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Abstract—Cloud systems require elastic resource allocation to
minimize resource provisioning costs while meeting service level
objectives (SLOs). In this paper, we present a novel PRedictive
Elastic reSource Scaling (PRESS) scheme for cloud systems.
PRESS unobtrusively extracts fine-grained dynamic patterns
in application resource demands and adjust their resource
allocations automatically. Our approach leverages light-weight
signal processing and statistical learning algorithms to achieve
online predictions of dynamic application resource requirements.
We have implemented the PRESS system on Xen and tested it
using RUBiS and an application load trace from Google. Our
experiments show that we can achieve good resource prediction
accuracy with less than 5% over-estimation error and near zero
under-estimation error, and elastic resource scaling can both
significantly reduce resource waste and SLO violations.

I. INTRODUCTION

Cloud computing allows tenants to rent resources in a pay-

as-you-go fashion. It offers the potential for a more cost-

effective solution than in-house computing by obviating the

need for tenants to maintain complex computing infrastruc-

tures themselves. To achieve this benefit, the right amount

of computing resources need to be given to the applications

running in the cloud. The amount of resources needed is rarely

static, varying as a result of changes in overall workload, the

workload mix, and internal application phases and changes.

Under-provisioning resources will cause service level objec-

tive (SLO) violations, which are often associated with signif-

icant financial penalties. Over-provisioning wastes resources

that could be put to other uses. To avoid both problems,

the amount of resources allocated to applications should be

adjusted dynamically, which brings two main challenges:

(1) deciding how much resource to allocate is non-trivial

since application resource needs often change with time and

characterizing runtime application behavior is difficult; (2)

application resource needs must be predicted in advance so

that the management system can adjust resource allocations

ahead of the needs. Furthermore, resource-management sys-

tems should not require prior knowledge about applications,

such as application behavior profiles, and running the resource-

management system itself (including its prediction algorithms)

should not be costly.

The goal of our research is to develop a light-weight elastic

resource allocation scheme for use by a cloud service provider

that addresses these challenges, while not requiring advance

application profiling, model calibration, or deep understanding

of the application. We call our approach PRedictive Elastic
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Fig. 1. Overall architecture of the PRESS system. The host system
runs applications in virtual machines (VMs), and monitors their
resource usage. This data is fed to PRESS, which makes predictions
of future application resource needs, which are sent back to the host
system, which scales the resource-limits on each VM accordingly.

reSource Scaling (PRESS). Figure 1 shows its overall archi-

tecture.

PRESS strives to allocate just enough resources to ap-

plications to avoid SLO violations and minimize resource

waste. It continuously tracks the dynamic resource require-

ments of applications in an unobtrusive way and predicts re-

source demands in the near futurem using two complementary

techniques to do so. PRESS first employs signal processing

techniques to identify repeating patterns called signatures that

are used for its predicns. If no signature is discovered, PRESS

employs a statistical state-driven approach to capture short-

term patterns in resource demand, and uses a discrete-time

Markov chain to predict that demand for the near future.

The resource prediction models are repeatedly updated when

resource consumption patterns change. PRESS gives higher

priority to avoiding under-estimation than to avoiding over-

estimation since the former is more likely to cause SLO

violations.

This paper makes the following contributions:

• It describes PRESS, a light-weight online resource de-

mand prediction scheme that can handle both cyclic and

non-cyclic workloads.

• It compares the performance of PRESS against several

other algorithms, by implementing a prototype on top

of the Xen virtual machine (VM) platform, and using

workloads derived from the RUBiS online auction bench-

mark [1] and a sample of real application load traces

collected on a Google cluster [2].

• It demonstrates that PRESS does better than any of the

alternate algorithms, while imposing significantly less

overhead than the best of them.
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The metrics used for the analysis include over-and under-

estimation errors, the rate of SLO violations, and the prof-

itability of a cloud system provider operating under a number

of different penalty functions.

