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Abstract
Key-value stores are widely used as storage backends,

due to their simple, yet flexible interface for cache, storage,
file system, and database systems. However, when used with
high performance NVMe devices, their high compute require-
ments for datamanagement often leave the device bandwidth
under-utilized. This leads to a performancemismatch of what
the device is capable of delivering and what it actually de-
livers, and the gains derived from high speed NVMe devices
is nullified. In this paper, we introduce KV-SSD (Key-Value
SSD) as a key technology in a holistic approach to overcome
such performance imbalance. KV-SSD provides better scala-
bility and performance by simplifying the software storage
stack and consolidating redundancy, thereby lowering the
overall CPU usage and releasing the memory to user ap-
plications. We evaluate the performance and scalability of
KV-SSDs over state-of-the-art software alternatives built for
traditional block SSDs. Our results show that, unlike tradi-
tional key-value systems, the overall performance of KV-SSD
scales linearly, and delivers 1.6 to 57x gains depending on
the workload characteristics.
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1 Introduction
With exponential growth of data, modern web-scale data-

dependent services and applications need higher capacity
and performance from their storage systems [8]. Such ap-
plications need to manage large number of objects in real
time, but traditional object storage systems such as key-value
stores are inefficient in handling the workloads in a scalable
manner utilizing the full bandwidth of SSDs [20, 21].

One of themain obstacles for key-value stores is the IO and
data management overheads to generate high-bandwidth IOs
for SSDs. For example, RocksDB is designed to utilize large
buffered IOs with small foreground processing using a log-
structured merging mechanism [2]. However, it requires a
background cleanup process called compaction, which reads
the written data back and merge them to reorganize valid
key-value pairs. Therefore, the amount of IOs and computa-
tions increases and often suffers from a slow-down or a stall
when the background operation progresses slowly. Similarly,
the defragmenter of Aerospike also requires CPU-intensive
merge operations to manage updated key-value pairs [1].

Another obstacle is the overhead ofmaintaining the consis-
tency of key-value pairs. Owing to the semantic gap between
block and key-value requests, storage systems typically main-
tain their own metadata and use write-ahead logging tech-
nique (WAL) to prevent the metadata of key-value pairs from
beingwrittenwithout data, or vice versa. This process creates
dependencies between IOs and increases write amplification,
slowing down the request processing. It also internally goes
through two to three translation layers in the storage stack.
Each incoming request is first processed and added intoWAL,
data, and metadata files. Then a file system re-indexes them
by creating its own metadata such as inodes and journals
for the files. Finally, the Flash Translation Layer (FTL) in an
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SSD performs an additional translation from logical block
addresses (LBA) to physical page numbers (PBN).

It has been challenging to reduce such overheads with less
CPU resources and smaller write amplification for high scal-
ability and performance. These issues get more pronounced
for fast storage devices due to shorter time budget for re-
quest processing. For example, to saturate a modern NVMe
SSD that can process 4 KB requests at the rate of 600 MB/s, a
system needs to generate 150K 4 KB requests per second to
the device, which is less than 7 µs per request. If the average
request processing time of system increases to 30 µs, at least 4
CPUs are required to generate the same rate of IOs to the de-
vice. Therefore, as the number of devices increases, the high
CPU demand to saturates the devices intensifies resource
contention in a host system, limiting in-node scalability.
To alleviate these issues, we introduce KV-SSD that in-

ternally manages variable-length key-value pairs, providing
an interface that is similar to that of conventional host-side
key-value stores. By offloading the key-value management
layer to an SSD, the need for host system resources can be
significantly reduced and the overhead of maintaining key-
value pairs can be isolated within a device. Moreover, to our
best knowledge KV-SSD is the first Key-Value SSD prototype
that supports large keys and unique functionalities such as
iterator. Therefore, applications can directly communicate
with KV-SSDs without going through additional indirection
layers for name and collision resolution.

We design and develop KV-SSD on Samsung’s datacenter-
grade NVMe SSD hardware to study the performance impli-
cation of the in-storage key-value management in a realistic
environment. We explore the potential benefits of KV-SSD
to improve performance, resource-efficiency, and scalability
for key-value store applications, evaluating it against state-
of-the art conventional key-value stores, such as RocksDB
and Aerospike. We show that, unlike conventional key-value
stores, the aggregated performance of KV-SSDs scales lin-
early with the number of devices and fully utilize the devices
with limited host-side compute and memory resources. Our
evaluation shows that when using 18 NVMe devices per
NUMA node, KV-SSDs outperforms conventional key-value
stores by 1.6 to 57 times.

2 Motivation and Background
In this section, we describe the resource requirements of

various components in the I/O stack and their impact on
utilizing low latency, and high-bandwidth SSDs. We first
investigate on the minimum resources required to saturate
NVMe SSDs, and present the detailed analysis on the reper-
cussions that the architectural designs of conventional key-
value stores have on the amount of computing resources
required for harnessing the potential of these NVMe de-
vices. These consolidate the foundation for our motivation

to design and develop KV-SSD, as an alternative to such key-
value stores, thereby allowing applications to achieve higher
throughput and low latency with minimal (or no) hardware
changes and low host resource usage.

