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Abstract

The set-top and portable device market continues to
grow, as does the demand for more performance under in-
creasing cost, power, and thermal constraints. The integra-
tion of Graphics Processing Units (GPUs) into these de-
vices and the emergence of general-purpose computations
on graphics hardware enable a new set of highly paral-
lel applications. In this paper, we propose and make the
case for a GPU multitasking technique called spatial mul-
titasking. Traditional GPU multitasking techniques, such
as cooperative and preemptive multitasking, partition GPU
time among applications, while spatial multitasking allows
GPU resources to be partitioned among multiple applica-
tions simultaneously. We demonstrate the potential benefits
of spatial multitasking with an analysis and characteriza-
tion of General-Purpose GPU (GPGPU) applications. We
find that many GPGPU applications fail to utilize available
GPU resources fully, which suggests the potential for sig-
nificant performance benefits using spatial multitasking in-
stead of, or in combination with, preemptive or cooperative
multitasking. We then implement spatial multitasking and
compare it to cooperative multitasking using simulation.
We evaluate several heuristics for partitioning GPU stream
multiprocessors (SMs) among applications and find spatial
multitasking shows an average speedup of up to 1.19 over
cooperative multitasking when two applications are sharing
the GPU. Speedups are even higher when more than two ap-
plications are sharing the GPU.

1. Introduction

Set-top and portable devices are becoming increasingly
popular and powerful. Due to the cost, power, and thermal
constraints placed on these devices, often they are designed
with a low-power general-purpose CPU and several hetero-
geneous processors, each specialized for a subset of the
device’s tasks. These heterogeneous systems increasingly
include programmable Graphics Processing Units (GPUs).

978-1-4673-0826-7/12/$26.00 ©2011 IEEE

The iPhone 4, for example, contains a programmable
GPU in addition to a general-purpose CPU and several
Application-Specific Instruction Processors (ASIPs). Trans-
forming the GPU from a graphics and compute offload de-
vice to a general-purpose data-parallel processor has the po-
tential to enable entirely new classes of applications that
were previously unavailable on mobile devices due to per-
formance and power constraints.

GPGPU computations are motivated by GPUs’ tremen-
dous computational capabilities and high memory band-
width for data-parallel workloads [22]. A range of appli-
cations, from scientific computing to multimedia, are well-
suited to this form of parallelism and achieve large speedups
on a GPU. For example, Yang e al. achieve up to a 38x
speedup compared to a high-performance CPU when using
a GPU for real-time motion estimation [31].

Unfortunately, GPUs have very primitive support for
multitasking, a key feature of modern computing systems.
Multitasking provides concurrent execution of multiple ap-
plications on a single device. Advanced multitasking is
critical for preserving user responsiveness and satisfying
quality-of-service (QoS) requirements. NVIDIA’s Fermi
supports co-executing multiple tasks from the same appli-
cation on a single GPU [19]. However, even Fermi does
not allow multiple different GPGPU applications to access
GPU resources simultaneously. Other applications needing
the GPU must wait until the application occupying the GPU
voluntarily yields control. Having the application voluntar-
ily yield control of the GPU is a form of cooperative mul-
titasking. In contrast, on the CPU, the operating system
(OS) typically uses preemptive multitasking—suspending
and later resuming applications to time-share the CPU with-
out the applications’ intervention or control. Both coop-
erative and preemptive multitasking are forms of temporal
multitasking. Finally, multi-core CPUs support spatial mul-
titasking, which allows multiple applications to execute si-
multaneously on different cores.

Until GPUs better support multitasking, they will con-
tinue to remain second-class computational citizens. As
future technologies move the GPU onto the same chip as



the CPU [30], the importance of advancing the GPU from
a graphics-only co-processor to a multitasking parallel ac-
celerator will grow. This will require development of new
GPU multitasking techniques, both temporal and spatial.

In this paper, we present a characterization of GPGPU
applications for the portable and set-top markets. With this
characterization, we observe GPGPU applications exhibit
unbalanced GPU resource utilization. Using simulation,
we then demonstrate significant performance improvements
when using spatial multitasking instead of cooperative mul-
titasking due to more efficient use of GPU resources. We
also evaluate several heuristics for partitioning GPU SMs
among applications sharing the GPU. The key contribu-
tions of this work are: (1) Our proposal for GPGPU spa-
tial multitasking, which allows applications to execute si-
multaneously with GPU resources partitioned among them,
rather than executing serially on all GPU resources. (2)
A detailed characterization of GPGPU applications demon-
strating many GPGPU workloads show unbalanced usage
of GPU resources. (3) An evaluation of GPGPU spatial
multitasking versus cooperative multitasking through cycle-
accurate simulation. (4) A comparison of heuristics for par-
titioning SMs among applications sharing a GPU via spatial
multitasking.

This paper is organized as follows. Section 2 discusses
temporal multitasking, and the details of and motivation for
spatial multitasking. Section 3 presents our GPGPU work-
load analysis, which focuses on the inefficient use of re-
sources by applications executing in isolation on the GPU,
followed by the evaluation of spatial multitasking compared
to cooperative multitasking and a comparison of several SM
partitioning heuristics. Section 4 presents potential hard-
ware and software challenges faced when implementing
spatial multitasking. Section 5 discusses related work, and
Section 6 provides our conclusions and a discussion of our
planned future work.

