expected to align
with file boundaries. However, the reduced system over-
head for larger extents provides the right tradeoff com-
pared to finer grain approaches.

2.2 Dynamic Tiering
The next design choice deals with the time scale at which
extents move across tiers. One choice involves placing

extents once during system instantiation or moving them
at coarse grain intervals of the order of days or months.
However, since studies show that I/O rates of a workload
are typically below peak most of the time [16, 19], this
static or semi-static placement is not optimal—a place-
ment that configures for the peaks pays extra in both
cost and energy for a system that is over-provisioned at
off-peak times; and a placement that mitigates cost from
over-provisioning by configuring for the average I/O rate
suffers from decreased performance during peaks.

The alternate choice is to plan extent movement at in-
tervals on the order of minutes or hours. We refer to this
time interval as an epoch. Such a system exploits varia-
tion in extent I/O rate to improve its efficiency; an extent
is on a SATA tier when fairly inactive, and moves to the
SAS or SSD tier as its I/O rate goes up. This achieves
cost-effective use of resources and/or dynamic energy
savings. Similarly, when the performance demanded of
a single tier is below its peak capacity, extents placed on
the tier can be consolidated into fewer devices for power
savings. Often, the set of heavily loaded extents changes
over time [11]. Dynamic migration of the heavily loaded
extents into SAS or SSD when required enables cost-
effective use of the resources. Thus, we choose to per-
form dynamic data placement with an epoch length of
the order of minutes/hours.

The drawback of such a dynamic system, however, is
the cost of data migration, i.e., the potential adverse ef-
fect on foreground I/O latency and the migration latency
itself before the desired outcome. Longer epoch dura-
tions allow more time to execute migrations and amortize
overhead better. Thus, we pick an epoch duration whose
estimated migration overhead is below the allowable sys-
tem migration overhead (details in § 6.2). Additionally,
it is important to ascertain that the overhead of migrat-
ing data does not overwhelm its benefit. This depends on
the stability of the workload—extents that relocate often
benefit less from migration compared to extents that stay
longer in a particular tier. The workloads we have stud-
ied indicate that dynamic migration is typically benefi-
cial, but we believe that a dynamic system must also be
able to back off when lack of workload stability causes
dynamic migration to interfere with performance.

2.3 Beyond I/O Rate Based Tiering
This design choice determines the extent-level statistics
required to match an extent with the right tier. The avail-
able public documentation about commercial extent-
based multi-tier products indicates use of IOPS to mea-
sure load; in these systems high IOPS regions are placed
onto SSD while leaving the remainder of the data on SAS
or SATA. Although this method is intuitively correct,
our preliminary analysis reveals significant drawbacks:
IOPS-based placement does not factor in the bandwidth

2

Algorithm

I/O requests

SAS

...

Virtualization layer

SATASSD

Arrays

Volumes

App AppApp

I/O

Migration
requests

(b) EDT: Dynamic Tier Manager

I/O requests

SAS

...

Virtualization layer

Volumes

App AppApp

I/O

Migrator

Placement

Algorithm
Throttling

Detector/

Corrector

Tier configuration
advice

Arrays

eventsevents
Configuration

Resource
consumption
model

(a) EDT: Configuration Adviser

Resource
consumption
model

Collector

Data
Collector
Data

Buy
and install

Figure 1: EDT system architecture.

requirement of an extent. For example, consider an ex-
tent with a long sequential access pattern consisting of
small I/Os to contiguous locations. Such an extent will
have high IOPS and bandwidth requirements. Our anal-
ysis of production and SPC-1 [1] like workload traces
(§ 6), collected after the I/O scheduler show such pat-
terns. Using I/O rate statistics for this stream causes se-
quential streams, which are more cost-effectively served
on SAS or even SATA, to be inappropriately placed on
SSD. IOPS placement also ignores capacity of the ex-
tent. An extent with high IOPS relative to other extents
may not have high enough I/O density (IOPS/GByte) to
justify the high $/GByte cost of the SSD.

Our approach is to collect more than just I/O counts.
We employ a heuristic as in [22] to break down an
extent’s workload: I/Os that access LBAs within 512
KBytes of the previous ones are taken as part of a se-
quential stream and contribute to an extent’s bandwidth
requirement. I/Os further apart are characterized as ran-
dom I/Os and are used to compute a random I/O rate.
Thus, for each extent, we collect a random I/O rate and
bandwidth. Other methods for separating the I/Os into
random and sequential may also be applicable.

3 EDT: Design Overview
EDT consists of two elements as depicted in Figure 1:
a Configuration Adviser (EDT-CA) that determines the
right number of devices per tier to install into a storage
system, and a Dynamic Tier Manager (EDT-DTM) that
operates inside a running system and continuously man-
ages extent placement across tiers. EDT is expected to
be deployed in a commercial storage system as shown
in Figure 1 which exports many volumes, includes a vir-
tualization layer that allows volumes to be made up of
extents stored in arrays of different device types, is ca-
pable of collecting and exporting statistics about extent
workloads, and can execute requests to non-disruptively
move extents between storage devices.

An example usage scenario is as follows: A user

wishes to replace a SAS based storage array with a new,
tiered storage system with twice the capability. He col-
lects a trace of his workload over a 24 hour period that
he thinks is representative. The trace is then run through
EDT-CA which produces the minimum cost configura-
tion of SSD, SAS, and SATA that can provide 2x the
performance of the existing system. EDT-CA is aware
of the runtime migration capabilities of EDT-DTM and
takes them into account when determining the configura-
tion. The user installs the new system. During operation
of the new system, EDT-DTM manages migration be-
tween tiers by continuously collecting extent level statis-
tics, consolidates data onto lower-power tiers when pos-
sible, and monitors the system to ensure that the work-
load performance is not throttled.

In general, EDT-CA starts by determining the work-
load requirements for the system it is going to configure.
This can either be done with a user generated general
description of requirements including IOPS, seq/random
mix, length of I/O requests, and their distribution across
extents, or by using time series data collected from a
workload running on an existing system. For the scope
of this work, we assume availability of time series statis-
tics. In this approach, EDT-CA takes a epoch-granularity
trace of extent workload statistics sampled at times when
storage system usage is high. It then estimates the re-
sources required in different tiers to satisfy that workload
by simulating placement of each extent in a tier that min-
imizes its incurred cost while meeting its performance
requirements. It repeats this process every epoch and as-
signs extents to their lowest cost tier based on their per-
formance requirements in that epoch. At the end of this
simulation, EDT-CA determines the set of devices that
are needed based on the maximum number of devices
needed in each tier over all the epochs. This configura-
tion determines the set of devices purchased by the user.

