
Session-Based Admission Control:
A Mechanism for Peak Load Management

of Commercial Web Sites
Ludmila Cherkasova and Peter Phaal

AbstractÐIn this paper, we consider a new, session-based workload for measuring web server performance. We define a session as

a sequence of client's individual requests. Using a simulation model, we show that an overloaded web server can experience a severe

loss of throughput measured as a number of completed sessions compared against the server throughput measured in requests per

second. Moreover, statistical analysis of completed sessions reveals that the overloaded web server discriminates against longer

sessions. For e-commerce retail sites, longer sessions are typically the ones that would result in purchases, so they are precisely the

ones for which the companies want to guarantee completion. To improve web QoS for commercial web servers, we introduce a

session-based admission control (SBAC) to prevent a web server from becoming overloaded and to ensure that longer sessions can

be completed. We show that a web server augmented with the admission control mechanism is able to provide a fair guarantee of

completion, for any accepted session, independent of a session length. This provides a predictable and controllable platform for web

applications and is a critical requirement for any e-business. Additionally, we propose two new adaptive admission control strategies,

hybrid and predictive, aiming to optimize the performance of SBAC mechanism. These new adaptive strategies are based on a self-

tunable admission control function, which adjusts itself accordingly to variations in traffic loads.

Index TermsÐSession-based web workload, overloaded web server, performance analysis, admission control, web QoS, adaptive

control strategies, simulation, synthetic workload generator.

æ

1 INTRODUCTION

AS the Internet matures, companies are implementing
mission critical Internet applications. These applica-

tions provide dynamic content, integrate with databases,
and offer secure commercial transactions. Customers are
becoming increasingly reliant on these complex business
applications for services such as banking, product pur-
chases, and stock trading. These new services make greater
demands on web servers at a time when traffic is increasing
rapidly, making it difficult to ensure an adequate level of
service.

Evaluation of web server performance generally focuses
on achievable throughput and latency for a request-based
type of workload as a function of a traffic load. The
SpecWeb96 benchmark [21], proposed few years ago as an
industry standard for measuring a web server's perfor-
mance, is based on generating HTTP requests to retrieve
different length files accordingly to a particular distribution.
The server performance (throughput) is characterized as a
maximum achievable number of connections per second
while maintaining the required file mix.

However, commercial applications impose a set of
additional, service-level expectations. Typically, access to

a web service occurs in the form of a session consisting of
many individual requests. Placing an order through the
web site involves further requests relating to selecting a
product, providing shipping information, arranging pay-
ment agreement, and, finally, receiving a confirmation. So,
for a customer trying to place an order or a retailer trying to
make a sale, the real measure of a web server performance
is its ability to process the entire sequence of requests
needed to complete a transaction. In this paper, we
introduce a new model of workload based on sessions. A
session-based workload gives a new interesting angle to
revisit and reevaluate the definition of web server perfor-
mance. It naturally proposes to measure a server through-
put as a number of successfully completed sessions.

Let us consider the situation when a server is processing
a load that exceeds its capacity.

If a load consists of single, unrelated requests, then the
server throughput is defined by its maximum capacity, i.e.,
a maximum number of connections the server can support.
Any extra connections will be refused and extra load-
requests will be dropped. Thus, once a server has reached
its maximum throughput, it will stay there, at a server
maximum capacity.

However, if the server runs a session-based workload,
then a dropped request could occur anywhere in the
session. That leads to aborted, incomplete sessions. Using
a simulation model, we show that an overloaded web server
can experience a severe loss of throughput when measured
in completed sessions while still maintaining its throughput
measured in requests per second. As an extreme, a web
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server which seems to be busily satisfying clients requests
and working at the edge of its capacity could have wasted
its resources on failed sessions and, in fact, not accom-
plished any useful work. Statistical analysis of completed
sessions reveals that an overloaded web server discrimi-
nates against the longer sessions. Our analysis of a retail
web site showed that sessions resulting in sales are typically
2-3 times longer than nonsale sessions. Hence, discriminat-
ing against the longer sessions could significantly impact
sales and profitability of the commercial web sites.

The importance of understanding the session-based
characterization of web server workloads has been recog-
nized in several studies [8], [15], [2].

Quality of service is a way of describing the end-to-end
performance requirements and conditions that a particular
application imposes to be successfully executed. For a web
server running a commercial application, the following web
quality of service requirement is crucial:

. a fair chance of completion for any accepted session,
independent of session length.

Peak load management is required to improve the customer
perception of the web site quality of service and to ensure a
quality end-user experience to win customer loyalty.

The main goal of a session based admission control (SBAC),
which we introduced in [8], is the prevention of a web
server overload and, as a result, an improvement of the
quality of service on a web site. An admission control
mechanism will accept a new session only when a server
has the capacity to process all future requests related to the
session, i.e., a server can guarantee the successful session
completion. If a server is functioning near its capacity, a
new session will be rejected (or redirected to another server
if one is available). The idea of introducing admission
control for a web server running a session-based workload
to guarantee web QoS closely resembles the admittance of a
new flow into a resource constrained network in a
traditional QoS setup [12], [4].

Deferring a client at the very beginning of their
transaction (session)Ðrather than in the middleÐis another
desirable web quality of service property for an overloaded
server. It will minimize the amount of wasted server work.
We show that a web server augmented with a session-based
admission control is able to provide a fair guarantee of
completion, for any accepted session, independent of a
session length. This provides a predictable and controllable
platform for web applications and is a critical requirement
for any e-business.

Hewlett-Packard's WebQoS product aims to improve the
quality of service being offered by web servers during peak
usage periods. This product deploys a proposed session-
based admission control mechanism in order to ensure the
high levels of service required to successfully complete
commerce transactions on the web. A good survey describ-
ing the WebQoS architecture and implementation details is
provided in [6]. WebQoS works on the premise that some
visitors have greater priority than others. A customer who's
completing a purchase transaction, for instance, is much
more important than someone browsing for information. As
such, WebQoS allows incoming requests to be screened and
categorized as high, medium, or low priority based on

things like source/destination IP address, requested URL,
and so on. Different service-level policies can then be
applied to each category. For example, if the server is
experiencing heavy traffic, low priority requests can be
redirected to an alternative server or receive rejection
notices. WebQoS allows administrators to selectively
manage Web site performance and availability, while, at
the same time, providing extra protection against Denial of
Service attacks.