2. GPU Multitasking

Initially, multiple graphics applications could only share
a GPU via cooperative multitasking, requiring applica-
tions executing on the GPU to yield GPU control volun-
tarily. If a malicious or malfunctioning application never
yielded, other applications were unable to use the GPU.
Windows Vista, together with DirectX 10, introduced GPU
preemptive multitasking for graphics applications, but not
for GPGPU applications [17,24]. GPGPU applications con-
tinue to use cooperative multitasking.

In cooperative multitasking, a computation block of-
floaded to the GPU runs to completion before yielding the
GPU. NVIDIA refers to this computation block as a ker-
nel. A GPGPU application may contain one or more ker-
nels. To avoid problems with malfunctioning and mali-

cious GPGPU applications, Windows Vista and Windows
7 impose time limits on GPU computations, after which the
OS requests that applications yield the GPU. If an applica-
tion fails to yield, the GPU is reset, killing GPU computa-
tion [16]. Thus, GPGPU applications must be coded explic-
itly to yield the GPU during long computations so they will
not be terminated. This means breaking up long GPGPU
computations into a sequence of shorter computations. Fur-
ther complicating the issue, different GPUs have varying
performance characteristics, so computations that complete
in the allotted time on one GPU may not on another. Even
within the time limits, GPGPU calculations may be quite
long, sacrificing interactive response time. Preempting ap-
plications from the GPU and/or allowing applications to run
simultaneously could help solve these issues.

Although preemption addresses some GPU multitasking
issues, there is a large overhead associated with context
switches: saving the current GPGPU state of one applica-
tion and restoring another’s. This state includes the register
file and the GPU cores’ local memory data. For example,
in the NVIDIA GT200 architecture, each GPU core, or SM,
has a 64KB register file, 8KB constant cache, and a 16KB
shared memory. A kernel using all 30 SMs of this architec-
ture has a state size greater than 2.5MB [11].

In contrast, an AMD64 CPU core has 128 bytes of
general-purpose registers, 256 bytes of media registers, and
80 bytes of floating-point registers [2]; this and other state
together represent approximately 0.5KB that must be saved
and restored for an AMD64 CPU context switch. The larger
GPU kernel context size results in significantly more over-
head for a GPU context switch than a CPU context switch.

To address the problems and challenges associated with
temporal multitasking on the GPU, we propose spatial mul-
titasking—allowing multiple GPGPU kernels to execute si-
multaneously, each using a subset of the GPU resources.
Spatial multitasking differs from preemptive multitasking in
that it divides GPU resources, rather than GPU fime, among
competing applications. For example, instead of giving two
applications 100% of the GPU resources 50% of the time,
spatial multitasking could grant each application 50% of the
GPU resources 100% of the time. If one application com-
pletes, the other could then use 100% of the GPU resources.
Figure 1 illustrates the differences among cooperative, pre-
emptive, and spatial multitasking.

We have observed that many GPGPU workloads are
tuned for a particular GPU generation and subsequent, more
aggressive GPUs frequently show unbalanced resource us-
age by software just one generation old. Spatial mul-
titasking can increase GPU utilization and improve sys-
tem performance compared to temporal multitasking. Di-
viding resources among applications also reduces context
switches, further improving performance compared to pre-
emptive multitasking.
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Figure 1. lllustration of multitasking methods. A and B represent applications using the GPU. The Y-axis represents the GPU
resources and the X-axis represents the duration those resources are used. In spatial multitasking, the applications execute

simultaneously with resources split among them.

3. Evaluation

To determine how efficiently applications use GPU re-
sources and to evaluate potential benefits of spatial multi-
tasking, we profile the effects of varying available GPU re-
sources on the applications described in Section 3.1. We
also simulate these applications sharing the GPU using both
spatial and cooperative multitasking. Our methodology is
described in Section 3.2 and the profiling results and their
relevance to spatial multitasking are discussed in Section
3.3. Our evaluation of spatial multitasking is presented in
Section 3.4 and Section 3.5 compares several heuristics for
partitioning GPU SMs among applications sharing the GPU
via spatial multitasking.

3.1. Applications

We characterize workloads targeting the portable and set-
top markets. These workloads are selected from source code
available online [5]. Although the workloads and input data
sets target set-top and portable devices, the results should
also apply to desktop devices. We have placed all work-
loads and input data online for public use [7]. Some work-
loads include CPU computation as detailed in the following
workload descriptions; however, we profile only the GPU
portions of computation because this is the portion directly
impacted by GPU spatial multitasking.

Ray Tracing [14] implements a rendering engine that
supports shadows and reflections up to five levels deep. The
CPU performs object creation and movement. A single
GPU kernel performs rendering and is executed each time
a new frame is created.

AES [13] supports 128- and 256-bit Advanced Encryp-
tion Standard (AES) encryption and decryption. A single
GPU kernel performs the entire encryption/decryption al-
gorithm. The CPU performs initialization, cleanup, and I/O
before and after the encryption/decryption. For this study, a
128-bit key encrypts 4MB of randomly generated data.

RSA [28] performs RSA asymmetric encryption. As
with AES, a single GPU kernel performs the entire encryp-

tion. The CPU performs initialization and cleanup. We use a
1,024-bit key to encrypt in parallel 128 randomly generated
128-byte messages, for a total encryption size of 16KB.

SHA1 [1,27], part of the StoreGPU library, provides an
API for SHA1 and MDS5 hashing on either an entire block
of data or a sliding window of data. A single GPU kernel
computes all hashes; the CPU performs initialization, 1/O,
and cleanup. For this study, using SHA1, we block-hash
4MB of randomly generated data.