Once the new tiered system is up and running, EDT-
DTM manages extent placement. It collects extent level
statistics, estimates extents’ resource consumption in dif-

3

ferent tiers, and then plans and executes migrations.
EDT-DTM implements a throttling correction mecha-
nism to ensure that performance requirements are sat-
isfied as they vary over time; it constantly monitors ar-
ray performance and if performance throttling is detected
relocates extents to restore performance. EDT-DTM’s
placement algorithm seeks to place each extent into the
lowest-energy tier that satisfies its performance require-
ment and then to further minimize energy by consolidat-
ing extents in the same tier into fewer devices allowing
unused devices to be powered down. Both these algo-
rithms use a Migrator module to move extents.

EDT-CA and EDT-DTM work together to minimize
cost. EDT-CA minimizes acquisition cost, and EDT-
DTM minimizes operating cost. As our results will show,
configurations based on static extent placement are more
expensive both to acquire and operate.

3.1 Common Components
EDT-CA and EDT-DTM share components that collect
statistics and calculate resource consumption.

3.1.1 Data Collector

The Data Collector receives information about I/O com-
pletion events including the transfer size, response time,
logical block address (LBA) , the volume ID to which
the I/O was issued, and the array which executed the
I/O. The collector then maps the (LBA, volume id) pair
of each I/O to a unique extent in the system, and com-
piles for each extent, the number of random I/Os and the
number of transferred bytes. It then periodically (every
minute in our implementation) computes instantaneous
bandwidth and random IOPS per extent as well as an
exponentially-weighted moving average. In addition to
the extent statistics, the collector aggregates statistics per
array. It maps each I/O to its array and compiles its
IOPS and average response time. These measurements
are used by EDT-DTM to determine if I/Os on an array
are being throttled. For a very large system the amount
of data collected by the data collector may be significant.
If this is an issue, the the extent size can be made larger
to reduce the volume of statistical data.

3.1.2 Resource Consumption Model

The Resource Consumption Model uses the extent statis-
tics to estimate the resources it consumes when placed on
a device of a given type. Resources are allocated based
on the observed capacity and performance requirements
at the device level. Therefore, any workload optimiza-
tions like deduplication, compression, and caching do
not need to be considered in these models as their effects
will be captured by the usage statistics.

An extent consumes the resources of a device along
capacity and performance dimensions. Consider an ex-
tent of size Ec and a performance requirement Ep deter-

 0
 20
 40
 60
 80

 100

 0.1 1 10 100

%
 S

e
q
u
e
n
ti
a
lit

y

IOPS/GB

SATA

SAS

SSD

Figure 2: Lowest cost tier for extents with different
characteristics.

mined by its random IOPS rate (RIOR) and bandwidth
measured in previous epochs. The fraction of capacity
required to host an extent E in device D (RC(Ec,D)) is
straightforward:

RC(Ec,D) =
Capacity required by extent

Total space in device

For performance utilization, we use a simplified model
based on Uysal et al.’s work [30]. The performance re-
source consumption of extent E, when placed on device
D (RC(Ep,D)) is:

RC(Ep,D) = RIOR ·Rtime+Bandwidth ·Xtime

Here RIOR is the number of random I/Os sent to an
extent in a second (IO/s) and Rtime is the expected re-
sponse time of the device (s/IO). Bandwidth is the band-
width requested from the device (MB/s), and Xtime is the
average transfer time (s/MB). The result of this equation
is the fraction of the device performance utilized by an
extent. Note that the Rtime and Xtime values are av-
erages and may need to be adjusted depending on the
expected workload. For example an SSD with a mostly
random write workload would have significantly higher
Rtime than the same SSD with a mostly random read
workload. The overall resource required by an extent is
then the maximum of the capacity utilization fraction and
the performance utilization fraction:

RC(E,D) = max(RC(Ep,D),RC(Ec,D))

The resource consumption model determines the most
efficient tier for an extent. For instance, when minimiz-
ing cost, the most suitable tier is the one where the extent
incurs the lowest cost (the product of the device cost and
the extent’s resource consumption on that device). Fig-
ure 2 confirms the advantage of multi-tier systems since
the most cost-effective tier changes with extent charac-
teristics, namely the total IOPS and the percentage of
sequential accesses among three classes of storage de-
vices specified in Section 6. As expected, we observe
that mostly idle extents favor SATA, medium IOPS favor
SAS, and high IOPS favor SSD. Further, as expected,
more sequential extents favor HDDs.

4

4 Configuration Adviser
EDT-CA builds on the Data Collector and the Resource
Consumption Model described above. Since configura-
tion is an NP-Hard packing problem, we propose a light-
weight heuristic to achieve low cost extent placement:

1. Binning. For each extent E, and device type D, we
compute the cost of allocating the extent to that de-
vice as extent cost(E, D) = cost(D) ·RC(E,D). The
extent is then placed in the tier that meets its per-
formance with the lowest cost. Iterating over all the
extents, the above computation separates the extents
into bins, one per each tier.

2. Sizing a bin. For each bin, we obtain its perfor-
mance and capacity resource consumption as RCp =
∑RC(Ep,D) ∀E, and RCc = ∑RC(Ec,D) ∀E.
The maximum of these two values gives the total
bin resources required, and the number of required
devices of this bin type are computed by rounding
up this sum to the nearest integer value.

3. This process is independently repeated for each
epoch to identify the number of devices per tier that
yields minimum cost for that epoch.

4. The last step consists of combining these differ-
ent configurations to obtain a final system config-
uration valid across time. For the scope of this
work, we achieve the final configuration by allocat-
ing the maximum number of devices of each type
used across all epochs. That is, if at epoch t0 2 de-
vices of type D and 1 of type D′ are the most cost
effective, but at epoch t1 1 of type D and 2 of D′ is
better, then our method will indicate that we need 2
of type D and 2 of D′.

Our current method of combining configurations
across epochs is fairly conservative and could potentially
result in an over-provisioned system. However, as our
current algorithm already results in lower cost configura-
tions (Section 6), we relegate exploring more efficient
ways of combining configurations over time to future
work. Also note that when we compute tiered configu-
ration for each epoch independently, we assume that the
extents can be suitably migrated between epochs if re-
quired. As part of our future work, we intend to model
the required number of migrations, and suitably adjust
the provisioning if the required migrations exceed the
maximum number of migrations a system can support in
a chosen interval of time. Finally, our Configuration Al-
gorithm can also be used to upgrade a multi-tier system
to meet upcoming performance demands.

5 Dynamic Tier Manager
EDT-DTM combines three new modules with the Data
Collector and the Resource Consumption Model to
continuously optimize extent placement: (1) a Tier-

ing and Consolidation module, (2) a Throttling Detec-
tor/Corrector module, and (3) a Migrator module.