We believe that sending a clear message of rejection to a
client is very important. It will stop clients from unneces-
sary retries which could only worsen the situation and
increase the load on the server. However, issuing an explicit
rejection message imposes an additional load on a web
server. In the paper, we present the ªworst caseº overhead
analysis depending on workload type and applied load
values.

There are two desirable, but somewhat contradictory,
properties for an admission control mechanism: stability
and responsiveness. It is well-known that web workloads
exhibit bursty behavior. It is not unusual to observe a
120 percent load during a minute, followed by a 50 percent
load during the next minute. In this case, when the server
receives an occasional burst of new traffic, while still being
under a manageable load, the stability, which takes into
account some load history, is a desirable property for
admission control mechanism. It helps to maximize server
throughput and to avoid unnecessary rejection of newly
arrived sessions. However, if a server's load during
previous time intervals is consistently high and exceeds
its capacity, the responsiveness is very important: The
admission control policy should be switched on as soon as
possible to control and reject newly arriving traffic. In this
paper, we examine a trade-off between these two desirable
properties for an admission control mechanism: responsive-
ness and stability and a family of admission control policies
(ac-policies) which cover the space between ac-stable and
ac-responsive policies.

Once a web server is augmented with an admission
control mechanism, the following question arises: How do
we measure the ªgoodnessº and efficiency of this mechan-
ism in practice? We use a novel quality of service metric
based on aborted connections to measure the effectiveness
of the admission control mechanism.

Additionally, we consider a new hybrid admission
control strategy, which tunes itself to be ªmore responsiveº
or ªmore stableº on the basis of observed quality of service.
We show that the proposed hybrid strategy successfully
combines the most attractive features of both ac-responsive
and ac-stable policies. It demonstrates improved perfor-
mance results for workloads with medium to long average
session length.

We analyze why workloads with short average session
lengths are the most difficult to manage. We design a
new, predictive admission control strategy, which esti-
mates the number of new sessions a server can accept
and still guarantee processing of all future session
requests. This adaptive strategy evaluates the observed
workload and makes ªits predictionº for the load in the
nearest future. It consistently shows the best performance
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results for different workloads and different traffic
patterns. For workloads with short average session length,
the predictive strategy is the only strategy which provides
both: highest server throughput in completed sessions and
no (or practically no) aborted sessions.

The proposed hybrid and predictive admission policies
allow the design of a powerful admission control mechan-
ism which tunes and adjusts itself for better performance
across different workload types and different traffic loads.

2 RELATED WORK

A few mechanisms have been proposed to support quality
of service and admission control mechanism in web servers
[1], [19], [14], [3], [13], [16], [7].

In [1], the quality of service is introduced by assigning
the priorities to requests based on the requested content.
The metric for quality of service is latency in handling the
HTTP requests. The priority mechanism is static and
limited to priority schemes for CPU scheduling. In [19],
the authors develop a quality of service model that
implements algorithms for scheduling CPU, memory, and
networking resources. In their model, a site can determine
how requests for various pages can be served. Both of the
papers above do not propose an active admission control
mechanism for server resource management. In [14], the
authors develop a measurement-based admission-con-
trolled web server which is able to allocate a configurable
fixed percentage of server bandwidth across numerous
simultaneous client requests. Their algorithm will reject
requests from the client when it has both received more
than its allocation of the bandwidth and the server if fully
utilized. The proposed mechanisms in [1], [19], [14] are
explicitly oriented on request-based workload model,
which is quite different from the commercial sites'
session-based workload model proposed in our paper.
Thus, the admission control mechanism introduced in [14]
will drop any session in progress if this session exceeds the
assigned percentage of server bandwidth utilized by the
session. However, ªfairº bandwidth allocation is not the
best policy to apply for commercial web servers. Since the
session can be aborted any time while in progress, this
could lead to inefficient system resource utilization.
Aborted sessions can be considered to not be performing
useful work while ªwastingº system resources. Moreover,
such a strategy could result in unsatisfactory user experi-
ence at those sites.

Today's web servers often perform poorly under over-
load. Several techniques have been proposed to alleviate
server overload, such as methods for distributing the load
across a cluster of geographically replicated servers [10],
[11]. In order to meet quality of service requirements,
system administrators are forced to significantly over-
provision their sites. These solutions are based on load
balancing among the multiple servers. In the e-commerce
environment, the concept of session plays an essential role.
HTTP protocol is stateless, i.e., each request is processed by
the web server independently from previous or subsequent
requests. For a session, it is important to maintain state
information from the previous interactions between a client
and a server. Such a state might contain the content of the

shopping cart or a list of results from the search request. For
efficient request processing and session integrity, it is
desirable to send the client request to the same server.
One of the popular schemes proposed for handling the state
on the web is cookies. Content-aware request routing [18],
[9], [22] provides a convenient mechanism to support
session integrity (the other common term for this is ªstickyº
connection). Some other load balancing solutions provide
ªstickyº connections by sending the requests from the same
IP address to the same server. Session-based admission
control, designed in our paper, can be easily adopted for
web server cluster configuration, where a load balancing
solution supports a ªstickyº connection concept.

Some alternative solutions to this problem were pro-
posed in [3], where the server overload is alleviated by
providing the clients with a degraded, less resource
intensive version of requested content. Adaptation software
described in this paper implements a mechanism for
measuring server load that can be used to toggle between
two modes: to use high-quality delivered content and a
degraded content mode. Client-identifier hashing can be
used to pick the subset of clients who will be served with
degraded content. While this technique can be very useful
when the server overload is not very high, it cannot
guarantee quality of service for all the arriving sessions
under high overload conditions. If the number of arriving
client sessions is higher than server capacity when it
operates in degraded content mode, then it will inevitably
lead to aborted and rejected sessions. Thus, the proposed
technique can benefit when combined with an active
session-based admission control mechanism proposed in
our paper.