PRESS helps applications meet their SLOs while using

near-minimum resources. Most of the schemes we compared

PRESS against induced more SLO violations (up to 80% of

requests), or wasted resources, allocating up to 35% more

than PRESS, or both. We found that PRESS achieved high

prediction accuracy: less than 5% over- and near zero under-

estimation errors. In contrast, most other prediction schemes

had higher prediction errors on the same workloads, with up

to 40% over- and 15% under-estimation errors.

Our prototype implementation shows that PRESS is feasible

and imposes negligible overhead for a virtualized computing

cluster.

The rest of the paper is organized as follows. Section II

presents the design and algorithms of the PRESS system. Sec-

tion III presents the experimental results. Section IV compares

our work with related work. Finally, the paper concludes in

Section V.

II. SYSTEM DESIGN

For simplicity of exposition we focus here on CPU usage,

although PRESS is capable of managing memory, I/O, and

network usage, too. PRESS manages an application’s resource

allocation by setting the CPU resource limit for the virtual

machine the application is running in (we call this scaling). It

bases that limit on a prediction derived from recent application

behavior. The limit sets the upper bound for the application’s

CPU consumption; if the limit is higher than the actual demand

of the application, the residual allocation is wasted; if it is

lower, SLO violations are likely. Ideally, the limit should be

set to exceed the actual demand by a small margin. To achieve

this, we developed two complementary resource prediction

techniques.

A. Signature-driven resource demand prediction

For workloads with repeating patterns, PRESS derives a

signature for the pattern of historic resource usage, and uses

that signature in its prediction. Such repeating resource usage

patterns are often caused by repeating requests or iterative

computations [3], [4].

To avoid making assumptions about the length of the

repeating pattern, PRESS uses signal processing techniques

to discover the signature, or to decide that one does not exist.

It first employs a Fast Fourier Transform (FFT) to calculate

the dominant frequencies of resource-usage variation in the

observed load pattern. Starting from a resource-usage time

series L = {l1, ..., lW}, the FFT determines coefficients that

represent the amplitude of each frequency component. The

dominant frequencies are those with the most signal power. If

there are multiple dominating frequencies that have similar

amplitude, PRESS picks the lowest dominating frequency

fd , thereby selecting the longest repeating pattern that was

observed.

Since workload signatures may vary over time, this calcu-

lation is performed anew each time a prediction is made.

Given a dominating frequency fd , PRESS derives a pattern

window size of Z samples: Z = (1/ fd)× r where r denotes

the sampling rate. It then splits the original time series L =
{l1, ..., lW} into Q = �W/Z� pattern windows: P1 = {l1, ..., lZ},

P2 = {lZ+1, ..., l2Z}, ..., PQ = {l(Q−1)Z+1, ..., li,QZ}. To detect

whether the time series contains repeating patterns, PRESS

evaluates the similarity between all pairs of different pattern

windows Pi and Pj. Two pattern windows are considered

similar if their Pearson correlation1 value is close to 1 (e.g.,

> 0.85) and the ratio of their mean values is close to 1 (e.g.,

within 0.05). If all pattern windows are similar, PRESS treats

the resource time series as having repeating behavior, and

uses the average value of the samples in each position of the

pattern windows to make its prediction. Otherwise, PRESS

falls back to an alternate, state-based scheme to predict the

resource demands.

Note that the length of the time series window L is not

necessarily a multiple of the signature length Z. This means

that even if a signature pattern has been found, PRESS still

needs to determine where the system is within the signature

window to predict the next usage value. This is accomplished

as follows. After PRESS finds a signature S with length Z,

it retrieves the last Z measurement samples to form a time

series S′. Since S and S′ are similar but time-shifted, PRESS

applies the dynamic time warping (DTW) algorithm [5] to

determine the alignment. DTW can match two similar but

warped or shifted time series. The result is the minimum

distance mapping from S′ to S. This allows PRESS to derive

a point-to-point mapping between S′ and S, which allows it to

find the position of the current value (i.e., the last point on S′)

on the signature S.