JPEG Encoding and Decoding [20] are partial imple-
mentations of JPEG encoding and decoding. We treat en-
coding and decoding as two separate workloads. Encoding
consists of two GPU kernels: one for the Discrete Cosine
Transform (DCT) and one for quantizing the DCT’s out-
put. Decoding consists of a single Inverse Discrete Cosine
Transform (IDCT) GPU kernel. For both encoding and de-
coding, multiple threads in the GPU kernels work in par-
allel on 8x8 blocks of data. For encoding, the DCT input
is a 3,072x2,304-pixel bitmap, and the quantization input is
the DCT output. The decoding input is the encoding output,
which we pre-generate.

Fractals [4] renders a number of fractals overlayed onto
a single image. Multiple frames can be rendered to ani-
mate the fractals in video. The resulting images and videos
are used as artwork and screensavers. This is a GPGPU
port of the electric sheep program. The application is made
up of a number of GPU kernels that perform the rendering
in several steps while the CPU is responsible for reading
the parameters for generating the fractals and encoding the
GPU-computed results as images or videos.

Image Denoising [12] removes white noise from an im-
age using a modified version of the Non-Local Means filter.
A single GPU kernel performs filtering; the CPU performs
initialization, cleanup, and I/O. In practice, image denoising
may be applied to still images in conjunction with other fil-
ters and edits, or may be applied to a stream of video frames.
Our input data is a 3,072x2,304-pixel bitmap.

Radix Sort [6,26] is a single GPU kernel from the CUDA
Data Parallel Primitives (CUDPP) library. It performs a
radix sort of 28 randomly generated integers.



Table 1. GPU kernel configuration. Average threads and
blocks are calculated according to Equation 1.

Average  Average
Thread  Threads
Application Kernels Blocks per Block

AES Decrypt 1 4,097 256
AES Encrypt 1 4,097 256
DVC 14 112 216
Fractal Generation 1 512 64
Image Denoising 1 110,592 64
JPEG Decode 1 13,824 64
JPEG Encode 2 73,694 64
RSA 1 4 32
Radix Sort 4 357 250
Ray Tracing 1 2,048 128
SAD 3 4,354 66
SHAI 1 65 64

DVC [29] is an implementation of the decoding portion
of the Dirac Video Codec, a modern video codec intended
for streaming high-definition video. A notable difference
between DVC and H.264 is that DVC uses wavelet trans-
forms rather than cosine transforms. DVC implements the
2D inverse wavelet transform, motion compensation decod-
ing, and up-sampling on the GPU. All other decoding func-
tions take place on the CPU. For this study, the input video
is 39 frames at 320x240 resolution.

SAD [23] is part of the Parboil benchmark suite for
GPUs. It implements the Sum of Absolute Differences
(SAD), which is used by a number of video encoders, in-
cluding H.264. SAD is made up of three GPU kernels. The
first computes the SAD for 4x4-pixel blocks. The second
uses the results of the first to compute the SAD for 8x8-pixel
blocks. The final kernel uses the output of the second kernel
to compute the SAD for 16x16-pixel blocks. The CPU is
responsible for setup, cleanup, and I/O. For this study, the
SAD is computed for two 320x240-pixel frames.

The amount of parallelism available in each application
plays an important role in how efficiently GPU resources
are used. Table 1 lists the average number of thread blocks
and threads per block in each application. Average thread
blocks and threads per block are calculated as the weighted
arithmetic mean (Equation 1) of thread blocks and threads
per block, respectively, where 7 is the current kernel, n is the
total number of kernels, w; is the percent of execution time
spent in kernel ¢, and z; is the number of thread blocks or
threads per block in kernel <.

=1

In CUDA, a thread block cannot be split across multiple
SMs, so applications with fewer thread blocks are less likely

to fully utilize available SMs. For example, RSA has four
thread blocks and 32 threads per block; this means RSA
never utilizes more than four SMs. 32 threads per block is
also relatively small, so RSA is unlikely to efficiently use
even four SMs. Kernels with a small number of threads per
block require more thread blocks per SM to hide memory
access latency and more fully utilize the SM.

3.2. Methodology

We simulate CUDA applications with GPGPU-Sim, a
cycle-accurate execution-driven GPU simulator capable of
simulating CUDA and OpenCL applications [3,8]. GPGPU-
Sim has been shown to correlate well with existing GPU
hardware [3]. GPGPU-Sim emulates NVIDIA’s virtual
GPU instruction set architecture called Parallel Thread eX-
ecution (PTX). GPU portions of simulated applications are
emulated using a cycle-accurate GPU performance model.
CPU portions of benchmarks are run directly on native
hardware to provide functional correctness. The simula-
tor does not, however, provide a performance model for
the CPU portions of benchmarks or model the overhead
of data transfers between the CPU and GPU. We use
the default GPGPU-Sim parameters that approximate the
NVIDIA Quadro FX 5800 GPU [8, 18], shown in Table 2.
Although our infrastructure models an NVIDIA GPU, these
research results should apply to other GPU architectures.