In [13], the authors propose a new framework for
multiclass web server control which can satisfy per-class
latency constraints. Their algorithm uses measurements for
requests and service latencies to control each class's quality-
of-service. The goal of their admission control algorithm is
to determine whether admission of a new request in a
particular service class can be supported while meeting the
latency targets of all classes. The paper presents an elegant
abstraction of system resources into a high-level virtual
server, avoiding modeling of the complex interactions of
low-level system resources. However, the queuing model
designed in the paper is applicable to request-based
workloads and, additionally, one of the model assumptions
is that the admission control decision takes negligible time
(i.e., the actual processing time spent while making the
admission control decisions is ignored). Thus, it is not clear,
how this model can be extended for session-based work-
loads with explicit rejection-response messages, which are
essential for commercial sites during the overload periods.

In [16], the authors successfully argue that resource
management for e-commerce sites should be geared toward
optimizing business metrics as opposed to conventional
performance metrics. They present a priority-based set of
policies where priorities are changed dynamically as a
function of customer state and the amount of money the
customer accumulated in his/her shopping cart. They use
three priority classes: high, medium, and low. All new
sessions start as a high priority class. After the session
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length exceeds the threshold m1 and the customer has not
added anything in the shopping cart, its priority is lowered
to medium class, etc. This work proposes an interesting
ªbusiness metricsº rationale for their policies. However,
their model requires detailed knowledge about the main set
of user behavior patterns at a visited web site. The
parameters of designed policies heavily depend on this
knowledge. It is highly desirable to propose an automatic
way to extract these parameters, especially taking into
account the dynamic and evolutionary nature of web site
workloads. Since the authors do not introduce an active
admission control mechanism, the proposed dynamic-
priorities cannot help avoid abortion of sessions in progress
when the server gets overloaded.

Paper [7] can be considered as a direct extension to the
technique proposed in our paper. It describes a Web2K
server augmented with QoS capabilities. Based on operator-
specified prioritization criteria, the server classifies incom-
ing requests as belonging either to the premium class or the
basic class. Instead of passing incoming requests to the web
server in a first-come-first-serve manner, the requests from
the premium class are served first. When the server detects
the overload, the Web2K server performs an admission
control to avoid overcommitting its resources, similarly to
the approach proposed in our paper, but additionally
giving priority of acceptance to the premium class sessions.

3 SESSIONS LENGTH DISTRIBUTION FOR

COMMERCIAL WEB SITES

In order to outline a workload space of interest and narrow
the simulation space, we have analyzed web server access
logs from a particular commercial site. This commercial site
allows small businesses to purchase products online. This
site provides the clients with product catalogues to browse,
the ability to add selected products to a ªshopping cart,º
and, finally, to purchase the contents of the shopping cart,
completing the sale. The size of the accessed web pages
ranged from 200 bytes to 100 Kbytes. We analyzed a session
length distribution, specific for sales and nonsales transac-
tions. The distributions clearly show that the sale sessions
are much longer than nonsale sessions. Table 1 summarizes
the distribution statistics.

The average session length of a sale is more than 2.5 times
longer that of a nonsale. For the presented workload, it is
very important that the long sessions corresponding to sale
transactions have a fair chance of completion under server
overload conditions. Failure to provide such guarantees
could significantly impact sales and profitability of the site.

The workload of a popular online banking web site is
described in [7]. Each user session includes such steps as
user logging in to the web site, checking the balance in

his/her account, browsing through the last transactions
posted to one of his/her accounts, transferring money
between the accounts, and, finally, logging out. Each
session included about 40 unique URLs, with the size
ranging from 200 bytes to 20 Kbytes. Average session is
lasting a few minutes with the total user think time
during the session being about 75 sec.

While usage of real traces for simulation purposes has
advantages: 1) The trace-based approach is relatively easy
to implement and 2) real traces imitate the activities of
known systems in a straightforward wayÐthe trace-based
approach has the main drawback that it treats a workload
as a ªblack box.º Logical insight into the causes of system
behavior is hard to obtain. Furthermore, it is hard to adjust
these workloads to imitate conditions of varying load
demand [5], [17]. The real traces reflect the workload which
the server has already accepted for processing; they do not
reflect dropped or rejected client requests/connections
which are typical under high load conditions.

Thus, for simulation purposes, we decided to use the
synthetic workload generator rather than the real traces
from commercial sites because it allows us to perform the
sensitivity analysis in a flexible way. By varying the
parameters in the workload generator, we can analyze
and predict the behavior of the SBAC mechanism across the
different range of workloads, derive specific properties of
the proposed mechanism, as well as identify its potential
problems.

4 SIMULATION MODEL FOR SESSION-BASED

WORKLOAD

In order to understand the difference in web server
performance when it runs request-based versus session-
based workloads and to compare different admission
control strategies, we built a simulation model using
C++Sim [20]. The basic structure of the model is outlined
in Fig. 1. It consists of:

. a session workload generator,
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Fig. 1. The basic structure of the simulation model.



. N clients (we had limited N to 10,000 clients),

. a web server.

We introduce the notion of a session as a unit of
session workload. Session is a sequence of clients'
individual requests. A session workload generator pro-
duces a new session request according to specified input
model parameters:

. session load and

. sessions length distribution.

In our simulation, the session structure is defined by the
client (sender) address, original session length, current
session length, and the timestamp when the session was
initiated. For a new session, the original and current session
lengths coincide. For a session in progress, the current
session length reflects the number of requests left to
complete.

We define a request as a structure specified by the
following parameters:

. the session that originated the request,

. requested file size,

. time stamp when the request was issued.

Throughout this paper, we consider a file mix as defined
by SpecWeb96 [21]. So, the individual requests retrieve the
files defined by the following four classes:

. Class 0: 100 bytes-900 bytes (35 percent),

. Class 1: 1 Kbytes-9 Kbytes (50 percent),

. Class 2: 10 Kbytes-90 Kbytes (14 percent),

. Class 3: 100 Kbytes-900 Kbytes (1 percent).

For the rest of the paper, we assume a server capacity is
1,000 connections per second for a SpecWeb96-like file mix
and that the service time for a file (request) is proportional
to the requested file size.1 We intentionally eliminated
network delay from our model in order to concentrate on
the effect of an overloaded web server.

A session request (i.e., the first request of a session) is
sent to a web server and is stored in the server listen queue.
We limit the size of the listen queue to 1,024 entries, which
is a typical default value.