B. State-driven resource demand prediction

For applications without repeating patterns, PRESS uses

a discrete-time Markov chain with a finite number of states

to build a short-term prediction of future metric values (see

Figure 2). Consider a resource metric x such as memory

usage or CPU usage. PRESS discretizes its values into M

equal-width bins where each bin represents a distinct state.

(We used M = 40 bins in our experiments.) To build a

Markov chain model for metric x, PRESS learns the transition

probability matrix Px, which is an M ×M matrix where the

element pi j at row i and column j denotes the conditional

probability of making a transition from state i to state j.

Assuming the Markov chain is homogeneous, PRESS can

derive the feature value distribution of x for any time in the

future by applying the Chapman-Kolmogorov equations [6]:

after t time units, the probability distribution for metric x is

πt = πt−1Px = πt−2P2
x = ... = π0Pt

x , where πt and π0 denote

the probability distribution at time t and the initial probability

distribution for the metric x, respectively. Given a current state

1The Pearson correlation is obtained by dividing the covariance of Pi and
Pj by the product of their standard deviations.
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Fig. 2. A state-driven resource demand prediction model. In this
example, the metric value (e.g., memory usage) ranges from 0 to 30
units, and this range is partitioned into three states, with the range
corresponding to the state shown below the state name. The arcs are
labeled with their transition probabilities.

i, PRESS predicts the state at a future time t by extracting the

most probable future state j (i.e., the one with the largest

transition probability) from the matrix Pt
x at row i.

The further t is into the future, the weaker the correlation

between the model and the actual demand. But since PRESS

only needs to make predictions for the near future, this is not

an issue in practice.

C. Integrated runtime elastic resource scaling

PRESS integrates both signature-driven and state-driven

approaches. When a new application starts, PRESS assumes

zero knowledge about the application, and sets the limit to its

maximum (e.g., 100% CPU). After a few (e.g., 10) resource

demand samples have been acquired, PRESS starts making

predictions. It starts scaling the resource allocations once it is

confident in those predictions. PRESS uses the signature-based

approach to make its predictions if it can find a signature;

otherwise it uses the state-based approach to make them.

(In the future, PRESS might choose to rely on the state-

based prediction only if it had sufficient confidence in its

correctness.)

PRESS can use different input window sizes for the signa-

ture and state-based schemes. Typically, the sliding window

for the signature approach should be larger than for the state-

based one, although for these experiments we set the window

sizes to be the same to allow more direct compatrison of the

different algorithms.

PRESS repeatedly updates both prediction models using

new measurement samples. To minimize the overhead of

doing this, the updates are triggered when the models make

a few (e.g., 3) consecutive mis-predictions (under- or over-

predictions of more than 10%).

If it is to observe any resource-demand increases, PRESS

must not limit the resource allocation to less than the real

demand. Under-estimating the application resource demand

will make the scaling system set a resource cap that is lower

than the real demand. This will not only cause SLO violations

but also affect the accuracy of future resource demand predic-

tions since the application’s real demand is unknown to the

system. To avoid this risk, and to reduce the chance of under-

provisioning, PRESS pads (increases) the predicted value by

a small amount (5-10%) to allocate a bit more resources than

the model suggests. We find that this almost eliminates all

under-estimation errors while incurring only a small cost for

the additional resources.

D. Non-PRESS algorithms: alternative prediction approaches

For our experiments, we also implemented a set of alterna-

tive resource prediction algorithms to compare PRESS against,

as follows. All use a sliding window of recent samples.

• Mean: the predicted resource demand is the mean usage

over the samples in the window.

• Max: the predicted resource demand is the maximum

resource usage over the samples in the window.

• Histogram: this scheme constructs a histogram from

the samples in the window, using 40 equal-width bins.

The prediction is the average value of the samples in

the bin with the largest number of samples - i.e., an

approximation to the mode. (This approach is modeled

on [7].)

• Auto-correlation: this scheme repeatedly shifts the input

resource demand time series by one step (up to half

the total window length) and calculates the correlation

between the shifted time series and the original one. If

the correlation is higher than a fixed threshold (e.g., 0.9)

after n shifts, a repeating pattern is declared, with duration

n steps, and the algorithm stops. The predicted value is

based on the position of the current value on the repeating

pattern. (This approach is similar to [8].) If no repeating

pattern is found, the algorithm falls back to using the

mean value of the samples as its prediction result.