2.1 Resource Demands of NVMe SSDs
We measured the resource usage of a block-based NVMe

SSD to understand the minimum amount of resources (com-
pute) required to saturate a SSD. Using flexible I/O tester
fio, we performed both synchronous and asynchronous
I/O benchmarks1, varying the request sizes, the number of
threads and queue depths with and without a file system. In

Figure 1: Sequential I/O benchmark (fio 50 GB write)
on block NVMe SSDwith andwithout ext4 file system.

Figure 1, we compare the throughput and CPU utilization
for small (4KB) and large (64KB) block sizes; 100% utilization
refers to the full utilization of all 48 cores of a NUMA node.
We observe that saturating a device with synchronous I/O
requires from 1.3 up to 5.8 CPUs while asynchronous I/O
can fill the bandwidth with 1.0 to 2.0 CPUs. Usually, larger
blocks are more efficient as they can fill the device bandwidth
with fewer CPU resources and a smaller number of requests,
although the average I/O latency increases [18]. Also, with a
file system, the throughput is slightly lower in every case,
even while using DIRECT I/O. Specifically, for the case of
one asynchronous I/O thread (Async_1t), the throughput
with file system experienced a huge drop compared to a raw
device access, requiring one more CPU to saturate the device.
Takeaway 1: At least one CPU needs to be dedicated to
saturate one NVMe device.
Takeaway 2: More CPUs are required as the processing
overhead or the I/O hierarchy complexity increases. This is
evident from the file system results discussed above.
Therefore, the additional CPUs needed to this ideal re-

source usage of 1 CPU per device can serve as a metric for
scalability comparison of each key-value store.

1The experimental testbed setup is described in Section 4.
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2.2 Conventional Key-Value Store
Many conventional Key-Value storage applications are

specifically designed/optimized for NAND flash SSDs [1, 2, 9,
15, 16, 22]. The resource consumption and processing over-
head varies with each key-value store based on the architec-
ture and objective of the key-value store. Figure 2 illustrates
the typical design of such key-value stores. These KV stores
typically use one of three I/O paths to access the storage
devices, as shown in Figure 2:
Path 1: Store user data on files and use the kernel file system,
block cache, block I/O layers and kernel drivers;
Path 2: Bypass the kernel file system and cache layers, but
use the block layers and kernel drivers;
Path 3: Use of user-space libraries and drivers.
We have chosen three representative popular host-side

key-value stores following all three paths to illustrate the
problems faced by the host-side key-value stores, which aid
in the design and evaluation of our work.

Figure 2: Processes in conventional Key-Value Stores.

RocksDB is a popular Log-Structured Merge (LSM) tree-
based key-value store, optimized for fast, low latency SSDs
and follows Path 1. RocksDB buffers KV writes in a small
fixed-size (default 64 MB) in-memory index table, called
the mem-table, and writes another copy to a write-ahead
log (WAL) for consistency. A configurable number of flush
threads persists the memtables to stable storage. The default
I/O request size of flush thread’s is 1 MB. RocksDB has a back-
ground compaction process that re-organizes the user data
files, which invokes many read and write operations, and
competes with the foreground request processing threads
for computation and I/O resources. Due to compaction, the
performance of all workloads suffers, while the overheads
associated to compaction is minimized for sequential key
workloads.

Aerospike is a distributed NoSQL database and key-value
store. Our work is based on a single node’s data storage per-
formance and the in-node scale up potential, we limit our
scope to these aspects. Aerospike bypasses the kernel file sys-
tem (Path 2) and utilizes native, multi-threaded, multi-core
read and write I/O patterns. Writes are buffered in-memory
and once full, the write-buffer is flushed to persistent storage.
Writes to the SSDs are performed in large blocks and these
blocks are organized on storage like a log-structured file

system. The write buffer size is kept small (128 KB for SSDs)
as opposed to RocksDB, since there is no separate log writes,
and by default multiple write buffers (upto 64MB) are queued
in memory. As in any log-structured write scheme, over time
the records on disk blocks gets invalidated by updates and
deletes. A defragmenter process keeps track of active records
and reclaims space by copying the active records to a differ-
ent block. Aerospike performs best for an insert workload,
irrespective of the key insertion order. A workload with up-
dates/deletes will trigger the defragmenter and the associated
read and write amplification affect performance.
RocksDB-SPDK is RocksDB with SPDK support, one that

enables RocksDB to use the user space SPDK drivers and
the associated SPDK Blobstore File system (BlobFS) to store
its files (Path 3). BlobFS is based on SPDK blobstore, which
owns and splits the entire device into 1 MB regions called
clusters. Blobstore manages parallel reads and writes to blobs,
which consists of clusters. Blobstore avoids the page cache
entirely, behaving like DIRECT I/O. Blobstore also provides
zero-copy, lockless, truly asynchronous reads and writes to
the storage device. All other working aspects except the one’s
discussed above for RocksDB-SPDK is the same as RocksDB.