5.1 Tiering and Consolidation Algorithms
At the end of every epoch, the Tiering and Consolidation
(TAC) algorithms generate an extent placement to satisfy
extent performance requirements and minimize dynamic
system power. Such an energy efficient placement can
be achieved both by leveraging the strengths (i.e. per-
formance or capacity per watt) of the heterogeneous un-
derlying hardware (SSD, SAS, and SATA drives), and by
consolidating data into fewer devices when possible and
turning off the unused devices.

Similar to the configuration problem, placement for
power minimization is also NP-Hard, and we propose a
heuristic solution. TAC requires two inputs: (1) current
random I/O rate and bandwidth for each extent from the
actively running system, and (2) size (in bytes) and the
random I/O rate and bandwidth capability for each array
in the storage system. It then uses a two-step process to
output a new extent placement that aims to adapt to the
changes in the workload as follows:
(1) Tiering. For each extent E, and device type D,
we compute the “fractional power burden” of allocat-
ing the extent to that device as extent power(E, D) =
power(D) ·RC(E,D). The extent is then placed on the tier
that meets its performance with the lowest power con-
sumption. Doing so allows EDT to reduce active power
via consolidation (described next). Iterating over all the
extents results in one bin per tier. The assignment of ex-
tents to a tier is performed locally on an extent by ex-
tent basis, irrespective of the total performance needs or
available space in that tier.
(2) Consolidation. Extents assigned to each tier are then
sorted using their RC values and placed in arrays using
the First Fit Decreasing heuristic, a good approximation
algorithm to the optimal solution for extent packing [35].
When extents already assigned to the tier under consid-
eration exceed its available performance (i.e., resource
consumption metric for the assigned extents exceeds 1)
or the tier runs out of space in the available arrays, the re-
maining extents in the extent list are demoted to the tier
with the next lower power burden for that extent. This
packing process is now repeated for all the tiers, con-
solidating extents into a minimum number of arrays in a
tier. Extents already in the right tier and on an array that
will remain powered on in this epoch retain their posi-
tion from the previous epoch, thereby saving migrations.
Any unused arrays from the extent placement are set to a
lower power state to conserve energy.

5.2 Throttling Detector and Corrector
While the TAC mechanisms enable dynamic perfor-
mance and power optimization, unexpected load and

5

working set changes can suddenly alter the performance
requirements of extents. However, tracking this perfor-
mance change, especially when an extent’s I/O rate in-
creases, is challenging. Extents placed in a low perfor-
mance tier cannot exhibit high I/O rates even when the
application above may desire it. This causes throttling of
the true IOPS requirement of the extent, artificially limit-
ing it to a low value. The Throttling Detector overcomes
this limitation by monitoring the average response time
of each active array every minute.

If the average response time of I/Os from an array in-
dicates that undesirably high request queuing is occur-
ring in the array, EDT decides that the array is throttling
the true IOPS requirement of applications and causing
delays. When throttling is detected, pending migrations
driven by TAC are immediately halted and EDT-DTM
switches to a throttling correction mode to perform re-
covery. To respond rapidly and minimize the possibil-
ity of future throttling in the same array, the load on the
throttled array is shed by migrating a minimum set of
extents responsible for at least half of its current total
performance resource consumption.

To select the target array(s), we first start by consider-
ing the best possible tier for each extent being migrated,
and within that tier we first examine arrays which are
already active to see if they can absorb the new extent.
If none can host the new extent, we consider arrays that
are not in use in that tier if any are available. If the best
tier can not accommodate the extent we try the same ap-
proach on tiers with the next higher power burden for
that extent. If the array continues to remain throttled
after half the load on the array has been migrated, the
extent migration process is repeated, until the system is
no longer throttled. The entire system stays in recov-
ery mode while an array remains throttled, suspending
energy optimizing migrations. When no arrays are throt-
tled, the system switches back to the TAC placement af-
ter an epoch elapses.

5.3 Migrator
The Migrator handles the data movement requests from
TAC and the throttling algorithms. It compares the new
placement of the extents from the above algorithms to
their old placement, and identifies extents that need to
be migrated. It then schedules and optimizes these mi-
grations. On one hand, migrations that relieve throt-
tling must be completed quickly. On the other hand, mi-
grations cause additional I/O traffic, and care must be
taken so that they do not affect the foreground I/O per-
formance.

Our migration scheme achieves this tradeoff as fol-
lows. We allow every device to be involved in only one
migration operation at a time. Thus, before issuing a mi-
gration request, the Migrator performs admission con-

player
Trace

I/O Dispatcher

I/O events

requests
Migration

To EDT−CA

I/O requests

To/from EDT−DTM

user

kernel

SATASASSSDdevice driver
Pseudo

App
(libaio)

Queues I/O requests

from applications, and
conveys results back.

Figure 3: Storage subsystem platform for evaluating
EDT-CA and EDT-DTM.

trol by allowing requests only if the source and target
device are both available. If they are not, the request is
re-queued and it moves onto the next request. Further,
the Migrator controls its migration-related resource con-
sumption by decomposing an extent into smaller transfer
units and pacing the transfer requests to match the min-
imum of the available or the desired I/O rate. Further
if the migration is being performed to relieve throttling,
once a transfer unit is migrated, any foreground I/O re-
quests to it are handed by the destination array. Note that
because of this pacing not all planned migrations may
be completed before the next epoch. In such cases, the
migration queue is flushed, and requests resulting from
the new epoch’s computation are queued. We further
optimize by retaining the old location of the extent if it
is already in the right tier during the consolidation step.
Finally, we could potentially incorporate other optimiza-
tions [4, 9, 31, 36] such as multiple locations for the same
extent [31], and proactive migrations [36].

6 Evaluation
Our evaluation uses both a SPC-1-like [1] benchmark
workload and multiple production enterprise workloads
from MSR [21] to demonstrate that:

• In comparative evaluation, EDT-CA works to mini-
mize cost, and EDT-DTM satisfies performance re-
quirements while lowering power consumption.
• EDT’s dynamic behavior and detailed resource con-

sumption model help achieve its goal.
• Extent based dynamic optimization and consolida-

tion are feasible in practice with little overhead.