In this way, we are able to use an open model for
sessions generation. Each consequent request from a session
is issued and handled by a specified client. Client behavior
is defined by a closed (feedback) loop model: The client
issues the next session request only when it receives a reply
from the previous request. The client issues its next request
with some time delay, called think time. Think time is a part
of the client definition rather than a session structure. The
client waits for a reply for a certain time, called timeout.
After a timeout, the client may decide to repeat its requestÐ
this is termed a retry. A limit is placed on retriesÐif this

limit is reached and the reply is not received in time, both
the request and the whole session are aborted.

Thus, a client model is defined by the following
parameters:

. client address,

. think time between the requests of the same session,

. timeoutÐa time interval where the client waits for a
server reply before reissuing the request,

. the number of retries before the session is aborted.

A session is successfully completed when all its requests
are successfully completed. We will evaluate web server
performance in terms of successfully completed sessions.

Two reasons could cause a request, and the session it
belongs to, to be aborted:

. If a listen queue is full, then the connection to a
server is refused and both the request and the whole
session is aborted.

. After issuing the request, the client waits for a server
reply for a certain time. After timeout, the client
resends the request. There are a limited number of
retries. If the reply still has not been received in time,
both the request and a whole session are aborted.

Remark. Typically, when the client browser receives a
ªconnection refusedº message due to a full listen queue,
it will try to resend the request again. In the case of an
overloaded server, it only can worsen the situation. We
decided to simplify the model by aborting the request
and the whole session when a listen queue is full,
without an additional client retry. Analysis provided in
the Section 5 shows the model sensitivity to a number of
client retries in more detail.

5 ANALYSIS OF CLIENT PARAMETERS: THINK TIME,
TIMEOUT, NUMBER OF RETRIES

Since we would like to evaluate a web server performance
in terms of successfully completed sessionsÐthe session
length distribution is one of the main parameters in our
sensitivity study of overloaded web server performance. As
for the other client parameters such as timeout, the number
of retries, and think time, we have analyzed their impact to
narrow the simulation space.

There is a simple relation based on

. the server capacity,

. listen queue size, and

. the client timeout value

which defines the probability of retries issued by the client
in our simulation model. Since a server processes 1,000 con-
nections per second and the listen queue length is 1,024, the
latency to process any accepted request is less than 2 sec. If
the client timeout is greater than 1 sec., then it eliminates the
possibility of client timeouts and retries in the model. Since
we are interested in studying a model with a full range of
possible client-server interactions, we selected a timeout of
1 sec. A client timeout of 1 sec. might be considered as an
additional quality of service requirement: It sets a limit on a
request latency (server side latency) of 1 sec. If this
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requirement is not met (after a given number of retries), the
session is aborted.

To pick some values for the number of client retries, we
ran a simulation model with session lengths to be
exponentially distributed with a mean of 5, 15, and 50,
correspondingly, and a number of client retries varying
between 0 and 3. Fig. 2a shows a sensitivity of web server
throughput in completed sessions to the number of client
retries (for a workload with average session length of 15).
As one could expect, the higher number of retries leads to a
worse server throughput in completed sessions. The results
for workloads with average session length of 5 and 50 are
similar. To narrow the simulation space and to simplify the
future analysis, we used a client model with one retry for
the rest of the paper.

Fig. 2b shows a sensitivity of web server throughput in
completed sessions to a client think time, where a think
time between the requests of the same session is
exponentially distributed with a given mean: 1 sec.,
2 sec., and 5 sec., correspondingly. Our choice of
exponential distribution was motivated by two different
types of think times between the client requests (we used
terminology proposed in [5]):

. Active think time, which separates different requests
for the same page objects. Typically, it is short, less
than 1 sec. [5].

. Inactive think time, which separates client requests
for different web pages. Typically, this think time is
longer: A client requires some time to view the
received page before issuing the next page request.

The higher client think time leads to a slightly worse
server throughput in completed sessions. It can be
explained by the fact that, under higher client think time,
there are a higher number of sessions which are currently in
progress (session ªlifeº duration is longer). This potentially
leads to higher burstiness and chances of collisions for

server resources among the sessions in progress. Since we

are interested in recreating these bursty conditions, we have

chosen a timeout value of 5 sec. for our experiments in the

paper.
Thus, for the rest of the paper, we use a simulation

model with the following server and client parameters:

. A server capacity is 1,000 connections per second for
SpecWeb96 file mix,

. The service time for a file (request) is proportional to
the requested file size,

. A timeoutÐthe time client waits for a reply before
resending the requestÐis set to 1 sec.,

. Think time between the requests of the same session
is exponentially distributed with a mean of 5 sec.,

. The number of retries to resend the request after
timeout is 1.

6 CHARACTERISTICS OF AN OVERLOADED WEB

SERVER

In order to analyze the server performance depending on a

session length, we have performed experiments for three

workloads with session lengths being exponentially dis-

tributed with a mean of 5, 15, and 50.
Fig. 3a shows throughput in completed sessions for an

overloaded web server.
At first glance, the server throughput in completed

sessions looks somewhat acceptable. However, the ordering

is somewhat counterintuitive: Web server performance is

better for workloads with a longer session mean.
How can it be explained?
First of all, the server throughput is measured as the

number of completed sessions. We have sessions of

different length since the session lengths are exponentially

distributed. Our first explanation of the above phenomenon

is that shorter sessions have a higher chance of completion.
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Thus, the acceptable ªquantitativeº value of throughput can
be obtained at a price of ªlower qualityº of this throughput.

The second explanation is of a different nature. The unit
of our workload is a session represented by a sequence of
clients individual requests. Let us consider a session length
distribution with a mean of 50. When a long session gets
aborted, it creates a potential amount of unused server
resources (due to the ªnot sendº sequence of client requests)
big enough to service several short sessions. Applying the
same reasoning to a session length distribution with a mean
of 5, we can see that the difference between ªlongº and
ªshortº session lengths for this distribution is less sig-
nificant: Often, several sessions are aborted before it creates
enough ªunusedº server resources to complete an addi-
tional session.

Let us analyze the simulation results in detail. Fig. 4a
shows the average session length of completed sessions
against the average session length of all generated sessions
as the model input. As is clearly seen, the average session
length of completed sessions is significantly lower than the
original, input distribution. For the load of 300 percent and
the original average session length of 5, 15, and 50, the
average length of completed sessions is 1.7, 4.3, and 13.4,
correspondingly.