By default WAL is disabled in SPDK support of RocksDB,
i.e., RocksDB-SPDK, and turning it on resulted in crashes
during our tests. As WAL is integral to RocksDB’s design,
evaluating RocksDB-SPDK without the log would be incor-
rect. For extensive comparison, RocksDB-SPDK performance
shows the impact of user-space drivers designed specifically
for NVMe devices. We also compare single device perfor-
mance RocksDB with and without WAL in our evaluation
to make a educated guess about expected performance in
production environments (refer to Section 5). Additionally,
current RocksDB-SPDK environment is designed and hard-
coded to use only one device with an entire database instance.
We were unable to run with multiple devices or multiple in-
stances on a single device, since the underlying SPDK device
structure gets locked. Therefore, we modified the code to al-
low multiple devices and enable it to use multiple databases,
one for each underlying device in an application with a
shared environment supporting all underlying devices.

2.3 Challenges and bottlenecks
With our understanding of the resource consumption re-

quirements and architecture of conventional KV-stores along
with the internals of the I/O stack, we summarize the major
challenges and bottlenecks below.
• Multi-layer Interference: Along the odyssey of data access,
user read or write requests typically travels through multi-
ple I/O layers before being submitted to the device [19], as
shown in Figure 3 (a). With increasing complexity of the
I/O hierarchy, the delays associated to request processing

146



SYSTOR’19, June 2019, Haifa, Israel Y. Kang et al.

increases and makes it more difficult to debug problems
faced in production environments.

• Resource contention: As discussed earlier, key-value stores
need to balance between several foreground and back-
ground processes. The foreground processes try to saturate
the SSD bandwidth with incoming user requests while the
background processes concurrently organize the written
data without hindering the execution of foreground ones.
In practice, however, for utilizing the device bandwidth, as
the number of foreground processes increases, the work-
load on background processes also increases, which leads
to slowing down or stalling of the system. This limits the
node’s scalability as more CPUs are dedicated to support
smaller number of high performance storage devices.

• Data consistency: A write-ahead log WAL is generally used
for data consistency. Though it provides consistency, WAL
reduces user throughput by half as the total amount of
data written doubles. Moreover, WAL generates sparse
and low-bandwidth synchronous writes in the foreground.
Even when buffered and written as large burst writes fa-
vored by SSDs, they are interleaved with key-value store
specific computations, increasing the inter-arrival time of
I/O requests and thus lowering the device utilization.

• Read and Write Amplification: In their pursuit of high
performance, key-value stores introduce processes like
garbage collection, compaction, and/or defragmentation.
These significantly increases the read and write ampli-
fication as they need to read the written data back and
process it. Large amount of buffer cache is also not quite
helpful when there are many devices installed due to cache
pollution. Further, this amplification is in addition to the
internal read and write amplification caused by the SSD’s
garbage collection process. The amplification decreases
the throughput and adversely affects the device lifetime.
In the next section, we describe our solution, KV-SSD,

as an alternative which takes into account the challenges,
requirements and architectural limitations imposed by the
current I/O stack and provides a holistic approach to achieve
both performance and scalability of high performance SSDs.

3 Design of KV-SSD
The architecture of conventional host-side key-value

stores has evolved with the increasing performance of stor-
age devices, but this development has been limited by the
increasing demands for host system resources per device. Fig-
ure 3 shows the I/O path for three key-value stores namely,
the conventional block SSD, KAML SSD [11], and our KV-
SSD. We observe that with increasing layers of I/O hierarchy,
the delay associated to I/O access also increases.
While KAML provides basic key-value interface, i.e. put

and get with fixed-size 8 B key and variable-size values to

applications but lacks practicality for modern data-center
workloads. For example, variable-size application keys would
still require additional logs and data structures for translation
of keys in the host as shown in Figure 3 (b). Moreover, KAML
also lacks grouping of key-value pairs via the device interface.
Therefore, the benefits derived from key-value interface can
be nullified due to key data management required in the
host.
To mitigate the adverse impact of host-side key-value

management, we develop and design Key-Value SSD
(KV-SSD), which offloads the key-value management to
SSD, taking into account such application requirements. A
dedicated key-value management layer in each device can
provide advantages of isolated execution as well efficiently
harness the SSD internal system resources. Moreover,
owing to a reduced semantic gap between storage devices
and key-value applications, KV-SSD brings the following
software architectural benefits, which are discussed below.