As an initial step in evaluating spatial multitasking, we
profiled the applications from Section 3.1 to see how they
responded to different amounts of available GPU resources.
Specifically, we executed each application in isolation for
5M GPU cycles and measured the number of instructions
simulated while varying the amount of memory and inter-
connect bandwidth and the number of SMs. An explanation
for why we simulated for SM cycles is given in Section 3.4.
The NVIDIA Quadro FX 5800 baseline values for these pa-
rameters are shown in Table 2. If we use spatial multitasking
to partition SMs among applications sharing the GPU, then
varying these parameters gives some insight into predicted
application performance when sharing the GPU. However,
simulating applications in isolation does not model several
factors that could also affect multitasking performance. For
example, an application’s demand for memory bandwidth
can vary dynamically during execution, affecting the re-
maining bandwidth available to other applications. Also,
interconnect contention among applications is not modelled
when varying memory bandwidth or the number of SMs in
isolation. For these reasons, we implement spatial and co-
operative multitasking in GPGPU-Sim and evaluate them
through simulation in Section 3.4.

Our implementation of spatial multitasking in GPGPU-
Sim partitions SMs among applications with a user defined
algorithm. In this implementation SMs can only be parti-



Table 2. Baseline GPGPU-Sim configuration, NVIDIA
Quadro FX 5800.

SMs 30

SM Freq. 650MHz
Memory Controllers 8
Memory Freq. 800MHz
Interconnect Model ~ Crossbar
Interconnect Freq. 650MHz
Registers 64KB/SM
Warp Size 32 Threads
Texture Cache 8KB/SM
Constant Cache 8KB/SM
Shared Memory 16KB/SM

tioned at the beginning of simulation. We are able to do
this because in our simulations we start all applications si-
multaneously. In practice, because applications do not typ-
ically start and end at the same time, spatial multitasking
requires the ability to dynamically take SMs from running
applications and reassign these SMs to other applications.
Hardware and software mechanisms for supporting SM re-
assignment are the subject of future work. The GPGPU-Sim
interconnect and memory model has not been modified for
spatial multitasking. SMs share interconnect and memory
bandwidth as if they were executing threads from a single
process. GPU global and texture memory are not virtualized
for this study. Applications allocate memory from the same
physical pool but memory isolation is not enforced. In prac-
tice memory isolation should be provided to ensure faulty
or malicious applications do not have access to another ap-
plications memory space. No modifications of GPGPU-
Sim were necessary to simulate cooperative multitasking.
The source code for our modified version of GPGPU-Sim is
available at: http://mesa.ece.wisc.edu/gpgpu.

3.3. Application Characterization

Figures 2 to 4 show how the performance of the GPU
portion of each application is affected by changes to a spe-
cific GPU configuration parameter when applications are
executed in isolation on the GPU. Sub-linear speedup (be-
low the dashed line) indicates the application under-utilizes
the examined resource either due to a bottleneck in the sys-
tem or lack of parallelism in the application. In each figure,
constant parameters are set according to Table 2.

In Figure 2, we varied the number of SMs in the sim-
ulated GPU. Speedup is normalized to a GPU with a sin-
gle SM. As expected, many applications fail to scale lin-
early as the number of SMs are increased. Only AES De-
crypt, AES Encrypt, and Image Denoising maintained near-
linear speedup up to the maximum number of SMs simu-
lated. Ray Tracing also scaled well, but tapered off for large
numbers of SMs. Fractals and JPEG Decode scaled well to
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Figure 2. Speedup of GPU computation versus number
of SMs. Results are normalized to one SM.

our baseline configuration (30 SMs) but performance lev-
eled off shortly beyond that. Most of the other applications
scaled well initially, but leveled off as the number of SMs in-
creased. Most importantly, Figure 2 shows that many appli-
cations scale sub-linearly up to 30 SMs (the number in our
baseline configuration), and scale even worse at expected
future resource levels. As expected from the thread config-
uration shown in Table 1, RSA showed almost no perfor-
mance change as SMs were increased.

Figure 3 examines memory frequency to study the ef-
fect of memory bandwidth limits on GPGPU applications;
we use memory frequency as an approximation for band-
width since we cannot easily model fixed-frequency band-
width caps. Speedup is normalized to a 200MHz GPU
memory clock. All the applications studied showed sub-
linear speedup before reaching even the baseline memory
frequency (800MHz), indicating these GPGPU applications
under-utilized memory bandwidth. JPEG Decode, JPEG
Encode, SAD, and SHA1 showed the highest demand for
memory bandwidth, while AES Decrypt, AES Encrypt,
Fractals, Image Denoising, and RSA showed little demand.

In Figure 4, the GPU interconnect frequency is varied.
Speedup is normalized to a 150MHz GPU interconnect
clock. JPEG Encode, SAD, and SHA1 showed near-linear
speedup at higher interconnect frequencies than the other
applications, but as we observed with memory frequency,
all of the applications showed sub-linear speedup before the
baseline interconnect frequency (650MHz). In this experi-
ment, AES Decrypt, AES Encrypt, Fractals, Image Denois-
ing, and RSA showed little change in performance as inter-
connect bandwidth increased, demonstrating their intercon-
nection bandwidth needs are modest.

Figures 2 to 4 confirm that many GPGPU applications
exhibit unbalanced GPU resource utilization. It is thus
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Figure 3. Speedup of GPU computation versus GPU
memory frequency. Results are normalized to a 200MHz
GPU memory clock. The dashed line represents linear
speedup.

likely that spatial multitasking will improve system perfor-
mance by allowing multiple GPGPU applications to share
the GPU without significantly impacting individual perfor-
mance. RSA, for example, benefits little from increases in
memory bandwidth, interconnect bandwidth, or SMs for the
size of the input data simulated in this study. RSA would
likely perform just as well using a single SM as it would if
it were assigned the entire GPU. With spatial multitasking,
assigning RSA only one SM would still leave the remaining
SMs free for other applications.