• Auto-regression: this scheme attempts to predict a value

Xt of a system based on the previous values Xt−1, Xt−2

using the formula Xt = a1Xt−1+a2Xt−2... The coefficients

(a1, a2 and so on) are determined by calculating auto-

correlation coefficients and solving linear equations:

Z

∑
i=1

aiR(i− j) =−R( j), for 1 ≤ j ≤ Z

where R is the auto-correlation coefficients of the time

series, and Z is the length of the sample. (This scheme

is similar to [9].)

In practice, we found that the prediction models can

sometimes produce negative results when the recent resource

demand suddenly drops (e.g., CPU = 100%, 90%, 10%). Since

resource demand can never be negative, we allocate a default

minimum amount (5% of the maximum resource allocation)

when the prediction model generates a negative result.

The next section describes how we evaluated PRESS against

these approaches.

III. EXPERIMENTAL EVALUATION

We implemented the PRESS system and conducted exten-

sive evaluation studies using the RUBiS [1] online auction

benchmark (PHP version) and a small sample of Google

cluster resource usage data [2]. This section describes those

experiments.
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A. Experiment setup

Our experiments were conducted on NCSU’s virtual com-

puting lab (VCL) [10]. Each VCL host has a dual-core Xeon

3.00GHz CPU and 4GB memory, and runs CentOS 5.2 64-

bit with Xen [11] 3.0.3. The guest VMs also run CentOS 5.2

64-bit.

We focus in this paper on scaling CPU resources because

these appeared to be the bottleneck in our experiments.

PRESS monitors an application’s resource demands from

domain 0, using the libxenstat library to collect resource

usage information (CPU time, memory, network, and I/O) for

both domain 0 and guest VMs. The average resource usage

over the sampling duration is used as the input to the time

series; it is sampled every minute.2

By default, PRESS makes a prediction every minute, and

uses the prediction to scale the resources allocated to the

application for the next minute. It does this by adjusting the

CPU limits of the target VM setting controls on the Xen credit

scheduler [12]. The Xen credit scheduler runs in the non-work-

conserving mode so that a domain cannot use more than its

share of CPU.

The prediction algorithms used by PRESS are indifferent to

the sampling rate, as long as the input window size is large

enough to encompass the most important patterns to track,

and there aren’t too many samples to analyze. Since diurnal

patterns are important in our test workloads, we used a window

size of 3 days, or 4320 samples (fewer during the first 3 days).

Unfortunately, the auto-regression approach uses a Gaussian

elimination algorithm, which has time complexity O(n3), and

this took longer than a minute with this many samples, so

we coalesced the input time series for this one predictor by

using the average of every 3 consecutive samples, resulting

in 1440 input samples. We also explored the effect of using

shorter windows (32 samples) for the simpler algorithms -

mean, max, and histogram, to explore the effects of using more

recent history to explore the near future. The window sizes are

shown on the graphs and tables by appending the number of

samples to the algorithm name (e.g., mean-32).

We tested two variants of the PRESS algorithm: PRESS-5%

pads the predicted CPU usage by 5% while PRESS-0% adds

no padding.

A service provider can either rely on the application itself or

an external tool to keep track of whether the application’s SLO

is violated [13]. In our experiments using RUBiS, we adopted

the latter approach, using the RUBiS workload generator to

track the response time of the HTTP requests it made. The

per-hour SLO violation rate is the fraction of requests in an

hour that have response time longer than 1.5 seconds, averaged

over a 1 hour period.

In order to evaluate our system under workloads with

realistic time variations, we used the per-minute workload

intensity observed in two real-world web traces to modulate

2A future enhancement would be to sample the load much more rapidly
(e.g., once a second) and use the 95th%ile of those measurements as the
estimate of the resource demand over the 1 minute interval.
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Fig. 3. CPU usage trace for our RUBiS web server driven by three different
workloads.

the request rate of our synthetic RUBiS benchmark. To avoid

overloading our servers, the mean request rate was scaled so

that the maximum rate did not exceed about 50 requests/sec.