6.1 Methodology
Comparison candidates. We compare EDT to three al-
ternate solutions:

1. SAS is chosen to represent current enterprise storage
system deployments that predominantly use only high
performance SAS drives. The configuration is derived

6

Device Cost Power Random BW Rtime Xtime
($) (Idle, Active) IOPS (MB/s) (ms/IO) (ms/KB)

SSD 430 0.5, 1 5000 90 0.2 0.01
SAS 325 12.4, 17.3 290 200 3.75 0.004

SATA 170 8.0, 11.6 135 105 9 0.009

Table 1: Characteristics of devices used in the testbed.

using the capacity and peak performance (IOPS and
bandwidth) requirements of the workload. Volumes
are statically assigned to SAS arrays in a load-balanced
manner.
2. EST (Extent-based Static Tiering) places extents on
tiers statically to quantify the benefit from tiering. Con-
figuration is performed as follows: at every epoch, the
cost to place each extent on each tier is computed as
done by EDT-CA using capacity, IOPS, and bandwidth
requirements. An extent is then permanently placed
on the tier that minimizes the sum of its instantaneous
costs over all epochs. Once extents are binned into
tiers, the number of devices for each tier is determined
using that tier’s peak resource consumption.
3. While SAS and EST illustrate the benefit from
EDT’s design choices incrementally (going from a ho-
mogeneous system to static tiering and then to dynamic
tiering), we propose a third candidate to illustrate a dif-
ferent design decision in dynamic multi-tier systems—
IDT (IOPS Dynamic Tiering) implements extent-based
dynamic configuration and placement using a greedy
IOPS-only criteria where higher IOPS extents move to
higher IOPS tiers. This is in contrast to EDT that uses
a combination of capacity, IOPS, and bandwidth in its
placement algorithm.

Implementation. Our test system is shown in Fig-
ure 3. In addition to EDT, we implemented an I/O dis-
patcher that receives block I/O requests from applica-
tions, maps the logical block address to the physical de-
vice address, performs the corresponding I/Os, and com-
municates with the EDT components. Our trace player
application issues block I/Os from a trace via a socket
to the I/O dispatcher. To support real-world applica-
tions without modification, we implemented a pseudo
block device interface. For the scope of this work, we
use Linux’s default deadline scheduler, and our measure-
ment of context switch overhead when running through
the pseudo device driver was negligible (< 10µs).
Experimental Testbed. Our experimental platform
consists of an IBM x3650 with 4 Intel Xeon cores and 4
GB memory acting as the I/O dispatcher. It is connected
via internal and external SAS ports to 12 1 TB 7200 rpm
3.5” SATA drives, 12 450 GB 15K rpm 3.5” SAS drives,
and 4 180 GB Intel X25-M SSD drives. Table 1 shows
the characteristics of these devices. The enclosures con-

taining the drives are connected to a Watts up? Pro power
meter. We report the disk power obtained by subtracting
the baseline power used by the non-disk components of
the enclosure (154 W).
Metrics. To compare solutions, we evaluate static con-
figuration results using capital cost and peak power con-
sumption, and we evaluate dynamic behavior using the
average and distribution of I/O latency along with dy-
namic power consumption. Peak power consumption is
obtained using disk drive data sheets. Dynamic power
consumption is measured using the power meter.

6.2 Parameter Selection
Extent size. Smaller extents use tier and migration-
related resources more efficiently and enable faster re-
sponse to workload changes, but also incur greater meta-
data overhead. Our approach was to pick the smallest
extent size that incurs acceptable metadata overhead. As-
suming metadata can have a reasonably small overhead
of at most 0.0001% of the total storage capacity, and
given 200 bytes/extent for metadata overhead (mostly
from recording extent-level statistics) in our implemen-
tation, the smallest extent size our storage system can
support is 20 MB. To introduce some slack we used 64
MB extents for our experiments.
Epoch duration. Shorter epochs allow quicker response
to workload changes, but can also result in increased ex-
tent migration. As the epoch duration increases, the sta-
bility of extent characteristics increases due to averag-
ing over longer periods and consequently the migration
bandwidth overhead decreases. We picked epoch dura-
tions that resulted in migration bandwidth limited to a
10% fraction of the available array-pair bandwidth in the
system1. This prevents migration from significantly de-
grading performance and ensures that migrations com-
plete early within each epoch. For the MSR workloads
this calculation resulted in a 30 minute epoch.

6.3 Synthetic Workload
This SPC1-like workload was chosen because it simu-
lates an industry standard benchmark and provides a con-
trast to the MSR trace workloads. We ran the SPC1-like
workload generator on a 1 TB volume at 100 BSUs for 30
min using an over-provisioned configuration (a 12 SAS
RAID-0 array). We chose 30 min because the workload
is quite static after a short startup period. The resulting
trace was used to obtain the number of devices required
per tier for different methods (Table 2).

We observe that all the extent-based tiering configura-
tions outperform SAS configurations in both capital cost
and peak power consumption. EDT reduces cost by 14%,
and peak power by 55% compared to SAS. Cost incurred

1Medium to large scale tiered storage systems would typically per-
form simultaneous extent migrations across multiple array-pairs.

7

System # of Disks Energy Cost Avg RT
SAS (0, 6, 0) 103.8 W $1950 28 ms
EST (2, 2, 1) 46.6 W $1680 15 ms
IDT (2, 1, 1) 29.3 W $1355 21 ms
EDT (2, 2, 1) 46.6 W $1680 15 ms

Table 2: Configuration for synthetic workload. The
number of disks per tier is specified as (SSD, SAS,
SATA). The average response time is obtained from
running the configuration with 100 BSUs .

to configure EST and EDT for this relatively static work-
load are similar. Although the IDT configuration seems
to provide the least cost configuration, this is an artifact
of rounding up required devices to the next higher inte-
ger. Using fractional devices, costs for EDT and IDT are
much closer ($890 vs. $920). Note that in larger systems
rounding effects will be less significant.

To confirm that EDT’s lower cost is not at the expense
of performance, we ran the SPC1-like workload for 30
minutes at 100 BSUs. Given the stability of the work-
load, migration overhead was minimal. We therefore
chose an epoch of 5 minutes to complete the experiments
quickly. The SAS scheme used 6 SAS RAID-0 array.
Other schemes operated on individual disks. We started
EDT and IDT with the entire volume in the SATA tier
and allowed dynamic extent migration to reach optimal
configurations over time. EST, which does not support
extent migration, was started with extents in their most
suitable locations as per the EST configuration.

The last column of Table 2 shows the average response
times for 100 BSUs measured starting at the end of the
first epoch, once the extent placements of the dynamic
tiering configurations become effective. Given the work-
load’s stability, results for EDT and EST are identical.
They both achieve a 40% lower response time compared
to SAS, and improve on IDT’s IOPS only placement by
20%. Note that the dynamic power consumption in these
experiments is similar to the peak power due to the lack
of workload variation.