1. Lightweight Request Translation: Since variable-size key-
value pairs are supported, key-value to block translation
is no longer required. Applications can directly create and
send requests to KV-SSDs without going through any legacy
storage stacks, resulting in reduced request processing and
memory overhead.
2. Consistency without Journaling: It is not required to main-
tain metadata of key-value pairs at host side, eliminating the
need for journaling or transactions to store metadata and
data together. Consistency of key-value pairs is now man-
aged inside KV-SSD, using its battery-backed in-memory
request buffers. Each key-value request is guaranteed to
have all or nothing consistency in a device. Therefore, for
independent key-value pairs, write-ahead logging (WAL)
mechanism is not necessary on host-side.
3. Read andWrite Amplification Reduction: The host-side read
and write amplification factors of KV-SSD remain to be an
optimal value of 1, because it does not require additional
information to be stored for key-value pairs. Internally, be-
cause variable-size keys are hashed before being written to
an index structure, they still can be considered as fixed-size
keys. Therefore, internal read and write amplification factors
in KV-SSD remained the same as that of random block reads
and writes in block SSDs.
4. Small Memory Footprint: Regardless of the number of key-
value pairs in a device, the host memory consumption of
KV-SSD remains a constant. Its memory consumption can be
calculated by multiplying the I/O queue depth by the size of
a key-value pair and the size of a value buffer. For example,
if the queue depth is 64 and the maximum value size is 1 MB,
which is large enough for most modern NVMe SSDs, and
internal data structure for each key-value pair is 64 B, the
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total amount of memory required to support one device is
around 4 KB for keys and 64 MB for values.

Additionally, KV-SSD allows key-value store applications
to easily adopt a shared-nothing architecture as there is no
main data structures to be shared between devices. By doing
so, the scalability limitation from synchronization effects
can be avoided. It can avoid lock contentions on shared data
structures and also eliminate on-demand reads for looking up
themetadata associated with a given request. To demonstrate
these benefits, we design and implement a prototype device
on top of an existing enterprise-grade Samsung NVMe SSD.
On the host side, we provide an NVMe device driver that
supports vendor-specific key-value commands and the API
library that communicates with the driver.

3.1 In-Storage Key-Value Management
To realize the concept, we added support for variable-size

keys and values to existing block-based SSD firmware. We
designed KV-SSD to follow similar data processing flow as
in the block firmware and meet its latency requirement to
reuse its internal hardware resources and events designed
for block requests, including interrupts, memory and DMA
(direct memory access) engines. The code for each task is
stored in SRAM, and the indices for the main index structure
are stored in a battery-backed DRAM as with normal block-
based SSDs. In this section, we discuss the working details
of our prototype KV-SSD.

3.1.1 Command processing: Our key-value commands are
currently implemented as NVMe vendor-specific commands.
We include 5 native commands for practicability: put, get,
delete, exist, and iterate, as shown in Figure 3. The put and
get commands are similar to the write and read commands
of block devices, with additional support for variable sized
keys and values. The delete command removes a key-value
pair. The exist command is designed to query the existence
of multiple keys using a single I/O command. Finally, the
iterate command enumerates keys that match a given search
prefix, which is represented by a 4 B bitmask in KV-SSD.
The key-value requests are designed to be executed in a

pipeline manner, passing requests between tasks running in
each CPU as shown in Figure 4. To process a put request,
for example, the command header is first fetched from the
device I/O queue and passed to Request Handlers. Then, the
communication between the device driver and the device is
initiated to transfer the key-value pair from the host system.
Once the data becomes ready in the device DRAM, Request
Handler passes the request to an Index Manager. As shown
in Figure 4, the Index Manager first hashes the variable sized
key to fixed length key inside the device and stores in the
local hash table, which is then merged to the global hash
table for physical offset translation, and finally the Index

Manager sends the key-value pair to flash channels. The
IndexManager also takes the first 4 B of the key for bucketing
into containers known as iterator buckets, which is used for
grouping all keys with the same 4 B prefix.
Large variable-sized key Support: KV-SSD is designed to
support both variable-sized values and keys. The support for
variable-size keys provides the opportunity for applications
to encode useful information such as name and type, and
more importantly eliminates the requirement of maintain-
ing additional logs and indices for name resolution, thereby
simplifying the I/O stack, refer to Figure 3 (c). The key-value
commands with large keys are implemented as two separate
NVMe transfers in KV-SSD due to the limited size of NVMe
command packets, which can slightly increase transfer la-
tency.
Iterator support: Key-value applications often require
group operations to maintain objects. This includes re-
balancing, list, recovery, etc. To support these operations,
KV-SSD provides support for iterators, which can list, cre-
ate, or remove a group. Internally, all keys matching MSB
4 B key keys are containerized into iterate bucket as shown
in Figure 4. This buckets are updated in a log-structured
manner whenever put or delete operation is processed and
periodically, cleaned up by GC, as described later.
3.1.2 FTL and Indexing: Block-based FTL is extended to
support a variable-size key-value pairs. Traditional page-
based or block-based mapping technique using LBA as a key
cannot be used as a main index structure in KV-SSD as the
range of keys is not fixed. We use a multi-level hash table
for fast point query as a global index structure in KV-SSD.
A global hash table is designed to have all key-value pairs
in the device, and shared by all Index Managers. Each Index
Manager has a local hash table to temporarily store updates
to reduce a lock contention on the main table. This local hash
table is associated with a bloom filter to reduce the number
of memory accesses to the index structure on reads for quick
membership checking.
3.1.3 Garbage Collection: The garbage collector (GC) in
an SSD is changed to recognize the key-value pairs stored in
a flash page and updated keys in the iterator buckets. Dur-
ing cleaning, GC scans the keys in flash pages, checks their
validity by looking them up in the global index structure,
and discards the key-value pairs that are already deleted.
The victim selection and cleaning policy is the same as block
firmware, with addition to managing the global hash table
and iterator buckets.