Using this approach, we constructed three workload time

series:

1) Per-minute average rates observed in the ClarkNet web

server trace beginning at 1995-08-28:00.00 from the

IRCache Internet traffic archive [14].

2) Per-minute average rates observed in the web access logs

from the World Cup 98 official web site [14] that start

at 1998-05-05:00.00.

3) A hybrid, with the first 7 days the same as the ClarkNet

trace, and then switching to a synthetic workload-

intensity time series, whose request rate was uniformly

distributed over 15-40 requests/sec.

B. Results and analysis

Figure 3 shows the demand (the CPU usage achieved with

no resource caps) for the RUBiS Web server under three test

workload patterns.

Table I shows how well the predictors do against this

workload, and how good they are at predicting the actual

demand. In addition to showing the total CPU allocation

emitted by each predictor, the table also shows the fraction of

the predictions that were below the actual demand (te rest were

above it). There are quite large ranges of the ratios between

the predicted load and the demand, and the frequencies of

under-estimation errors: 0.54–3.35× and 0.04%-79% under

for ClarkNet, 0.47–1.83× and 0.1%-95% under for WorldCup,

and 0.44–2.71× and 0.1%-85% under for Hybrid.

PRESS-5% almost always gave the closest predictions of

total demand, and did better than the other algorithms at

avoiding under-predictions. It was the most robust of the

predictors, with auto-correlation coming second. Compared to

the max-4320 algorithm, which is a close approximation to

a static resource allocation, PRESS allocates up to 70% less

CPU.

The poor performance of algorithms like mean-32 comes

because they don’t allow the workload to exhibit it’s actual

demand: it is locked into running with less than it needs, and

12 2010 International Conference on Network and Service Management – CNSM 2010



Algorithm ClarkNet WorldCup Hybrid

Demand 498 cpu-mins 1579 cpu-mins 614 cpu-mins

PRESS-5% 102% (43%-) 99% (51%-) 83% (56%-)
PRESS-0% 96% (52%-) 93% (69%-) 78% (63%-)
Mean-32 54% (79%-) 47% (95%-) 44% (85%-)
Mean-4320 83% (58%-) 81% (65%-) 68% (69%-)
Max-32 63% (68%-) 62% (80%-) 51% (74%-)
Max-4320 335% (0.04%-) 183% (0.1%-) 271% (0.1%-)
Histogram-32 56% (76%-) 50% (93%-) 45% (82%-)
Histogram-4320 110% (42%-) 59% (84%-) 89% (59%-)
Auto-correlation 96% (53%-) 93% (69%-) 78% (63%-)
Auto-regression 70% (74%-) 105% (35%-) 53% (82%-)

TABLE I
TOTAL CPU PREDICTIONS FOR THE RUBIS WEB SERVER WITH A

PREDICTION INTERVAL OF 1 MINUTE, SHOWN AS A FRACTION OF THE

TOTAL DEMAND, AND (IN PARENTHESES) THE FRACTION OF THE 4983
PERIODS IN WHICH THE PREDICTION WAS LESS THAN THE DEMAND.

 0

 50

 100

 150

 200

ClarkNet WorldCup HybridM
ea

n 
O

ve
r-

E
st

im
at

io
n 

E
rr

or
 (

%
)

376 302 PRESS-5%
PRESS-0%

Mean-32
Mean-4320

Max-32
Max-4320

Histogram-32
Histogram-4320

Auto-corr
Auto-regr

 0

 10

 20

 30

 40

 50

 60

 70

 80

ClarkNet WorldCup HybridM
ea

n 
U

nd
er

-E
st

im
at

io
n 

E
rr

or
 (

%
)

PRESS-5%
PRESS-0%

Mean-32
Mean-4320

Max-32
Max-4320

Histogram-32
Histogram-4320

Auto-corr
Auto-regr

Fig. 4. CPU over- and under-estimation errors for the RUBiS web server
with a 1-minute prediction interval. Error bars show the standard deviation
from the mean.

they have no way of observing a larger demand that would

cause them to increase their cap. Padding would clearly be

beneficial here.