6.4 Production Workload
Our next workload (MSR-combined) represents the more
interesting class of real-world workloads, obtained by
combining the I/Os to the 31 (out of 36) most active vol-
umes of a production storage system [21] for a total of
4580 GB. Including the remaining 5 volumes was not
feasible given the hardware restrictions of our testbed.
Configuration outcomes. Configuration outcomes
based on six days of the MSR-combined workload,
shown as the “Equal Performance” group in Table 3,
indicate that the tiering configurations have lower cost
compared to SAS. EDT incurs the lowest cost (50% re-

Config System # of Disks Energy Cost
SAS (0, 16, 0) 276.8 W $5200

Equal EST (5, 2, 4) 82 W $3480
Performance IDT (4, 1, 4) 64.5 W $2725

EDT (3, 2, 4) 81.6 W $2620

Equal Cost

SAS (0, 12, 0) 204 W $3900
EST (4, 4, 4) 116 W $3700
IDT (4, 4, 4) 116 W $3700
EDT (4, 4, 4) 116 W $3700

Table 3: Configuration for MSR-combined. Configu-
rations achieving equal performance depict improve-
ment in cost and peak power. Configurations at equal
cost are created for experimental ease. Number of
disks in each tier specified as (SSD, SAS, SATA).

duction compared to SAS and 25% relative to EST).
EDT’s ability to effectively time share high-cost, high-
performance tiers across extents and satisfy sequentially
accessed ones with the SAS tier (instead of the SSD
tier) results in more cost-effective configurations. Ex-
tents placed in the SATA tier (4336 GB) are mostly idle
with random IOPS below 0.32, those in SAS (69 GB) are
dominated by bandwidth higher than 1.45 MB/s and ran-
dom IOPS less than 1.43, and the SSD extents (175 GB)
have random IOPS between 1.45 and 858. Tiered config-
urations substantially reduce peak power when compared
with SAS; IDTs greater use of the SSD tier (relative to
SAS) makes it the most power-efficient.
Performance and Power outcomes. Not all of the equal
performance configurations listed in Table 3 were fea-
sible on our experimental testbed due to hardware lim-
itations. Consequently, we decided to switch to equal
cost configurations (shown in Table 3) to contrast per-
formance at equal cost instead of cost at equal perfor-
mance only for the MSR-combined workload. Later, we
shall explore equal performance configurations for feasi-
ble subsets of volumes (Figure 6). EDT’s configuration
was chosen as the base for all the tiering systems, and
its configuration requirements were rounded up to inte-
ger number of arrays, each array consisting of 4 devices.
SAS used only SAS drives for the same cost, split into
4 disk RAID 0 arrays. We then replayed day one from
the seven day trace, the most active 24 hour period of
the MSR-combined workload. Both EDT and IDT were
bootstrapped using a load balanced volume placement.

Figure 4 summarizes the results of this experiment for
the candidate solutions. First, we notice that the I/O re-
sponse time distribution of EDT is clearly superior to the
other three solutions, highlighting the importance of con-
sidering random IOPS, bandwidth, and capacity when
making tiering choices. The average response time with
EDT was 2.94 ms while those for the SAS, EST, and

8

 0

 300

 600

 900

 1200

 1500

 1800

IO
P

S

Total
Random

 80

 100

 120

 140

 160

 180

 200

 0 4 8 12 16 20 24

P
o

w
e

r
(W

a
tt

s
)

Time (hours)

EDT
IDT

EST
SAS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256

P
[R

e
s
p

o
n

s
e

 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg. 2.94 ms)

IDT (Avg. 5.12 ms)

EST (Avg. 9.33 ms)

SAS (Avg. 5.93 ms)

Figure 4: I/O rate and power consumption (left) and response time distribution (right) for MSR-combined.

IDT were 5.12, 9.33, and 5.93 ms respectively. Further,
the 95th percentile response time for EDT was under 7.86
ms while the same for SAS, EST, and IDT were 19.31,
37.06, and 17.891 ms respectively. On average, EDT de-
creased the dynamic power consumption by 13% rela-
tive to its peak power, 55% relative to SAS and at least
10% relative to IDT and EST. This dynamic power sav-
ings result is likely to underestimate power savings ob-
served in real deployments given that the workload was
generated by consolidating multiple uncorrelated work-
load traces, which tended to reduce the workload vari-
ability that would enable dynamic power savings. Ad-
ditionally, the experiment was done over the most active
period, which required most devices to be active for per-
formance. Further, all the configurations here are sized
to meet the observed workload. Typically, however, stor-
age purchases are made to accommodate future growth
and hence over-provisioned to begin with, resulting in
more dynamic power savings.

Analysis. We illustrate how EDT achieves its supe-
rior performance using two example extents chosen from
the experiment and contrasting them with IDT. Figure 5
shows the sequential and random IOPS over time for two
extents along with the tier they are placed in. For extent
A (top graph), both IDT and EDT move the extent from
the SATA tier (the default initial location) to higher per-
forming tiers when the total IOPS requirements increase.
However, IDT allocates the SSD tier starting from hour
3 on account of the exponentially weighted moving av-
erage (EWMA) of total IOPS whereas EDT allocates the
SSD tier only when the EWMA of random IOPS of the
extent is high. Thus, EDT can better capitalize on the
superior sequential performance of the SAS tier to min-
imize capital costs during configuration and sustain per-
formance during operation. Extent B (bottom graph) il-
lustrates similar behavior during predominantly sequen-
tial accesses. Further, both EDT and IDT rightly move
extent B into the SATA tier when it becomes idle, aid-

EDT
IDT

 0
 2
 4
 6
 8

 10
 12
 14

 0 4 8 12 16 20 24

IO
P

S

Time (hours)

Total
Random

EDT
IDT

 0

 10

 20

 30

 40

 50

 0 4 8 12 16 20 24

IO
P

S

Time (hours)

Total
Random

Figure 5: Contrasting extent migrations for EDT and
IDT. The two upper lines denote extent placement for the
different algorithms. Black is SSD tier, dark grey SAS and
light grey SATA.

ing in power savings. Thus, EDT is successfully able to
pick the best tier for an extent’s workload and relocate it
when the requirements change. Regarding the overheads
for this migrations, both EDT and IDT migrated around
120 extents per epoch, using an average bandwidth of 42
MB/s which only represents 3% of the total available.
Varying the workload. To analyze the sensitivity of
the various algorithms to workload characteristics, we
grouped volumes from the MSR workload as specified
in Table 4 to create the server, data and srccntl (source
code control) workloads. Configuration outcomes for
each sub-workload using SAS, IDT, and EDT are pre-
sented in Table 5. As with MSR-combined, the dynamic
tiering solutions are able to configure both lower-cost
and lower-energy systems when compared with SAS and

9

 0

 20

 40

 60

 80

 100
%

 o
f

E
x
te

n
ts

SSD SAS SATA

 0

 150

 300

 450

 600

IO
P

S

Total
Random

 40

 42

 44

 46

 48

 0 1 2 3 4 5 6

P
o

w
e

r
(W

a
tt

s
)

Time (hours)

 0

 20

 40

 60

 80

 100

%
 o

f
E

x
te

n
ts

SSD SAS SATA

 0

 200

 400

 600

 800

 1000

IO
P

S

Total
Random

 64
 68
 72
 76
 80
 84

 0 1 2 3 4 5 6

P
o
w

e
r

(W
a
tt
s
)