We have classified each application based on the infor-
mation provided in Table 1 and Figures 2 to 4. We verify
our assertions regarding the impact of spatial multitasking
on these classes of applications using the methodology pre-
sented in Section 3.4.

Compute-bound applications scale well as the num-
ber of SMs are increased but exhibit sub-linear speedup as
memory and interconnect frequency is increased. Assuming
spatial multitasking is implemented such that SMs are parti-
tioned among applications sharing the GPU, these applica-
tions are unlikely to contribute significantly to increases in
total system performance using spatial multitasking. These
applications are likely to take roughly N times longer to
execute if they are given N times fewer SMs. AES De-
crypt, AES Encrypt, Fractals, Image Denoising, JPEG De-
code, and Ray Tracing are compute-bound.

Interconnect/Memory-bound applications do not scale
well as the number of SMs are increased even though they
are sufficiently parallel to potentially make full use of the
available SMs. These applications are likely to contribute to
an increase in total system performance using spatial multi-
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Figure 4. Speedup of GPU computation versus GPU

interconnect frequency. Results are normalized to a

150MHz GPU interconnect clock. The dashed line rep-

resents linear speedup.

tasking if their limiting resources do not conflict with other
applications sharing the GPU. For example, two memory-
bound applications sharing the GPU is not likely to im-
prove performance, but a memory-bound application and
compute-bound application sharing the GPU is likely to
show a performance improvement. JPEG Encode and SAD
are interconnect/memory-bound.

Problem size-bound applications do not have a suffi-
cient amount of parallelism or lack sufficient input data size
to take advantage of all the SMs in the system. These ap-
plications are well suited to an implementation of spatial
multitasking in which SMs are partitioned among applica-
tions sharing the GPU. DVC, Radix Sort, RSA, and SHAI
are problem size-bound.

3.4. Multitasking Evaluation

In the previous section, we analyzed GPGPU applica-
tions in isolation as the resources available to them are var-
ied. This data indicates that many applications show unbal-
anced GPU resource usage for current hardware and likely
more for future hardware, making spatial multitasking an at-
tractive solution. In this section, using simulation, we con-
firm spatial multitasking is able to out-perform cooperative
multitasking. Although we do not model preemptive multi-
tasking for this research, in these experiments preemptive
multitasking will always perform worse than cooperative
multitasking due to context switch overhead.

We have implemented both cooperative and spatial mul-
titasking in GPGPU-Sim. Using the NVIDIA Quadro FX
5800 baseline configuration, we compare the total run time
of two, three, and four applications sharing the GPU under



0.3

0.25

0.2

0.15

0.1

Fraction of Combinations

0.05

1 1.2 1.4 1.6 1.8 2
Speedup
Figure 5. Distribution of speedup of spatial multitasking
relative to cooperative multitasking for all combinations
of two applications sharing the GPU.
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Figure 6. Distribution of speedup of spatial multitasking
relative to cooperative multitasking for all combinations
of three applications sharing the GPU.

spatial and cooperative multitasking. We simulate all com-
binations, with repetition, of the applications presented in
Section 3.1. For example, if there were three applications
A, B, and C, then the two-application combinations are AA,
AB, AC, BB, BC, and CC. For this evaluation, kernel initial-
ization and cleanup is not modelled for either multitasking
method. This favors neither cooperative nor spatial multi-
tasking because they both require this overhead. In this ini-
tial evaluation of spatial multitasking, SMs are naively par-
titioned evenly among each application. When the number
of SMs is not divisible by the number of applications, the
assignment is made arbitrarily with a near-even split. We
have determined through experimentation that this arbitrary
assignment does not significantly affect results. More intel-
ligent methods for SM partitioning are examined in Section
3.5. GPU global memory is not virtualized for this study.
Applications allocate memory from the same physical pool
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Figure 7. Distribution of speedup of spatial multitasking
relative to cooperative multitasking for all combinations
of four applications sharing the GPU.

but memory isolation is not enforced. In a real implemen-
tation of spatial multitasking, memory isolation should be
provided to ensure faulty or malicious applications do not
have access to another application’s memory space.

For many applications, it is not feasible to simulate the
entire execution in a reasonable amount of time since cycle-
accurate GPU simulation is considerably more complex and
time consuming than cycle-accurate CPU simulation due to
the large number of threads that execute simultaneously in
GPUs. Instead, we simulate spatial multitasking for a fixed
number of cycles and measure the work completed (instruc-
tions executed). When we began experimentation, we tried a
number of simulation lengths and compared how the results
changed as the length of simulation changed. We found that
results from shorter simulations (1M cycles or less) varied
considerably, but longer simulations (greater than 1M cy-
cles) converged on similar results for the applications eval-
uated in this research. This is probably due to startup varia-
tions that are not representative of the steady-state behavior
of applications. We simulate for SM GPU cycles because
it is sufficiently greater than 1M cycles so that startup vari-
ations have minimal impact on performance results and is
sufficiently small that simulation time is still reasonable.

We simulate each combination of applications in spatial
multitasking for SM GPU cycles; if an application com-
pletes in less than SM cycles, it is restarted and simulation
continues to ensure we observe 5SM GPU cycles. We simu-
late each combination of applications in cooperative multi-
tasking for a fixed number of instructions. The number of
instructions for which each application is run in cooperative
multitasking corresponds to the number of instructions that
are completed by the application in the corresponding spa-
tial multitasking simulation. This ensures we are comparing
the same amount of work for each application between spa-
tial and cooperative multitasking.