The efficacy of a predictor is also a function of the severity

of the individual prediction errors. Figure 4 shows how large

the over- and under- prediction errors are for the RUBiS

web server workload. (The graphs are obtained by comparing

the predicted values to the measured demand value for each

period, with over- and under-predictions plotted separately.)

PRESS consistently achieved the smallest over- and under-

estimation errors. Auto-correlation was almost as good in

terms of under-estimations, with auto-regression third best, but

those algorithms have higher execution overheads, as we show

below. The other algorithms had larger under-estimation errors

in at least one case, or, like max-4320, allocated significantly

more resources than needed. In general, using a longer training

window lead to lower under-estimation errors, but at the

expense of larger over-estimates.

PRESS is not only the best algorithm in terms of under-

estimation errors, but it is significantly cheaper to execute

than the next best candidates, as shown in Table II. The

Algorithm Input size CPU

PRESS 4320 samples 0.55 ± 0.01s
Auto-correlation 4320 samples 2.67 ± 0.01s
Auto-regression 1440 samples 4.26 ± 0.01s

TABLE II
MEAN AND STANDARD DEVIATION OF CPU EXECUTION COSTS FOR SOME

PREDICTION ALGORITHMS, AVERAGED OVER 300 TRIALS.
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Fig. 5. CPU overhead from scaling, including both prediction and resource
cap settings, under different prediction intervals and numbers of VMs.

auto-correlation algorithm takes about five times as long to

run as PRESS, and the auto-regression algorithm takes seven

times longer than PRESS even with only one quarter as many

samples. For comparison, it takes 120±0.55ms to apply a CPU

limit to a virtual machine, and about 10ms to collect a resource

usage sample. Clearly, the dominant overhead cost for dynamic

resource allocation is that of making the predictions.

One way to reduce this overhead is to perform scaling less

often, and make predictions for longer intervals. At the same

time, most cloud service providers will probably run more

than one application on a physical machine. Figure 5 shows

the results of exploring this space, for the three best predictors.

PRESS uses significantly fewer CPU cycles than the other two

algorithms. This data suggests that a 9% investment in CPU

overhead for predictions can manage up to 10 VMs with a

one minute sampling period, delivering up to 70% resource

savings compared to a static allocation.

Table III and Figure 6 explore the effects of performing

scaling less often, using the same input data as before.

Instead of executing prediction and scaling every minute, we

adjusted the algorithms to run every 9 minutes, and to provide

predictions of usage for each of the next 9 one-minute periods.

The overall prediction for the 9-minute period is the maximum

of these values, and this is used as the resource allocation for

those 9 minutes.

Under these conditions, PRESS continues to perform well.

Although auto-regression now achieves fewer, and slightly

smaller under-estimation errors than PRESS, it over-estimates

more aggressively, resulting in allocations that are 12-48%

larger. This occurs because it tends to magnify the effects of

sudden changes, over-predicting both upward and downward

swings, to the point where its usage predictions are sometimes

negative. Because predictions are combined by taking the

2010 International Conference on Network and Service Management – CNSM 2010 13



Algorithm ClarkNet WorldCup Hybrid

Demand 497 cpu-mins 1577 cpu-mins 613 cpu-mins

PRESS-5% 102% (44%-) 99% (52%-) 83% (56%-)
PRESS-0% 97% (49%-) 93% (69%-) 79% (60%-)
Mean-32 55% (79%-) 48% (95%-) 44% (85%-)
Mean-4320 83% (59%-) 81% (66%-) 68% (69%-)
Max-32 66% (67%-) 66% (95%-) 54% (73%-)
Max-4320 336% (0.04%-) 183% (0.1%-) 272% (0.1%-)
Histogram-32 56% (77%-) 50% (92%-) 46% (83%-)
Histogram-4320 110% (42%-) 59% (85%-) 89% (59%-)
Auto-correlation 97% (49%-) 93% (69%-) 79% (60%-)
Auto-regression 114% (32%-) 147% (6%-) 119% (29%-)