The session lengths are defined to be exponentially
distributed with a given mean m. In order to analyze the
distribution of the completed sessions in more detail, we
partition them in the following three bins: the first binÐthe
sessions shorter than or equal to m; the second binÐthe
sessions longer than m but shorter than or equal to 2 �m;
the third binÐthe sessions longer than 2 �m.

Fig. 4b shows the percentage of original and completed
sessions in three bins by length for an overloaded server
running a session-based workload with a mean of 50. The
original distribution by session lengths is the following: the

first binÐ63 percent; the second binÐ23 percent; and the
third binÐ14 percent. The distribution of completed
sessions under 300 percent load changes dramatically: the
first binÐ98.14 percent; the second binÐ1.83 percent; and
the third binÐ0.03 percent.

Indeed, the overloaded web server discriminates against
the medium and long sessions in a quite severe way:
Almost all the completed sessions fall in the first bin; the
sessions from the second and the third bins are practically
absent.

To complete the analysis of an overloaded web server
running a session-based workload, we introduce a new
performance measure: useful server utilization. Traditionally,
a server performance is characterized by its throughput and
utilization. We have shown a difference in the throughput
of an overloaded web server when measured in percentage
of completed requests and in percentage of completed
sessions. We apply the same idea to characterize server
utilization. We define useful server utilization as server busy
time spent processing only sessions which complete. Fig. 3b
shows useful server utilization as a function of load and
session length. The results are overwhelming: The over-
loaded, ªbusy lookingº server produces an amazingly small
amount of useful work: around 15 percent for a 200 percent
load; less than 7 percent for a 300 percent load.

This concludes our preliminary performance analysis of
an overloaded web server characterization running a
session-based workload. This section raises a rather serious
question: Is such server behavior expected and acceptable
for commercial sites? Since the answer is rather obvious, the
next question to ask is: Can a web server be augmented
with a session-based admission control mechanism to
prevent the server from becoming overloaded and to
ensure that longer sessions are completed?
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Fig. 3. (a) Throughput in completed sessions for an overloaded server. (b) Server useful utilization of processing sessions which complete.



7 ªUTILIZATION-BASEDº IMPLEMENTATION OF THE

SBAC MECHANISM

We use the term web quality of service to describe the service-
levels needed to complete web sessions. A web server that
ensures a fair opportunity and guarantee of completion for
all sessions, independent of session length, exhibits good
web quality of service. To satisfy the web quality of service
requirements, we introduce a session-based admission control

mechanism for a server handling a session-based workload.
The main goal of an admission control mechanism is to
prevent a web server from becoming overloaded. We
introduce a simple admission control mechanism based
on the server CPU utilization.2

The basic idea of a session-based admission mechanism
is as follows: The server utilization is measured during
predefined time intervals (say, each second). Using this
measured utilization (for the last interval) and some data
characterizing server utilization in the recent past, it
computes a ªpredictedº utilization. If the predicted utiliza-
tion gets above a specified threshold, then, for the next time
interval, the admission controller will reject all new sessions
and will only serve the requests from already admitted
sessions.3 Once the predicted utilization drops below the
given threshold, the server changes its policy for the next
time interval and begins to admit new sessions again.

Formally, the admission control mechanism can be

defined by the following parameters:

. UacÐan ac-threshold which establishes the critical
server utilization level to ªswitch onº the admission
control policy;

. T1; T2; . . . ; Ti; . . . Ða sequence of time intervals used
for making a decision whether to admit (or to reject)
new sessions during the next time interval. This
sequence is defined by the ac-interval length;

. facÐan ac-function used to evaluate the predicted
utilization.

We distinguish two different values for server utilization:

. Umeasured
i Ða measured server utilization during TiÐ

the ith ac-interval;
. Upredicted

i�1 Ða predicted utilization computed using a
given ac-function fac after ac-interval Ti and before a
new ac-interval Ti�1 begins, i.e., Upredicted

i�1 � fac�i� 1�.
In this paper, we consider ac-function fac�i� 1� defining

Upredicted
i�1 in the following way:

. fac�1� � Uac;

. fac�i� 1� � �1ÿ k� � fac�i� � k � Umeasured
i , where k is

a damping coefficient between 0 and 1, and it is
called an ac-weight coefficient.

A web server with an admission control mechanism

reevaluates its admission strategy on intervals

T1; T2; . . . ; Ti; . . . boundaries. Web server behavior for the

next time interval Ti�1 is defined in the following way:

. If Upredicted
i�1 > Uac, then any new session which

arrived during Ti�1 will be rejected and the web
server will process only requests belonging to
already accepted sessions.
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Fig. 4. Overloaded server running session-based workload: (a) Average length of completed sessions for workloads with average session length of

5, 15, and 50. (b) Percentage of completed wessions in three bins for average session length of 50.

2. In this work, we assume that the commercial web server is CPU
bounded. If the web server has a different resource that is the major
bottleneck (i.e., i/o or network), then the admission control mechanism is
defined with respect to the utilization of the corresponding resource in a
similar way.

3. The HP WebQoS product, which deploys the SBAC mechanism
proposed in the paper, augments each client session with a cookie, which
allows it to distinguish between newly arrived sessions and sessions in
progress. The expire field in the cookie is used to define a time threshold T
for client session termination: If client does not send any requests during T
time period, the session is terminated.



. If Upredicted
i�1 � Uac, then the web server during Ti�1 is

functioning in a usual mode: processing requests

from both new and already accepted sessions.

Session-based admission control combines several func-

tions: 1) It measures and predicts the server utilization, 2) it

rejects new sessions when the server becomes critically

loaded, and 3) it sends an explicit message of rejection to the

client of a rejected session. In our simulation model, we

assume that processing a session rejection is equivalent to

processing an average size file because we send an explicit

rejection message.