3.2 KV Library and Driver
KV-SSD library provides a programming interface to user

applications. It includes a wrapper for raw key-value com-
mand sets and extra features, such as memory management,
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Figure 3: Comparative I/O storage stack for key-value stores based on (a) Conventional block SSD; (b) KAML SSD;
(c) Samsung KV-SSD, respectively. More the layers in the I/O hierarchy, higher is the delay in data processing

Figure 4: Data Flow in KV-SSD.

key-value LRU cache, synchronous and asynchronous I/Os,
sorting, and a KV-SSD Emulator that mimics the behavior
of KV-SSDs in memory. By default, KV library internally
uses non-blocking, asynchronous I/O for performance. Syn-
chronous I/O is simulated on top of asynchronous I/O using
mutex.

Typically, the support for asynchronous I/O is provided in
the block I/O layer in the kernel, but since KV-SSD applica-
tions bypasses kernel I/O stack, we moved the functionality
to our KV driver. Whenever the I/O is completed, the KV
driver stores the results of I/O in kernel memory and send a
signal to event file descriptors. Then, users waiting for I/O
completion using select() or epoll() will be notified.
KV-SSD also provides user-level NVMe drivers based on

SPDK (Storage Performance Development Kit) [10], which
supports memory management using hugepages and asyn-
chronous I/O APIs. Performance-wise, we have found no sig-
nificant differences between the drivers. For example, while
SPDK driver provides more control on assigning CPUs per
its I/O queue, the multiple queue support in the latest ker-
nels can provide the similar benefits. We chose to use the
user-level driver in the evaluation for debugging purpose.

4 Experimental Setup
We use a custom designed storage node,MissionPeak with

Ubuntu v16.04. The I/O bandwidth of one NUMA node is
24 GB/s, which can saturate 12-18 NVMe devices. The server
is configured with abundant resources for scalability tests:
756 GB of memory, two Xeon E5 2.10Ghz, each having 48
CPUs with hyper-threading.

For multi-device configuration, we decided to use sharding
rather than RAID. This is because we found that having mul-
tiple physical devices in one RAID device can suffer from I/O
queue contention while sharding provides unique key-space
for each key-value store, thereby ensuring isolation. Our ex-
periment using 18 NVMe SSDwith 144 instances of RocksDB
also shows that sharding provides 3.4x performance, com-
pared to one RAID-0 device that has 18 physical devices.
Existing benchmark programs for key-value stores, such

as YCSB [7], are not designed for measuring the aggregated
performance from multiple key-value stores running on mul-
tiple storage devices. This is crucial for our scalability eval-
uation as one instance of key-value store cannot saturate a
NVMe SSD. Also, running multiple processes of the bench-
mark instead does not guarantee each process to be launched
at the same time and executed concurrently.
We develop KVSB to coordinate the execution of multi-

ple instances of key-value stores. KVSB assigns an available
CPU to each key-value store and uses the memory from the
same NUMA node. It has two phases of execution. In the
initialization phase, all instances of a key-value store are
created in separate threads and other resources are prepared
such as memory pools. The execution phase starts when all
instances becomes ready, running a combination of insert,
update, read, or delete requests based on a given request
distribution function.
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5 Evaluation
We compare the performance and scalability of KV-SSD

against conventional key-value stores using KVSB. Using the
best performing and resource-efficient configuration for a
single device as a baseline, the scalability of each key-value
store is measured by increasing the number of devices and
adjusting the configuration accordingly.

5.1 Resource Demands of Key-Value Stores
To understand the CPU requirement of key-value stores,

we measure the normalized throughput by increasing the
number of instances or internal flush threads until the de-
vice is saturated. The normalized throughput is calculated
by dividing the number of key-value pairs written per sec-
ond by the I/O bandwidth of the device. To minimize their
processing overheads, 50 GB of sequential data is written,
each consisting of 16B sorted keys and 4 KB values.

Figure 5: The amount of CPU resources required to
saturate a NVME device. ‘i’ and ‘f’ are the number of in-
stances and flush threads, respectively.