TABLE III
CPU PREDICTIONS FOR THE RUBIS WEB SERVER WITH A PREDICTION

INTERVAL OF 9 MINUTES. SEE TABLE I FOR THE DESCRIPTION.
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Fig. 6. CPU over- and under-estimation errors for the RUBiS web server,
using a 9-minute prediction interval. Error bars show the standard deviation
from the mean.

largest predicted value over a multi-minute period, the effects

of over-predictions are amplified.

Although under-predictions might save resources, they can

have serious consequences, including causing service level

objectives (SLOs) to be missed. Figure 7 shows the average

per-hour SLO violation rates over days 4 to 6 (i.e., a 72

hour portion) of the ClarkNet and World Cup traces. In this

comparison, all the algorithms are using a training window size

of 4320 except for auto-regression, which uses 1440, and all

the prediction outputs are padded by 10%. Clearly, high SLO

violation rates occur when the system under-provisions its

resources (e.g., mean and histogram). As expected, max does

well at the cost of many more resources, but both PRESS and

auto-regression achieve low SLO violation rates too, although

the latter is more expensive to run.

We look next at the aggregate impact of over- and under-

predictions by examining the profitability of a cloud service

provider using these algorithms. To compare the different

prediction algorithms, we applied a cost model based on that

of Amazon’s EC2 [15] to our RUBiS data. We set the resource

price for the customer at $1.00 per hour and the resource cost
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Penalty function Violation-rate → rebate Violation-rate → rebate

Rebate1 ≥1% → 5% ≥5% → 10%
Rebate2 ≥5% → 10% ≥10% → 25%
Rebate3 ≥10% → 25% ≥20% → 50%

TABLE IV
THREE DIFFERENT PENALTY FUNCTIONS FOR SLO VIOLATIONS.
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Fig. 8. Profit-rate comparisons for two different workloads over a 72-hour
period.

for the service provider at $0.40 per hour.3

A cloud service provider needs to balance the application

owner’s desire to achieve a good SLO with its own desire to

reduce the resources it allocates to its customers. In support of

this, we used the three different penalty functions described in

Table IV. As with many cloud providers, a penalty takes the

form of a rebate that is a percentage of the resource price; it

is paid out if enough client requests take longer than the 1.5s

target latency specified by the SLO.

The profit-rate of the cloud provider is calculated by starting

with the revenue obtained from renting out the resources used

by (not allocated to) the application. We then subtracted from

this any penalties (rebates) incurred, as well as the costs

for the resources allocated to the application and required to

3We experimented with a resource cost of $0.60 per hour, but all algorithms
except PRESS made a loss with that value.
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Fig. 9. Over- and under-estimation errors for three tasks from the Google workload trace. Error bars show the standard deviation from the mean.

run the prediction algorithm. The profit was calculated every

hour and we show the average profit over the same 72 hour

period as before in Figure 8 for the three penalty functions.

PRESS consistently achieves the highest profit rate. Note that

our profit formula causes max to do poorly because we only

credit the service provider with income from the application’s

resource usage, not the resources allocated to it.

We also evaluated our prediction algorithms using a small

sample of real application workload trace data from a Google

cluster [2]. We picked three tasks that ran for the duration of

the trace. Because the trace is quite short (about 6 hours),

we chose shorter training windows (512 samples) than for

the for the RUBiS trace. We also tested very short windows

(32 samples) for the mean, max, and histogram predictors.

Memory usage for these tasks changes more rapidly than does

CPU usage, so we found that it was helpful to increase the pre-

diction padding in PRESS to 10% for memory consumption.

No padding was added for the other prediction algorithms. The

results are shown in Figure 9. PRESS consistently achieves

lower under-estimation errors than all the other schemes (save

max-512) with a small over-estimation error. As with the

RUBiS experiments, using shorter training windows tended

to increase the under-estimation errors for the mean, max, and

histogram approaches. We omit the prediction error frequency

results due to space limitations, but they show that PRESS

incurred significantly fewer under-estimation errors than all

the other algorithms.