Table 3. Speedup of spatial multitasking compared to
cooperative multitasking. SMs are naively split evenly
among applications for spatial multitasking in this exper-

iment.
2 Apps 3 Apps 4 Apps
Geometric Mean 1.14 1.22 1.30
Maximum 2.00 2.91 3.83
Minimum 0.99 0.99 0.99

Table 4. Speedup of spatial multitasking compared to co-
operative multitasking for several benchmark combina-
tions.

Oracle Best Even
Applications SMs Speedup | SMs  Speedup
SDI-;/ AC] 282 1.23 }g 1.14
image Denong | 5 101 | 15 101
bk |0 |
JPE%EI‘;COde 255 1.08 g 1.05

Figures 5 to 7 plot the distribution of speedup of spa-
tial multitasking relative to cooperative multitasking for all
combinations of two, three, and four applications sharing
the GPU when SMs are split evenly among the applications.
For the applications we have evaluated, in 75% of simu-
lations spatial multitasking shows speedups relative to co-
operative multitasking greater than 1.03, 1.07, and 1.12 for
two, three, and four applications, respectively; greater than
1.09, 1.14, and 1.19 in 50% of simulations; and greater than
1.20, 1.26, and 1.55 in 25% of simulations.

Table 3 presents the speedup of spatial multitasking com-
pared to cooperative multitasking for all combinations of
two to four applications sharing the GPU. For these results,
only an even-split of SMs among applications in spatial
multitasking is presented. When four applications share a
GPU with 30 SMs, two applications are arbitrarily assigned
eight SMs while the other two applications are assigned
seven.

As shown in Table 3, spatial multitasking performs quite
well in general and in the worst case only performs slightly
worse than cooperative multitasking. As the number of
applications sharing the GPU grows, the speedup of spa-
tial multitasking compared to cooperative multitasking also
grows due to more efficient utilization of GPU resources.

Table 4 details the performance of several specific com-
binations of applications. We examine both Oracle Best
and Even SM partitioning. Oracle Best partitioning is an
exhaustive search of all possible partitions of SMs among
applications that selects the partitioning leading to the
greatest speedup over cooperative multitasking. Oracle is

0.8}
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Figure 8. Cumulative distribution function of the DRAM
bandwidth utilization for all combinations of applications
using spatial multitasking. The Y-axis represents the
fraction of combinations that have a DRAM bandwidth
utilization less than or equal to the corresponding point
on the X-axis.

Table 5. Summary of DRAM bandwidth utilization for all
combinations of applications.

1 App 2 Apps 3 Apps 4 Apps

Geometric Mean 37.0% 38.6% 40.5% 42.2%
Maximum 92.6% 94.5% 933% 91.7%
Minimum 2.2% 2.3% 2.4% 2.6%

not practical to implement in a real system. DVC and
SHA1, two problem size-bound applications, show signif-
icant speedup using spatial multitasking compared to co-
operative multitasking. JPEG Decode and Radix Sort also
show some speedup with spatial multitasking. JPEG De-
code is compute-bound and consequently not well suited for
spatial multitasking. However, when JPEG Decode is paired
with Radix Sort, which is problem size-bound, spatial mul-
titasking outperforms cooperative multitasking. AES En-
crypt and Image Denoising are both compute-bound appli-
cations and consequently do not show significant speedup
using spatial multitasking. Finally, we see that pairing
interconnect/memory-bound applications using spatial mul-
titasking, in this case JPEG Encode and SAD, also out-
performs cooperative multitasking. These results concur
with our application classification given in Section 3.3.
Figures 8 and 9 depict the cumulative distribution func-
tion of DRAM bandwidth utilization and average intercon-
nect latency for one to four applications using the GPU un-
der spatial multitasking. Note that one application using
spatial multitasking is the same as one application using
cooperative multitasking. Tables 5 and 6 summarize the re-
sults shown in Figures 8 and 9, respectively. The trend these
figures and tables show is that as the number of applica-
tions sharing the GPU under spatial multitasking increases
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Figure 9. Cumulative distribution function of the average

interconnect latency for all combinations of applications

using spatial multitasking.

the required DRAM bandwidth also increases. However the
average interconnect latency decreases as the number of ap-
plications sharing the GPU increases.

The reduction in average interconnect latency using spa-
tial multitasking compared to cooperative multitasking is
the result of bursty interconnect traffic. When a single ap-
plication executes in isolation on the GPU, all 30 SMs often
simultaneously contribute to bursts of interconnect traffic.
However, in spatial multitasking, each application executes
on a subset of SMs. Interconnect traffic bursts from different
applications are not aligned, therefore most of the time only
a subset of SMs contribute to a burst in interconnect traffic,
which results in a decrease in average interconnect latency.
We have observed for many applications when running in
isolation, a 2x reduction in SMs results in more than a 2x
reduction in average interconnect latency. This contributes
to the reduced average interconnect latency observed in spa-
tial multitasking compared to cooperative multitasking.

3.5. SM Partitioning

In the previous section we analyzed the performance ad-
vantages of spatial multitasking over cooperative multitask-
ing using a simple even-split of GPU SMs among applica-
tions. In this section we compare the following alternative
SM partitioning heuristics:

Oracle Best performs an exhaustive search of SM parti-
tionings and chooses the one that maximizes speedup over
cooperative multitasking. This heuristic is impractical to
implement in real systems, but provides an upper bound on
performance. Due to constraints on real world simulation
time we were unable to simulate Oracle scheduling for more
than two applications sharing the GPU.