In Figure 5, we observe that conventional key-value stores
require more than one thread to saturate a single NVMe
device. RocksDB saturates the device with 8 instances, while
the normalized throughput is around 50%. The rest of the
device bandwidth is consumed to write on-disk WAL, which
is as big as the entire workload ( 50%). By utilizing asynchro-
nous I/O and disabling WAL, RocksDB-SPDK saturates the
device with a single instance using 2 internal flush threads.
Considering that a raw block device can be saturated with
one thread in fio, the need for an additional flush thread
can be seen as an overhead of its foreground processing.
Aerospike also requires 8 clients to saturate the device be-
cause generated I/O concurrency per client at the server was
not enough for an NVMe SSD.

However, KV-SSD saturates the device using only a single
instance because it does not require any key-value process-
ing in the host system. The benefits derived by bypassing
legacy storage stacks and offloading the data management
to the device is evident. Its normalized throughput, how-
ever, is currently limited to around 45% of the block device’s
maximum bandwidth in KV-SSD, due to the implementation
limitations discussed in Section 7.
We used the best performing configurations for a single

device and adjusted them accordingly to the total number of

devices used and other resource constraints for our scalability
experiments. Further, we examined if the performance scales
linearly with increasing number of devices and the impact
when more background processing is needed.

Figure 6: Sequential performance of Rocksdb and
Rocksdb-SPDK with and without WAL.

5.1.1 SPDK Effects:As mentioned in Section 2.2, although
SPDK supports RocksDB, it has altered the design crucially
by disabling WAL, thereby sacrificing recoverability. We
measured the performance of RocksDB and RocksDB-SPDK
with a different number of flush threads and different logging
mechanisms, and the results are shown in Figure 6. Although
all further experiments will have the RocksDBwithWAL and
RocksDB-SPDK without WAL, it is important to understand
the impact of WAL on performance.
Compared to RocksDB-WAL, RocksDB-SPDK achieves

higher disk bandwidth utilization, but we observe that most
of the benefits is derived from disabling WAL because the
difference between Rocksdb-NOWAL and Rocksdb-SPDK
with 1 flush thread is marginal ( 5%). However, we noticed
that the gap between RocksDB-NOWAL and RocksDB-SPDK
becomes larger as we increase the no. of flush threads up to 3.
The gap could come from the lightweight file system BlobFS
that understands SSD performance characteristics, which
uses asynchronous IO and large IO size unlike kernel file
systems. We expect whenWAL is enabled in RocksDB-SPDK,
the overall performance of RocksDB-SPDK will drop by al-
most half (as workload size is doubled), and the performance
gap between RocksDB and RocksDB-SPDK would become
similar to between RocksDB-NOWAL and RocksDB-SPDK.
In order to use the best configurations that fully satu-

rate the devices, for all further tests we use one instance
of RocksDB-SPDK with 2 flush threads without WAL per
device, and 8 instances of RocksDB with WAL per device.

5.2 Key-Value Store Scalability
To understand the potential of each key-value store to

exploit device performance, we measure the throughput,
CPU, and I/O utilization. We use 18 NVMe SSDs and assign
multiple instances of the key-value store if one instance can-
not saturate the device. We configured each conventional
key-value store to get the maximum overall performance
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(a) TPS and Host Resource Utilization

(b) Normalized IO

Figure 7: Write Performance of key-value stores. KV-SSD linearly scales while achieving an optimal write ampli-
fication factor of 1 and minimally using host-system resources.

separately for each experiment. The size of workload is ap-
prox. 192 GB of data, i.e.50M 16 B key and 4 KB value pairs.

5.2.1 Workloads with Minimal Background Overheads:
First, we measure the scalability of the foreground process-

ing of each key-value store by using a sequential workload
where unique keys are generated and sent sequentially, min-
imizing the need for post processing. The results are shown
in the sequential workload column in Figure 7(a).

The performance of RocksDB and Aerospike is limited by
CPU being a bottleneck when 6 or more devices are used.
With 6 devices, there are 48 instances of RocksDB, each
contains a active I/O thread, i.e. 48 I/O threads running on 48
CPUs with hyper-threading. After this point, its performance
starts to degrade. Aerospike is configured to have 3 clients
per device with one server, which showed the best scalable
performance. It also saturates after 80% of CPU utilization.
RocksDB-SPDK shows better device and CPU utilization

than RocksDB and Aerospike because of its asynchronous
nature and disabled WAL, but it did not scale after 12 devices,
due to CPU bottleneck. With 12 devices, as each RocksDB-
SPDK instance uses 2 flush threads, it occupies all 24 physical
CPUs with a total of 24 asynchronous flush threads.