The admission control mechanism should combine two

desirable properties: responsiveness and stability. If a server's

load during previous time intervals is consistently high and

exceeds its capacity, then ªfast reactionº responsiveness is

very important: The admission control policy (AC-mechan-

ism) should be ªswitched onº as soon as possible to control

and reject newly arriving traffic. However, if the server

receives an occasional burst of new traffic while still being

under a manageable load (which is a very typical traffic

pattern for web workloads), then the ªslow reactionº stable

admission control policy, which takes into account some

load history, is a desirable property. It will help to

maximize server throughput and will not unnecessarily

reject newly arriving traffic. These two properties are

somewhat contradictory:

. Responsiveness leads to a more restrictive admission

policy. It starts to reject new sessions at the first sign

of high load. It minimizes the number of aborted

sessions, but achieves higher levels of service at a

price of lower server session throughput (in parti-

cular, when a server operates under high load but is

not yet overloaded).
. Stability takes into account a server's load history. It

allows delay of the first reaction of an admission

control policy to the overload. If a total server load is

still around the server capacity, then such a strategy

allows better server session throughput to be

achieved. However, a less restrictive rejection policy

inevitably leads to a higher rate of aborted sessions

under server overload and, as result, to poorer

session completion characteristics.

The value of coefficient k in the definition of fac

introduces a family of admission control policies which

cover the space between ac-stable and ac-responsive

policies. In other words, the different values of coefficient

k put a different ªweightº on the importance and impact of

the load history while computing the predicted server

utilization for the next ac-interval. If k � 1, then the

admission control policy is based entirely on the value of

measured server utilization during the last ac-interval. Let

us call this strategy ac-responsive. If k � 0:1, then the

admission control policy decision is strongly influenced

by a server load prehistory, while the impact of a measured

server utilization during the last ac-interval is limited.4 Let

us call this strategy ac-stable.

8 COST OF REJECTION

We believe that sending a clear message of rejection to a
client is very important. It will stop clients from unneces-
sary retries which could only worsen the situation and
increase the load on the server. If the server promises to
serve these clients, say in five minutes, it might be enough
to resolve the current overload and provide a high level of
service without losing customers. Commercial sites might
use some additional stimuli and bonuses issued in these
rejection messages to keep their customers satisfied.
However, issuing an explicit rejection message imposes an
additional load on a web server. The higher the loadÐthe
greater the number of rejection messages sent by the server.
How large is the rejection overhead? What percentage of
total messages constitutes the rejection messages?

This section derives a worst case bound to estimate the
rejection overhead as a function of the applied load and
average session length. We use the following denotations:

. SrÐa server capacity in requests, i.e., the number of
connections (requests) per second a server can
sustain.

. SsÐa server capacity in sessions, i.e., the number of
sessions per second a server can complete.

. SesLengthÐan average session length.

. LoadÐan applied load in sessions (Load � 2 means
a load of 200 percent of server capacity).

. xÐthe number of rejected sessions per second.

. yÐthe number of completed sessions per second.

First of all, there is a simple relation between Sr, Ss, and
SesLength:

Ss � Sr
SesLength

: �1�

Since Ss is a server capacity in sessions and Load is an
applied load in sessions, Load � Ss is the total number of
issued sessions per second. Obviously, the sum of the
completed and rejected sessions per second is the number
of sessions, in total, a server has received per second:

x� y � Load � Ss: �2�
There are two types of sessions: completed and rejected

ones. Each completed session implies that a client conse-
quently makes, on average, the number of requests defined
by the SesLength. Each rejected session is equivalent to
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4. One can design a different family of admission control strategies
which computes Upredicted

i�1 as an average server utilization measured during
the n last ac-intervals. Under n � 1, this would lead to a similar ac-
responsive strategy as proposed above because it is based only on a server
utilization measured during the last ac-interval. However, under such an
approach, it will be more difficult to design a strategy where the
measurements of the last interval impact the predicted (computed) server
utilization at, say, 70 percent. In order to do that, one still needs to introduce
some ac-weight coefficient similar to the one proposed above when
computing Upredicted

i�1 as a weighed average server utilization using the n
last ac-interval of the utilization history.



processing a single requestÐa worst case estimate of the
cost of sending an explicit rejection message to the client.
Thus, the number of requests per second handled by a
server is defined in the following way:

y � SesLength� x � Sr: �3�
Replacing Ss in (2) with (1) and expressing y from (2), we
have the following equation:

y � Load � Sr
SesLength

ÿ x: �4�

Replacing y with (4) in (3), we can express x:

x � Sr � �Loadÿ 1�
SesLengthÿ 1

: �5�

Since x is the number of rejected sessions (rejection
messages) per second and Sr defines the total number of
requests per second processed by a server, then the
percentage of rejection messages from the total number of
requests is defined as follows:

100% � x
Sr

:

Let us call this percentage the RejectionOverhead. Here is
the final equation:

RejectionOverhead � 100% � �Loadÿ 1�
SesLengthÿ 1

: �6�

The rejection overhead depends on the average session
length and the load received by the server.

Remark. Formula (6) holds for the Load and
SesLength values, satisfying the following condition:
Loadÿ 1 � SesLengthÿ 1. For the other values, (6) is
meaningless and reflects the situation that the applied
load is so high that the server's capacity is not enough to
send all the rejection messages.

Fig. 5 illustrates the rejection overhead as the percentage
of rejection messages to the total number of requests per
second. Areas of different colors define corresponding
rejection overhead (across different values for session
length and load). As we can see, in this figure, the light
area corresponds to a rejection overhead between

0-10 percent. In other words, for a workload with an
average session length greater than 15 and a load up to 250
percent, the rejection overhead is less than 10 percent.

Clearly, the rejection cost varies depending on the
average session length and applied load: the higher the
load and the shorter the session length, the higher the
rejection overhead. However, for most of the load values
and workloads of interest, the overhead is less than
10 percent.

9 CHARACTERISTICS OF AN OVERLOADED WEB

SERVER WITH SESSION-BASED ADMISSION

CONTROL

This section analyzes the simulation results of an over-
loaded web server augmented with session-based admis-
sion control. We analyze the results produced by the
ac-responsive admission control policy introduced in
Section 7 (i.e., ac-weight coefficient k � 1) with the follow-
ing parameters:

. ac-threshold Uac � 95%,

. ac-interval length of 1 second.

A web server augmented with such an admission control
policy reevaluates its admission strategy each second. Since
the ac-responsive policy, Uobserved

i�1 is defined entirely by the
cpu utilization measured during the ith second, i.e.,
Uobserved
i�1 � Umeasured

i .
If measured cpu utilization for the previous ith second is

above the ac-threshold, i.e., Umeasured
i > 95%, then any new

session arriving during the next second will be rejected and
the web server will process only requests belonging to
already accepted sessions. Otherwise, for the next second,
the web server is functioning in its usual mode: processing
requests from both new and already accepted sessions.