Oracle Worst performs an exhaustive search of SM par-
titionings and chooses the one that minimizes speedup over

Table 6. Summary of average interconnect latency for all
combinations of applications.

1 Apps 2 Apps 3 Apps 4 Apps

Geometric Mean  205.5 164.5 138.8 119.0

Maximum 545.5 463.0 608.3 689.8
Minimum 2.6 2.5 2.5 2.5

cooperative multitasking. This heuristic is infeasable to im-
plement outside of simulation but provides a lower bound
on performance.

Even distributes SMs as evenly as possible among appli-
cations. When the number of SMs is not divisible by the
number of applications, the assignment is made arbitrarily
with a near-even split. For example, in the case of four ap-
plications sharing a 30 SM GPU two applications receive
seven SMs and two receive eight.

Smart Even is the same as Even except no application
is given more SMs than it can use based on the number of
thread blocks in the program.

Rounds attempts to assign SMs such that there are fewer
idle SMs near the completion of a kernel. In our simple
implementation of spatial multitasking, SMs cannot be re-
assigned to another application after the initial assignment.
Thus, when a GPGPU kernel has nearly completed exe-
cution, SMs can be idle because there are no new thread
blocks to assign to them. We have observed that most thread
blocks from a single kernel take the same amount of time
to execute, since thread blocks tend to execute in rounds
where groups of thread blocks start and complete execution
at nearly the same time. By knowing the number of thread
blocks the GPU would assign to each SM (it can be different
for each kernel) we can predict how many rounds it would
take to execute a kernel. The Rounds heuristic starts with an
even-split of SMs among applications. With the even-split
we calculate the number of rounds each application would
take to execute. After this, we find the minimum number
of SMs an application can be assigned without increasing
the number of rounds it would take to execute over an even-
split of SMs. We then find which applications would benefit
from adding SMs assuming other applications receive the
minimum number of SMs just calculated. Finally, we chose
the partitioning that results in the minimum total number of
rounds summed over all of the applications. In the case of
ties, we choose the partitioning that is closest to an even-
split. To summarize, this heuristic attempts to minimize the
total number of rounds executed among all the applications
while ensuring that no application takes more rounds to ex-
ecute than it would require with a simple even-split.

Profile uses the information from Figure 2 to choose the
best SM partitioning. An implementation of this heuristic
requires that applications are profiled in isolation before the
heuristic can partition SMs. This would typically be done
at install or compile time. For some applications the per-
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Figure 10. Average speedup of spatial multitasking over
cooperative multitasking for several SM partitioning
heuristics.

formance versus the number of SMs assigned is dependent
on the input data. For these cases, a more detailed profiling
heuristic may be necessary. For this research, the same input
was used for profiling the applications and evaluating the
partitioning heuristics. This decision is likely to favor Pro-
file over the other heuristics. The partitioning that is chosen
by this heuristic maximizes the following function:

N 1
> S~ @)

i=1

where S(4, j) is the speedup of application ¢ depicted in Fig-
ure 2 when j SMs are assigned to the application and N is
the number of applications sharing the GPU.

All of these experiments use a static partitioning of GPU
SMs among applications. The SM partitioning is decided at
the beginning of each simulation and never changed. In a
real implementation, SMs should be reassigned among ap-
plications dynamically to allow SMs to be assigned to new
GPGPU kernels and reclaimed from completed kernels. Dy-
namic partitioning is likely to result in even greater perfor-
mance improvements for spatial multitasking due to more
efficient use of GPU SMs.

Figure 10 compares the performance of our SM partition-
ing heuristics using the baseline NVIDIA Quadro FX 5800
configuration. Geometric mean speedup of spatial multi-
tasking across all combinations of applications is shown
with the results normalized to cooperative multitasking.
Smart Even improves performance over Even because SMs
are not wasted on applications that will not use them. How-
ever, the difference in performance between Smart Even,
Rounds, and Profile is insignificant for this GPU configu-
ration. When two applications share the GPU, these sim-
ple partitioning heuristics approach the optimal Oracle Best
performance. The average performance of Oracle Worst is
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Figure 11. Average speedup of spatial multitasking com-
pared to cooperative multitasking for several SM parti-
tioning heuristics as the total number of SMs in the GPU
is varied. Two applications share the GPU.
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Figure 12. Average speedup of spatial multitasking com-

pared to cooperative multitasking for several SM parti-

tioning heuristics as the total number of SMs in the GPU

is varied. Three applications share the GPU.

close to the performance of cooperative multitasking, which
suggests that even with poor partitioning heuristics spatial
multitasking can outperform cooperative multitasking.

Figures 11 and 12 plot the performance of several SM
partitioning heuristics as the total number of SMs in the
GPU is varied. These results indicate that as fewer SMs
are available per application the best scheduler to choose
changes. When there are a large number of SMs available
for each application, Smart Even performs nearly as good as
Rounds and Profile. Profile requires an extra profiling step



to be run for each application at install time and Rounds is
complex to implement. Smart Even is an attractive solution
because it is very simple to implement and performs nearly
as well as Rounds and Profile when there are many SMs
available per application. However as resources become
more constrained Smart Even does not perform as well as
Rounds and Profile. In this case Rounds would be the best
heuristic to choose because it performs just as well as Pro-
file, but does not require an extra profiling step at install
time.

Looking beyond average performance, we have observed
that in individual cases the best performing heuristics varies.
This indicates an SM partitioning heuristic that is a hybrid
of Smart Even, Rounds, and Profiling could outperform any
of the heuristics on their own.