Time (hours)

 0

 20

 40

 60

 80

 100

%
 o

f
E

x
te

n
ts

SSD SAS SATA

 0

 200

 400

 600

 800

 1000

IO
P

S

Total
Random

 40
 44
 48
 52
 56
 60

 0 1 2 3 4 5 6

P
o
w

e
r

(W
a
tt
s
)

Time (hours)

(a) EDT’s extent distribution, I/O rate, and EDT’s power consumption over time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
[R

e
s
p
o
n
s
e
 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg 4.52 ms)
IDT (Avg 9.25 ms)

SAS (Avg 6.92 ms)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
[R

e
s
p
o
n
s
e
 t
im

e
 <

 x
]

Response Time (msecs)

EDT(Avg 3.82 ms)
IDT (Avg 3.58 ms)

SAS (Avg 3.57 ms)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
[R

e
s
p
o
n
s
e
 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg 3.91 ms)
IDT (Avg 3.71 ms)

SAS (Avg 3.40 ms)

(b) CDF of response times

Figure 6: Replaying 6 hours of the MSR sub-workloads. First column is server, second data, and third srccntl.

Workload Volumes Cap (GB) Accessed
server hm, mds, prn, prxy,

stg, ts, wdev, web
1650 30%

data proj, rsch, usr 3719 34%
srccntl src1, src2 904 29%

Table 4: Sub-workloads derived from MSR.

EST. Further, in the case of the server workload, EDT
optimizes the configured system cost with a single SSD
relative to the two SSDs recommended using IDT. Given
that EST had significantly inferior performance for MSR-
combined, we did not consider it for further analysis.

Figure 6 shows EDT’s dynamic power consumption
and extent distribution across tiers over time, as well as
its response time distribution relative to IDT and SAS.
First, unlike MSR-combined, these workloads do have
substantial periods of lower utilization. Consequently,
in addition to improving the capital cost and peak power
consumption, EDT’s dynamic consolidation allows dy-
namic power savings of as much as 15-31% relative to
its peak power across the three workloads. The extent
distribution is quite different across the workloads. EDT
uses the SSD tier substantially for the srccntl workload.
IOPS-wise one would think that the workload should
be completely consolidated to the SATA; however, EDT
leverages the fact that the SSD tier offers improved en-

Workload System # of Disks Energy Cost

server

SAS (0, 6, 0) 103.8 W $1950
EST (2, 1, 2) 42.5 W $1525
IDT (2, 1, 1) 30.9 W $1355
EDT (1, 2, 1) 47.2 W $1250

data

SAS (0, 10, 0) 173 W $3250
EST (2, 2, 3) 71.4 W $2020
IDT (1, 2, 4) 82 W $1760
EDT (1, 2, 4) 82 W $1760

srccntl

SAS (0, 6, 0) 103.8 W $1950
EST (2, 3, 1) 65.5 W $2005
IDT (2, 2, 2) 59.8 W $1850
EDT (2, 2, 2) 59.8 W $1850

Table 5: Configuration for MSR sub-workloads.
Number of disks in each tier specified as (SSD, SAS,
SATA).

ergy efficiency for up to 40% of the extents. The SAS
tier was most used for server, in particular between hours
2-4 when sequential activity dominates. The data work-
load predominantly utilizes the SATA tier (as evidenced
in the configuration outcome) since the IOPS per extent
for most extents is very low, easily accommodated using
SATA devices. Finally, in this equal performance config-
uration experiment, the response time performance with
EDT is either similar or better than the SAS and IDT

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
[R

e
s
p

o
n

s
e

 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg 52.96 ms)

IDT (Avg 52.96 ms)

SAS (Avg 40.40 ms)

(a) Uniformly Random Load

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

P
[R

e
s
p
o
n
s
e
 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg 192.6 ms)

IDT (Avg 173.0 ms)

SAS (Avg 158.9 ms)

(b) Varying Hot Extent Set

Figure 7: Extent distribution and CDF for the adver-
sarial workload.

schemes across the workloads.

6.5 Adversarial Workloads
Finally, we measure the impact of using EDT with work-
loads completely different than the one it is provisioned
for. We used the configuration obtained for the srccntl
workload (in Table 5), and instead of the trace from that
workload, we ran two separate synthetic workloads for
two hours each: (1) a uniformly random workload at
400 IOPS, where each I/O is issued to a random page
in the system. (2) a workload at 500 IOPS, where I/Os
are issued to a chosen set of 10 hot extents initially in the
SATA tier and this set changes every minute.

Figure 7 depicts the distribution of response times for
both workloads. The uniformly random workload yields
a 31% higher average response time for EDT and IDT
compared to SAS. This can be attributed to the constant
migration I/O moving extents away from the throttled
SATA tier to both SAS and SSD tiers. Interestingly, we
see only a 21% penalty for EDT in the second workload.
Analysis shows that throttling of the newly active extents
was promptly detected and the extents were migrated
quickly to the SSD before they became cold. As illus-
trated by these examples, EDT can handle unexpected
workloads using its throttling detection/correction tech-
niques without major performance penalties.

7 Related Work
We build on a rich body of related work in multiple areas.
SSD-based storage architectures. Several products
(IBM’s EasyTier [29], EMC’s FAST [17], 3PAR [23],

and Compellent [24] systems) incorporate SSDs in stor-
age tiering solutions. Since technical details of these
approaches are not published, EDT is the first to pro-
vide insight into design choices and components, de-
tailed evaluation across workloads, and analysis of bene-
fits and challenges in building SSD-based multi-tier sys-
tems. Moreover, the publicly available documents of
these products indicate that although they achieve cost
savings and performance improvements, there is little fo-
cus on tools aiding admins/customers to configure the
right device mix for their workload or on incorporating
algorithms that target dynamic energy savings. EDT ad-
dresses these limitations.