IV. RELATED WORK

Resource management has been extensively studied. Due to

space limitations, we focus on work that is most closely related

to ours. Previous work has used offline or online profiling [16],

[17], [18], [19] to experimentally derive application resource

requirements using benchmark or real application workloads.

However, profiling needs extra machines and may take a

long time to derive resource requirements. PRESS avoids the

need to profile offline by deriving resource demands as the

application runs.

Recently, research work has been done in model-driven

resource management. Those approaches use queueing the-

ory [4] or statistical learning methods [20], [21], [22], [23]

to build models that allow the system to predict the impact

of different resource allocation policies on the application

performance. The model needs to be calibrated in advance

and the system needs to assume certain prior knowledge about

the application and the running platform (e.g., input data size,

cache size, processor speed), which may not be feasible in the

cloud system. In contrast, PRESS is application and platform

agnostic.

Previous work has applied control theory [24], [25], [26] or

reinforcement learning [27] to adaptively adjust resource allo-

cations based on SLO conformance feedback. However, those

approaches often have parameters that need to be specified or

tuned offline, and need some time to converge to the optimal

(near-optimal) decisions. In comparison, PRESS directly pre-

dicts optimal resource allocation based on historical resource

demand time series.

Trace-based resource management utilizes historical appli-

cation resource demands to guide various resource manage-

ment decisions. PRESS is most closely related to this category

of research work. Rolia et al. perform dynamic resource

allocation using an estimated burst factor times the most recent

resource demand [28]. In contrast, PRESS examines a window

of recent resource demands to predict future resource demand

directly. Our experiments have shown that such an approach is

highly accurate. Gmach et al. [29] used a Fourier transform-

based scheme to perform offline extraction of long-term cyclic

workload patterns. In comparison, PRESS does not assume

the workload is cyclic, and can predict resource demands for
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both repeating and non-repeating workload patterns. Moreover,

PRESS performs online signature extraction by detecting

signature changes and supporting signature alignment with

runtime measurement time series. Chen et al. [3] used sparse

periodic auto-regression to perform load prediction. However,

their approach is tailored toward long prediction intervals (e.g.,

hours) and assumes the repeating period is known in advance.

Our experiments have shown that auto-regression is computa-

tionally intensive, which makes it impractical for short-term

online VM resource scaling. Chandra et al. [9] proposed two

workload prediction algorithms: auto-regression and histogram

based method. We have shown in the experiments that PRESS

can significantly outperform the histogram based method and

has much less overhead than the auto-regression scheme.

Gmach et al. [30], [31] proposed an integrated workload

placement solution using both peak demand based workload

assignment simulation and fuzzy logic based feedback control

guided workload migration. Buneci and Reed [8] used auto-

correlations to extract repeating patterns for detecting perfor-

mance anomalies. In comparison, PRESS provides resource

prediction for both repeating and non-repeating patterns, and

integrates online resource demand prediction with dynamic

VM resource scaling. Wuhib et al. [32] proposed a gossip pro-

tocol to achieve load balancing in cloud systems. In contrast,

PRESS addresses an orthogonal problem of setting minimum

resource caps to different VMs while still meeting the resource

demand of different applications.

V. CONCLUSION

We have presented the design and implementation of the

PRESS system, a novel predictive resource scaling system for

cloud systems. PRESS employs light-weight signal processing

and statistical methods to predict dynamic resource demands

of black box applications and performs elastic VM resource

scaling based on the prediction results. We implemented the

PRESS system on top of Xen in the NCSU Virtual Computing

Lab, using RUBiS benchmarks driven by real-life workload

traces, and a resource-usage trace of a Google application

workload.

Our results show that PRESS’s resource-usage predictions

achieve high accuracy and its allocations achieve better service

provider profitability than other approaches across a range

of workloads. We believe PRESS is an attractive scheme for

large-scale cloud computing infrastructures.
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