On the other hand, KV-SSD linearly scales as the number
of devices increases, requiring only around 6 CPUs for all 18
devices. This linear scalability is enabled by offloading key-
value processing overhead to the device, conserving CPU
and memory resources in the host system. While the current
limited performance of KV-SSD as discussed in Section 3.1,
only requires 0.5 CPU per device, we expect that 1 CPU per

device would be necessary to saturate all 18 NVMe SSDs
once the internal prototype issues between SSD hardware
and KV firmware are resolved.
Figure 7(b) shows host-side write amplification of each

key-value store while running the benchmark. The sequen-
tial workload column shows that the total amount of I/O
is the same as the number of key-value pairs required by
users for Aerospike, RocksDB-SPDK and KV-SSD. RocksDB
incurs more I/Os because of its use of WAL. KV-SSD provides
the same level of consistency as RocksDB without journal-
ing because key-value pairs in this benchmark are indepen-
dent. Another interesting observation from Figure 7(b) is
that across all workloads the write amplification of KV-SSD
is significantly lower and remains a constant.

5.2.2 Workloads with Background Overheads:
Unfortunately, an assumption of always sorted keys in the

design of key-value stores is impractical, because keys can
be hashed, overwritten, or deleted. Even if each user has an
isolated key space and provides sorted keys, the performance
of key-value stores can still be impacted because of reduced
parallelism; each request needs to be processed in order.
Therefore, utilizing the internal parallelism of storage devices
becomes difficult. To explore the effects of such overlapping
workloads, we measured the performance with keys that are
generated using uniform and Zipfian distributions, which
can contain 10-20%, 80% of duplicated keys, respectively.
To extract the best scalable performance for each work-

load, we benchmark each key-value store separately, varying
their own performance parameters and selected the best per-
forming ones. As a result, we configured RocksDB to have 2
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background threads per instance (16 threads per device). For
RocksDB-SPDK, we use 10 background threads per device
up to 6 devices, and reduce it to 2 for a higher number of
devices due to thread contention. Aerospike uses 3 clients
per device, because its server cannot handle more requests
than that. Finally, KV-SSD uses one thread per device.

In the case of uniform workload, as shown in Figure 7(a),
we find that both RocksDB and RocksDB-SPDK suffer from
the compaction overheads which require lots of background
I/Os and memory, making foreground processes stall or slow
down. The benefits of RocksDB-SPDK are nullified due to
such processing overheads. On the other hand, Aerospike
and KV-SSD retain their performance characteristics. This
is because Aerospike does not differentiate sequential and
uniformly distributed keys, and KV-SSD internally handles
the overhead with its own resources. We also noticed that the
write amplification of RocksDB-SPDK is lower than RocksDB,
because by default it invokes compaction later than RocksDB.

With the Zipfian distribution, the amount of background
overheads becomes lower than the uniform case. This is be-
cause many of overwrites can be cached in a write buffer, re-
ducing the amount of writes, and the amount of compaction
reduces because of duplicated keys. The defragmentation
process of Aerospike also kicks in with this workload, in-
creasing its write amplification.
Additionally, we measured the overhead of enabling a

sorted key group in our KV library using the same workloads.
Our evaluations shows that the cost of tree management in-
cluding key comparison and re-locations is lesser than 1% of
the I/O performance, and the memory consumption varies
between 1 GB to 2 GB per device, depending on the distribu-
tion of keys. The write amplification factors increase to 1.18
and 1.09, for sequential and uniform workloads, respectively.
This increase is attributed to store nodes to KV-SSD for fast
initialization. These overheads of sorted key management
can be kept low, because the index structure does not need
any writes for consistency.
Overall, we observe that none of the conventional key-

value stores can achieve linear scalability within a storage
node, mainly due to CPU bottlenecks. While SPDK provides
better CPU usage characteristics, but as long as host-side
background processing is required, linear scalability would
be difficult to achieve.

5.2.3 YCSB Workloads:
We measured the read and mixed workload performance

of each key-value store using YCSB. YCSB-A and YCSB-B
contains 50% read/50% write and 95% read/5% write, respec-
tively. YCSB-C consists of 100% read operations and YCSB-D
has 5% insert and 95% read operations. Zipfian distribution

is used for keys except for YCSB-D, which uses latest distri-
bution where most recently inserted records are in the head
of the distribution [6].
Figure 8 shows that KV-SSD without cache scales lin-

early while providing comparable performance to conven-
tional key-value stores with large cache because unlike other
systems, KV-SSD uses its internal resources. Its read process-
ing does not require additional I/O for metadata lookup, due
to the battery backed DRAM inside the device.

When there are lots of updates (YCSB-A), the overall per-
formance of conventional key-value stores is influenced
by their background processing overheads as seen in Sec-
tion 5.2.2. Other workloads with small overwrites shows
similar performance characteristic as YCSB-C, which has
only read operations. Since the workload distribution is ei-
ther zipfian or latest, most of the operations are observed by
memory. Aerospike uses its own cache and its performance
is still limited after 6 devices similar to its write performance.