Another approach to leverage solid state technology
in storage systems is to deploy flash devices as a cache
between DRAM and HDD. NetApp’s FlashCache [25]
which follows this approach cites cost reduction and per-
formance improvement when coupled with SAS/SATA
drives. Interestingly, Narayanan et al. [22] have argued
that a SSD cache layer above SAS disks was generally
not cost effective compared to an all SAS configuration
at the same performance. We did find cost savings using
SSD, but our system included much lower cost SATA
disks to improve overall cost. Unfortunately, a detailed
comparison between SSD caching and tiering would take
a significant effort and more space than is available in
this paper. However, our summary thoughts on the two
architectures are: 1) SSD caching will utilize the SSD
space more efficiently and can be more responsive to
very dynamically changing workloads, but 2) SSD tier-
ing enables both cost and energy savings even in enter-
prise environments.
Storage configuration (also referred to as provision-
ing). Systems such as Minerva [3], Hippodrome [5], and
DAD [6] address the problem of optimizing storage con-
figuration by iteratively applying several steps such as
configuring a low cost storage system, choosing RAID
levels and other array parameters, and assigning entire
volumes to arrays. EDT-CA’s focus on obtaining the
right mix of storage devices to minimize cost is similar to
the configuration step in these systems. The key differ-
ence is that EDT-CA is inherently aware of, and utilizes
the flexibility afforded by EDT’s dynamic extent place-
ment. EDT’s data layout also operates at a much finer
extent granularity. In EDT, we use a model to predict the
utilization of an extent (given its bandwidth and random
IOPS) that is similar in spirit to the previously proposed
store level performance predictor [30] in its accounting
for the differential load induced by sequential and ran-
dom accesses to an extent. Finally, EDT-CA can be en-
hanced to perform utility based provisioning as in [28].
Tiering. Migration-based storage tiering has been preva-
lent in the industry for a long time in the form of Hierar-
chical Storage Management systems, Information Life-

11

cycle Management solutions, and other forms of coarse-
grain tiering [2, 13, 15]. Most of these systems differ
from EDT in that they generally migrate data from upper
to lower tiers, based on its age rather than on load. Fur-
ther, these systems operate on volume, file system, or file
objects rather than extents, and as such are suited more
for file layer systems than block layer systems. Wilkes et
al. propose AutoRAID [33], a storage system where ex-
tents within volumes are migrated between faster RAID-
1 arrays and slower RAID-5 arrays according to work-
load and age. Significantly different algorithms for mi-
gration decisions tuned to the specific two tiers are pro-
posed. Additionally, AutoRAID does not consider the
issue of correctly determining a device mixture to satisfy
given workloads.
Storage energy efficiency. EDT uses a consolida-
tion algorithm to save energy in primary storage sys-
tems. Other energy saving approaches that instead spin
down a fraction of the available disk drives with active
data [8, 10, 18, 20, 21, 26, 27, 31, 32, 34] either are
not applicable in many primary storage systems due to
the significant spin up latency, or require undesirable ca-
pacity over-provisioning for redundant data. Work lever-
aging Dynamic RPM capability (e.g., [12, 26, 37, 38]).
is complementary to EDT. In fact, Hibernator [38] also
leverages tiering but varies RPM setting of the drives to
minimize energy.

8 Discussion
Extending the resource consumption model In this
work we assumed RAID-0 arrays when estimating how
much resource on a tier is consumed by a given work-
load. In commercial applications of EDT, more sophisti-
cated models will be needed to estimate resource con-
sumption in arrays with different RAID levels. Such
models do already exist in the industry, so we believe in-
corporating this capability will be straightforward. Also,
for the scope of this work, we assume that all arrays are
at the same reliability level, and hence migrating data
across arrays is not restricted. However, it is feasible to
remove this constraint by observing policies to limit the
migration targets of extents. Finally, the resource model
may need be enhanced to better model the behavior of
disks servicing multiple sequential IO streams in paral-
lel. The current model does not account for degradation
in sequential performance that may occur when a disk
needs to service multiple sequential streams at once.
Disk power fraction in the overall energy of a stor-
age system. The chief dynamic energy-saving tech-
nique proposed in this work is powering down empty
disk drives. However, we find that in today’s commercial
storage systems, disk drives typically consume ∼50% of
the total storage system energy [14] while the rest is con-
sumed by other components which do not currently have

the capability of varying their energy consumption ac-
cording to workload. As these components overcome
this limitation, our energy-saving techniques can be ex-
tended to include them, leading to a more energy propor-
tional system and lower overall operating costs.
Applicability. The target domain for EDT is primary
storage systems where response time is critical. Archival
applications where response time is not as critical may be
better served with existing solutions using policy-based
migration and power-saving storage such as spun-down
disk or tape. Also, EDT will be most effective when the
working set and I/O intensity are somewhat stable with
some variation. When the workload is static, dynamic
migration will not take place but consolidation will still
be beneficial if the system is not capacity bound.

9 Conclusion
The increasing availability of solid-state drives has ush-
ered in a new era of multi-tiered primary storage sys-
tems. With EDT, we have formalized the configuration
and dynamic tier management problems and have sys-
tematically explored the design choices available when
building such systems. We presented the design, im-
plementation, and evaluation of EDT’s Configuration
Adviser (EDT-CA) and Dynamic Tier Manager (EDT-
DTM). EDT lowers capital cost by configuring less ex-
pensive tiered storage and operating costs by dynami-
cally optimizing power consumption via consolidation
whenever feasible. We also demonstrated that EDT is
successfully able to address the data migration overheads
of dynamic tiering and respond rapidly and effectively to
unexpected changes in the workload.

Experimental results show EDT has significant bene-
fit. Evaluation performed using both a production work-
load and industry-standard synthetic workload revealed
that multi-tier systems using EDT have a device mix that
saves between 5% to 45% in cost, consume up to 54%
less peak power, and an additional 15-30% lower dy-
namic power (instantaneous power averaged over time),
at a better or comparable performance compared to a ho-
mogeneous SAS storage system. Experimental results
also demonstrated that EDT is superior to simpler al-
ternatives for extent-based tiering, providing lower cost
and better performance, and consuming similar or lesser
power. We hope that this study serves as a starting point
for future work along the promising direction of multi-
tiered enterprise storage systems.

Acknowledgments
We would like to thank our shepherd Hakim Weath-
erspoon, our anonymous reviewers, and Renu Tewari,
Aameek Singh and Amar Phanishayee for their valu-
able feedback. This work was supported in part by NSF

12

grants CNS-0747038 and CNS-1018262. Jorge Guerra
was supported in part by an IBM PhD Fellowship.

References
[1] SPC specifications. http://www.

storageperformance.org/specs.

[2] M. K. Aguilera, K. Keeton, A. Merchant, K.-K.
Muniswamy-Reddy, and M. Uysal. Improving re-
coverability in multi-tier storage systems. In Proc.
of the IEEE/IFIP DSN, 2007.

[3] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer,
R. Becker-Szendy, R. Golding, A. Merchant,
M. Spasojevic, A. Veitch, and J. Wilkes. Min-
erva: An Automated Resource Provisioning Tool
for Large-scale Storage Systems. ACM Transac-
tions on Computer Systems, 19(4):483–518, 2001.

[4] E. Anderson, J. Hall, J. Hartline, M. Hobbs, A. R.
Karlin, J. Saia, R. Swaminathan, and J. Wilkes. An
experimental study of data migration algorithms.
Lecture Notes in Computer Science, 2141/2001:
145–158, 2001.

[5] E. Anderson, M. Hobbs, K. Keeton, S. Spence,
M. Uysal, and A. Veitch. Hippodrome: Running
Circles Around Storage Administration. In Proc. of
USENIX FAST, 2002.