4. Challenges of Spatial Multitasking

Currently, only a single application executes on the GPU
at a time. Spatial multitasking changes this to allow GPU
resources to be partitioned among multiple applications.
However, there are several challenges for both hardware and
system software that must be addressed to implement spatial
multitasking. In this section we outline some of these chal-
lenges assuming spatial multitasking partitions SMs among
applications. We plan to investigate more specific imple-
mentation details of spatial multitasking in future work.

The GPU memory system requires modifications to sup-
port multiple applications. Although several GPU architec-
tures already virtualize global and texture memory for a sin-
gle application [11], the memory sub-system will have to
be enhanced to ensure memory isolation between applica-
tions for security, reliability, and programmability purposes.
This can be as simple as segmenting memory and assigning
each segment to an application, or can be a full implemen-
tation of virtual memory with protection and paging similar
to modern CPUs. In set-top and portable devices, memory
requirements of applications are likely modest, making pag-
ing unnecessary; however, for desktop and scientific com-
puting, memory requirements are likely higher. In situa-
tions where GPU resources become over-subscribed, such
as running out of physical GPU memory when paging is not
implemented, the system should fall back on a mixture of
spatial and temporal multitasking.

The frequent and time-sensitive task of scheduling
threads to SMs is currently handled on the GPU without
OS interaction. This can remain unchanged for spatial mul-
titasking; however, the scheduler must additionally partition
resources among applications. Repartitioning should occur
when new applications request to execute on the GPU or
an existing application finishes GPU execution. This oc-
curs less frequently than the start and completion of indi-
vidual threads in an application, and is therefore a more

coarse-grained scheduling decision than scheduling individ-
ual threads to SMs. For this reason, in spatial multitasking,
the OS is best-suited for resource partitioning. The GPU
would still be responsible for scheduling individual threads
to SMs within the partitioning constraints the OS has set.

5. Related Work

Multitasking has been previously researched on several
platforms that share properties with GPUs. Intel’s Larrabee,
a many-core architecture intended for graphics process-
ing [25], would have fully supported preemptive and spatial
multitasking for the general-purpose cores, like most other
x86-based multicore CPUs. However, this work differs from
Larrabee by investigating multitasking for standard GPUs,
which have a much larger number of very simple cores than
Larrabee. Additionally, the number of hardware threads
supported on each GPU core is much higher than the four
threads per core supported on Larrabee.

The Cell multiprocessor is made up of a general-purpose
super-scalar processor and several SIMD processors [10].
The SIMD processors, known as Synergistic Processing El-
ements (SPEs), support both cooperative and preemptive
multitasking, but not spatial multitasking. The context of an
SPE is roughly 256KB [9], but spatial multitasking is still
likely to improve performance in the Cell multiprocessor by
using resources more efficiently. Like Larrabee, the scale of
parallelism on the Cell multiprocessor is much smaller than
what this work targets, which presents different challenges
for spatial multitasking.

NVIDIA’s Fermi architecture supports concurrent exe-
cution of GPGPU kernels from a single application [19],
but the opportunity to execute multiple kernels from the
same application in parallel is likely to be rare compared
to the frequency of multitasking separate GPGPU applica-
tions. This is partly caused by limitations imposed by data
dependencies across kernels, a problem not present in spa-
tial multitasking.

The issue of time-sharing versus space-sharing has been
investigated on shared-memory multiprocessors as well [15,
21]. McCann et al. showed space-sharing scheduling
policies out-perform time-sharing [15]. They concluded
this is because parallel applications tend to have convex
speedup versus resource curves, caused by insufficient par-
allelism and overheads that grow with the number of proces-
sors used. Although GPUs are architected differently from
shared-memory multiprocessors, GPGPU applications still
tend to have convex speedup versus resource curves, as we
have shown in this paper. This feature is one of the motivat-
ing factors for GPU spatial multitasking. On the other hand,
Ousterhout noted that applications exhibiting fine-grained
inter-process communication perform poorly when only a
subset of the communicating processes are executing con-



currently [21]. To handle this situation, he proposed a tech-
nique that schedules processes from the same job to mul-
tiple processors simultaneously (i.e., co-scheduling), effec-
tively time-sharing multiprocessors. In GPGPU architec-
tures, fine-grained communication can only occur among
small groups of threads, known as thread blocks in NVIDIA
architectures. Thread blocks are executed in parallel on
a single SM, eliminating the need for co-scheduling in
GPGPU architectures.

6. Conclusion

We proposed spatial multitasking for GPGPU applica-
tions. Spatial multitasking allows multiple applications to
simultaneously share the GPU by partitioning its resources
among applications rather than, or in addition to, time mul-
tiplexing applications, as is done by cooperative and pre-
emptive multitasking. We presented application characteri-
zations that indicate many GPGPU applications fail to uti-
lize GPU resources fully; GPGPU applications are even
more likely to exhibit unbalanced resource utilization in fu-
ture GPUs. Our simulation results also indicated that spa-
tial multitasking has the potential to offer significant per-
formance benefits compared to cooperative multitasking by
executing applications in parallel. Smart Even resource par-
titioning showed average speedups of 1.16, 1.24, and 1.32
over cooperative multitasking for two, three, and four appli-
cations sharing the GPU, respectively. By allowing appli-
cations to share the GPU, spatial multitasking out-performs
cooperative multitasking by using available GPU resources
more efficiently. Finally, spatial multitasking provides op-
portunities for new, flexible scheduling and QoS techniques
that can further improve the user experience.
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