RocksDB, on the other hand, uses the OS page cache and
scales well until 12 devices, but consumes lot of memory.
RocksDB-SPDK performed poorly irrespective of amount of
cache configured or configuration changes we did. On closer
examination of internal statistics collected we noticed the file
open, close and read operations had much higher latencies
with RocksDB-SPDK than RocksDB. We also encountered
many configurations where the system just hung without
making any progress. As RocksDB-SPDK and BlobFS does
not use the OS page cache, but instead manages memory
by itself, we believe this is due to the system being in early
stages of development and not being production ready yet.

5.2.4 KV-SSD with Cache:
We add 10 GB of LRU cache to each instance of KV-SSD

and run YCSB-C, the overall read performance per KV-SSD
instance increases by 4 to 6 times, as shown in Figure 9, and
significantly outperforms all other key-value stores at frac-
tion of memory utilization. To see the caching effect while
isolating other performance impacting factors such as other
inserts or updates, we show the results from YCSB-C (read
only workload). Similar improvements can be expected in
other workloads. It outperforms RocksDB and other systems
by atleast 4 times and also consumes less memory (maximum
memory consumption is approx. 180 GB for 18 devices, half
of RocksDB memory consumption).

6 Related Work
NoveLSM [12] explores the benefits of NVMs for LSM-

based KV stores by designing byte-addressable memtable
and persistent skip list over NVM to reduce cost of com-
paction, logging, and serialization and increase read paral-
lelism. HiKV [23] proposes to enable hybrid memory based
persistent KV-store by constructing hybrid-indexing, i.e.
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Figure 8: Read Performance of Key-value Stores. KV-SSD without a read cache shows compatible performance
with conventional key-value stores that use a large read cache while also scaling linearly.

Figure 9: KV-SSD with a 10 GB read cache.

hash-index over NVM for fast searches and B+ Tree over
DRAM for fast updates and range scans. NVMRocks [14] also
proposes NVM-aware RocksDB by using byte-addressable
persistent NVMs and tiers of storage hierarchy, i.e. read-
cache, DRAM, NVMs, and SSDs to reduce loging overheads.
Whilemost of these object-stores optimize RocksDB to utilize
NVMs for performance but the foreground and background
processing still limits the CPU’s scalability, while the ob-
jective of KV-SSD is to improve scalability and reduce the
resource footprint with no infrastructural changes.

NVMKV [17] exhibits the benefits of FTL optimizations to
map keys to address space in the device for KV store applica-
tions. BlueCache [24] presents a KV addressable flash design
using FPGA to show the energy-efficiency and performance
benefits of KV-SSDs. Seagate Kinetic Open Storage [3], pro-
vides key-value interface over Ethernet for data access resid-
ing in HDDs, rather than its native device interface, such as
SATA and SAS. Our KV-SSD is the first prototype that runs
on commercial SSD hardware and allows users to switch
their block SSDs to key-value SSDs with just a firmware
change. While KAML [11] also provides key-value interface
but lacks practicality for modern data-center workloads.
While modern multi-core storage servers are capable of

hosting multiple high-performance NVMe SSDs, software
scalability issues prevents the utilization of all devices the
hardware allows on a server. Flash storage disaggregation
technique [13] shows the benefits of using detached flash tier
for scalability, but it could shift the local resource utilization
issue to the network congestion issue. User-space I/O stacks,
such as Storage Performance Development Kit (SPDK), are
proposed to solve such scalability issues. The foundation of

SPDK is an asynchronous, lockless NVMe user space driver
that makes use of linux huge-pages for efficient TLB lookup.

Recently, the support for low-latency storage devices has
been added to the Linux kernel 4.1 as well [5]. However,
while it can improve I/O efficiency, it cannot solve the disk
under-utilization issue due to the CPU contention issues
between I/O and key-value store processes.

7 Discussion
The key-value functionality of KV-SSD was developed

purely in firmware using the same hardware platform de-
signed for block devices. This posed several engineering
challenges including different design assumptions, limited
compute resources, and hardware timing. As we optimize
the firmware, we expect the performance of KV-SSD will
eventually improve, being close to that of block devices. The
key-value command protocols and KV APIs are currently
under review by NVMe standard committee and SNIA [4],
respectively. The source code of KV APIs, drivers, and KVSB
are publicly available.

8 Conclusion
Through the performance analysis of three key-value

stores in production using 18 NVMe SSDs, we show that
high foreground and background processing of key-value
stores prevent the performance and scalability of fast stor-
age devices. Therefore, conventional key-value stores either
exhibit suboptimal performance or limit scalability. To al-
leviate this trade-off, we developed KV-SSD and explored
its use as an alternative to conventional host-side key-value
stores. We show that by moving data management near the
data, the hefty and redundant legacy storage stack can be
simplified and the host resource consumption can be sig-
nificantly reduced while saturating the device bandwidth
without compromising data consistency. Through experi-
mental evaluations, we show that KV-SSDs scale linearly
with significantly lower memory, and CPU consumption,
outperforming conventional host-side key-value stores.
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