[6] E. Anderson, S. Spence, R. Swaminathan,
M. Kallahalla, and Q. Wang. Quickly finding
near-optimal storage designs. ACM Transactions
on Computer Systems, 23(4):337–374, 2005.

[7] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett,
J. Liptak, R. Rangaswami, and V. Hristidis. BORG:
Block-reORGanization for Self-Optimizing Stor-
age Systems. Proc. of USENIX FAST, 2009.

[8] D. Colarelli and D. Grunwald. Massive Arrays
of Idle Disks for Storage Archives. In Proc. of
IEEE/ACM SC, 2002.

[9] K. Dasgupta, S. Ghosal, R. Jain, U. Sharma, and
A. Verma. Qosmig: Adaptive rate-controlled mi-
gration of bulk data in storage systems. In Proc. of
ICDE, 2005.

[10] K. M. Greenan, D. D. Long, E. L. Miller, T. J.
Schwarz, and J. J. Wylie. A Spin-Up Saved is En-
ergy Earned: Achieving Power-Efficient, Erasure-
Coded Storage. In Proc. of USENIX HotDep, 2008.

[11] J. Guerra, H. Pucha, K. Gupta, W. Belluomini, and
J. Glider. Energy Proportionality for Storage: Im-
pact and Feasibility. In Proc. of ACM/USENIX Hot-
Storage, 2009.

[12] S. Gurumurthi, A. Sivasubramaniam, M. Kan-
demir, and H. Frankez. DRPM: Dynamic speed
control for power management in server class disks.
In Proc. of ACM/IEEE ISCA, 2003.

[13] IBM Corporation. High Performance Storage Sys-
tem (HPSS). Online: http://hpss-collaboration.org/,
2010.

[14] IBM Corporation. IBM System Storage DS8000
series. Data Sheet, 2010.

[15] G. Karche, M. Mamidi, and P. Mas-
siglia. Using dynamic storage tiering.
Available as Symantec Yellow Books at
http://www.symantec.com/enterprise/yellowbooks/index.jsp.,
2006.

[16] R. Koller and R. Rangaswami. I/O Deduplication:
Utilizing Content Similarity to Improve I/O Perfor-
mance. In Proc. of USENIX FAST, 2010.

[17] B. Laliberte. Automate and Optimize a Tiered Stor-
age Environment FAST! ESG White Paper, 2009.

[18] H. J. Lee, K. H. Lee, and S. H. Noh. Augmenting
RAID with an SSD for Energy Relief. In Proc. of
USENIX HotPower, 2008.

[19] A. Leung, S. Pasupathy, G. Goodson, and E. Miller.
Measurement and Analysis of Large-Scale Net-
work File System Workloads. In Proc. of USENIX
ATC, 2008.

[20] D. Li and J. Wang. EERAID: Energy efficient re-
dundant and inexpensive disk array. In Proc. of
workshop on ACM SIGOPS European workshop,
2004.

[21] D. Narayanan, A. Donnelly, and A. Rowstron.
Write Off-Loading: Practical Power Management
for Enterprise Storage. In Proc. of USENIX FAST,
2008.

[22] D. Narayanan, E. Thereska, A. Donnelly, S. El-
nikety, and A. Rowstron. Migrating Server Storage
to SSDs: Analysis of Tradeoffs. In Proc. of ACM
Eurosys, 2009.

[23] M. Peters. 3par: Optimizing io service levels. ESG
White Paper, 2010.

[24] M. Peters. Compellent harnessing ssds potential.
ESG Storage Systems Brief, 2009.

[25] M. Peters. Netapp’s solid state hierarchy. ESG
White Paper, 2009.

13

http://www.storageperformance.org/specs
http://www.storageperformance.org/specs

[26] E. Pinheiro and R. Bianchini. Energy conservation
techniques for disk array-based servers. In Proc. of
ACM ICS, 2004.

[27] E. Pinheiro, R. Bianchini, and C. Dubnicki. Ex-
ploiting redundancy to conserve energy in storage
systems. SIGMETRICS, 34(1), 2006.

[28] J. D. Strunk, E. Thereska, C. Faloutsos, and G. R.
Ganger. Using utility to provision storage systems.
In Proc. of USENIX FAST, 2008.

[29] Taneja Group Technology Analysts. The State of
the Core Engineering the Enterprise Storage In-
frastructure with the IBM DS8000. White Paper,
2010.

[30] M. Uysal, G. A. Alvarez, and A. Merchant. A mod-
ular, analytical throughput model for modern disk
arrays. In Proc. of IEEE MASCOTS, 2001.

[31] A. Verma, R. Koller, L. Useche, and R. Ran-
gaswami. SRCMap: Energy Proportional Storage
Using Dynamic Consolidation. In Proc. of USENIX
FAST, 2010.

[32] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang,
P. Reiher, and G. Kuenning. PARAID: A Gear-
Shifting Power-Aware RAID. In Proc. of USENIX
FAST, 2007.

[33] J. Wilkes, R. Golding, C. Staeliin, and T. Sullivan.
The HP AutoRAID Hierarchical Storage System.
In Proc. of ACM SOSP, 1995.

[34] X. Yao and J. Wang. RIMAC: a novel redundancy-
based hierarchical cache architecture for energy ef-
ficient, high performance storage systems. SIGOPS
Operating Systems Review, 40(4), 2006.

[35] M. Yue. A simple proof of the inequality ffd(l)
(11/9)opt(l) + 1, for all l, for the ffd bin-packing
algorithm. Acta Mathematicae Applicatae Sinica,
7:321331, 1991.

[36] G. Zhang, L. Chiu, C. Dickey, L. Liu, P. Muench,
and S. Seshadri. Automated Lookahead Data Mi-
gration in SSD-enabled Multi-tiered Storage Sys-
tems. In IEEE MSST, 2010.

[37] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou,
and P. Cao. Reducing Energy Consumption of Disk
Storage Using Power-Aware Cache Management.
In Proc. of IEEE HPCA, 2004.

[38] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and
J. Wilkes. Hibernator: helping disk arrays sleep
through the winter. In Proc. of ACM SOSP, 2005.

14

	Introduction
	Multi-Tiering: Design Choices
	Extent-based Tiering
	Dynamic Tiering
	Beyond I/O Rate Based Tiering

	EDT: Design Overview
	Common Components
	Data Collector
	Resource Consumption Model

	Configuration Adviser
	Dynamic Tier Manager
	Tiering and Consolidation Algorithms
	Throttling Detector and Corrector
	Migrator

	Evaluation
	Methodology
	Parameter Selection
	Synthetic Workload
	Production Workload
	Adversarial Workloads

	Related Work
	Discussion
	Conclusion