We performed the experiments for the average session
lengths of 5, 15, and 50. We varied the load from 80 percent
to 300 percent. The session workload with a mean of 5 is not
a realistic representative of commercial workloads. How-
ever, we included this case to cover the simulation space
and understand the possible admission control limitations.
The same can be said about a load of 300 percent: If a web
server is consistently overloaded more than 200 percent, it is
time to increase the site capacity and to extend it with an
additional server. However, for completeness and to
understand the general behavior of the ac-mechanism, we
included a load of 300 percent, too.

Fig. 6a shows throughput in completed sessions. At first
glance, the only results for sessions with a mean length of 50
look perfect. In order to explain the curves corresponding to
sessions with mean of 15 and 5, we need to remind one of
the important details related to sessions rejection. Under
high load, more sessions are rejected and the rejection
overhead increases correspondingly. The percentage of
completed sessions is largely offset by that amount.

One of the goals of the admission control mechanism is
to minimize the number of aborted sessions (ideally,
reducing them to 0) by explicit session rejection. Fig. 6b
shows the percentage of aborted sessions from those
admitted for processing. The results for sessions with a
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Fig. 5. Rejection cost as a percentage of rejection messages to a total

number of requests per second.



mean of 15 and 50 are perfect across the whole load space.

They meet the desired quality of service requirement: zero

aborted sessions from those accepted for service. For a

workload with a mean of 5, the results are getting worse at a

load greater than 200 percent, i.e., the server, even with the

admission control mechanism, still admits more sessions

than it can process. In Section 12, we will discuss the cause

of this problem in more detail and propose a solution to

resolve this situation.

One of the main goals of the admission control

mechanism is to ensure completion of any accepted session,

independent of a session length. Fig. 7a shows the average

session length of completed sessions against the average

session length of all generated sessions as the model input.

The results are perfect for sessions with a mean of 15 and 50

across the whole load space. For a workload with a mean of

5, the results are getting slightly worse at load around

300 percent of server capacity. The admission control
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Fig. 6. Web server performance with SBAC: (a) Throughput in completed sessions. (b) Percentage of aborted sessions admitted from those admitted

for processing.

Fig. 7. Overloaded server with admission control: (a) Average length of completed sessions. (b) Useful utilization.



mechanism dramatically improves the ªqualityº of the web
server output compared with the similar results for the web
server with no admission control shown in Fig. 4b.

Finally, Fig. 7b shows useful server utilization as a
function of load and session length. Again, for sessions with
a mean of 15 and 50, the results are improved by almost an
order of magnitude in the overloaded area compared with
similar results for the web server with no admission control
shown in Fig. 3b. A slight decline for a curve, characterizing
a server running sessions with a mean of 15, is due to the
rejection messages overhead (it accounts for almost 14 per-
cent of server utilization). Useful server utilization for a
workload with a mean of 5 is expectedly lower for
300 percent load due to the increased number of aborted
sessions and additional overhead caused by the significant
amount of rejection messages sent by the server.

10 TUNING THE ADMISSION CONTROL MECHANISM

FOR BETTER QOS

Choosing the right parameters for the admission control
mechanism is very important.

Varying an ac-threshold Uac from 95 percent to 97 percent
will slightly increase throughput in completed sessions at a
price of a greater number of aborted sessions, too, especially
for workloads with shorter average session length. Con-
versely, decreasing an ac-threshold Uac from 95 percent to
93 percent will improve the quality of output, decreasing
the number of aborted sessions, but at a price of a slight
decrease of throughput in completed sessions.

An ac-weight parameter in the definition of ac-function
allowed to define a family of ac-functions has much
stronger impact: from ac-stable one to ac-responsive one.
Fig. 8a shows the server throughput while running

workload with average session length of 15, depending
on ac-weight k used in the ac-function fac definition.

As expected, the server throughput is higher under
ªmore stableº ac-functions for a load below 170 percent.
The situation changes for a higher load in favor of ªmore
responsive functions.º The rates of aborted sessions are
worse for ªmore stable functionsº in a higher load area, as
shown in Fig. 8b. This shows again that ac-stable admission
control functions achieve better throughput in the load
range of 85-120 percent at a price of a higher number of
aborted sessions under higher loads. While ac-responsive
admission control functions lead to more restrictive admis-
sion policies and achieve higher quality of service guaran-
tees, especially at high loads, but at the price of slightly
lower server session throughput (in particular, when a
server operates at loads in the range 85-120 percent).

Clearly, the desirable goal is to design an adaptive
admission control policy, which will dynamically adjust its
ac-weight parameter accordingly to vary the load to be
more stable, or a more responsive policy to achieve higher
quality of service while, at the same time, achieving better
server throughput in completed sessions.

11 HYBRID AC-STRATEGY

Once a web server is augmented with an admission control
mechanism, the following question arises: How do we
measure the quality and efficiency of this mechanism in
practice? The following two values help to reflect admission
control ªgoodnessº:

. First of all, the percentage of aborted requests which
a server can determine is based on the client side
closed connections. Aborted requests indicate that
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Fig. 8. Performance of SBAC for the family of ac-functions: from ac-stable to ac-responsive and workload with average session length of 15:

(a) Throughput in completed sessions. (b) Percentage of aborted sessions.



the level of service is unsatisfactory. Typically,
aborted requests lead to aborted sessions and could
serve as a good warning sign of degrading server
performance.

. Second, a percentage of the ªconnection refusedº
messages sent by a server, in the case of full listen
queue. Refused connections are the dangerous
warning sign of an overloaded server and its
inevitable poor session performance.

If both of these values are zero, then it reflects an
admission control mechanism that uses an adequate
ac-function fac to cope with current workload and traffic
rate. Occurrences of aborted requests or refused connec-
tions reflect that ac-function fac has to be more responsive.

From the other side, if the percentage of aborted requests
and refused connections is zero, it could also be the case
that ac-function fac is too restrictive and, hence, the server is
rejecting some of the sessions which it could handle
otherwise. This results in decreased server throughput.

Our goal is to design an admission control strategy
which minimizes the percentage of aborted requests and
refused connections (ideally to 0) and maximizes the
achievable server throughput in completed sessions.

We use the requirements discussed above to design a
self-tunable admission control strategy, called hybrid.

The idea is very natural: Once some aborted requests or
refused connections are observed, the admission strategy is
adjusted to be ac-responsive, which is the most restrictive
admission policy. After that, this strategy is kept unchanged
for a time long enough to observe an ªaverage session life.º
If, during this time interval, there are no aborted requests or
refused connections, then the strategy is adjusted to be
ªslightly less responsive.º In such a way, the admission
strategy is to try to migrate closer to the ac-stable strategy
until occurrences of aborted requests or refused connections
signal the necessity to switch to the ac-responsive strategy.
There is some similarity between this idea and the method
the internet protocol TCP-IP uses to adjust itself in the
presence of congestion.

Let Ab�i� denote the number of aborted requests and
refused connections accumulated during the ac-interval Ti.
Let ac-cycle define the number of time intervals we will
observe fac for aborted requests and refused connections
before we adjust the ac-function to be less responsive. In the
simulation model, it is defined by ThinkTime� SesLength,
which is an approximation of an average session ªlife.º This
time interval aims to reflect a cycle (from the sessions
admission to their completion) of SBAC working with a
new, adjusted ac-function and it is estimated to be long
enough to evaluate the ªgoodnessº of this function. We will
discuss later, in Section 12, how to approximate the ac-cycle
in practice.

The hybrid strategy adjusts its admission function fac in
the following two situations:

. Let Ab�i� > 0 during the time interval Ti. Then, for
the next time interval Ti�1, the ac-weight k in
ac-function fac is adjusted to 1 (i.e., k � 1), changing
fac to become the ac-responsive function with the
most restrictive admission policy.

. Let the number of the aborted requests and refused
connections stay equal to zero since the last time
admission function was adjusted and for the whole
duration of the ac-cycle:

Xi�1�ac cycle

j�i�1

Ab�j� � 0:

Then, for the next time interval Tn�1 (where
n � i� 1� ac cycle), the ac-weight k in ac-function
fac is decreased by 0.1 (i.e., k � kÿ 0:1), changing fac
to become a slightly less ªresponsiveº ac-function
with less restrictive admission policy.

The two steps described above repeat, depending on the
situation. If, for the next ac-cycle, the number of aborted
requests and refused connections is zero, then the
ac-weight k in ac-function fac is decreased further by 0.1
(k � kÿ 0:1) and it continues to adjust in a similar way until
it becomes an ac-stable policy. Otherwise, if, for some time
interval Tj during the ac-cycle, Ab�j� > 0, then, as was
described before, ac-weight k is adjusted to 1 again,
changing fac back to an ac-responsive function. In such a
way, fac adjusts and tunes itself between the ac-stable and
ac-responsive policies according to observed traffic load
variations.

12 PREDICTIVE AC-STRATEGY

One of the goals of the admission control mechanism is to
minimize the number of aborted sessions by explicit session
rejection. Fig. 6b shows the percentage of aborted sessions
for a server augmented with SBAC, using ac-responsive
strategy and ac-threshold Uac � 95% running workloads,
with the average session lengths of 5, 15, and 50. The results
for sessions with a mean of 15 and 50 are perfect across the
whole load space. They meet the desired level of service
requirement: zero aborted sessions from those accepted for
service.

For a workload with a mean of 5, the results are getting
worse at a load greater than 200 percent. At 300 percent, up
to 55 percent of admitted for processing sessions are
aborted. And, it is happening even when we are using
ac-responsive strategy, which provides us with the most
restrictive admission policy. The reason is that the shorter
the average session length, the higher the number of
sessions generated by the clients and accepted by the server
during the ac-interval. One way to fix the problem is to
reduce the ac-interval. However, it is not always possible to
reduce the ac-interval to a desirable value. For some
operating systems, cpu utilization is updated on a base of
a 5 second interval. Fig. 9 shows the percentage of aborted
sessions from those admitted for processing for an admis-
sion control mechanism with an ac-interval of 5 seconds.
The results for SBAC based on an ac-interval of 5 seconds
are unsatisfactory for a whole family of workloads with an
average session length less than 50.

A general reason why the SBAC mechanism based on
CPU utilization measurements can break under certain
rates and not work properly is the following: The decision,
whether to admit or reject new sessions is made at the
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boundaries of the ac-intervals. Thus, the model is the

ªon-offº control model. Once the decision is made to accept

the arriving new sessions, i.e., it is in the ªonº mode, this

decision cannot be changed until the next ac-interval.

However, in the presence of a very high load, the number

of accepted new sessions may be much greater than server

capacity and it inevitably leads to aborted sessions in the

future and poor session completion characteristics. The only

way to avoid the situation described above is:

. to estimate the number of sessions a server is able to
process (note that it depends on the design and
content of a particular e-commerce web site, as well
as a specific transaction mix defined by the customer
behavior pattern typical for this site) and

. to admit, during the time interval, no more sessions
than the estimated number prescribes.

To correctly estimate the number of sessions a server is

able to process per time interval, we need to take into

account the session rejection overhead. For workloads with

short and medium average session length, the rejection

overhead can be significant for high traffic loads. But, even

when it is only 5 to 10 percent, this overhead should be

taken into account since a small inaccuracy tends to

accumulate over a longer period of time.
In Section 8, we derived an upper bound for the rejection

overhead as a function of the applied load and average

session length. Once we have estimated the rejection

overhead (see (5) in Section 8), it is easy to predict the

number of sessions a server is capable of processing per

time interval. It is derived by replacing x with (5) in (4) from

Section 8:

y � Sr � �SesLengthÿ Load�
SesLength� �SesLengthÿ 1� ; �7�

where x is the number of rejected sessions per second and y
is the number of completed sessions per second.

Predictive admission control strategy is defined in the
following way: For each ac-interval Ti, it predicts the
number of sessions a server is able to process, depending on
the load and workload characterization. The web server
accepts this number of new sessions and rejects any new
session above this quota.

Formula (7) depends on three parameters: Sr is the
request rate per second a server can process, Load is the new
sessions arrival rate, and SesLength is an average session
length.

How can these parameters be obtained in practice?
The request rate per second Sr that a server can process

(for this particular workload) is an easily measured
parameter. The web server keeps a running counter of
accepted sessions Cs (the Cs is incremented for each
accepted session by one) and a running counter of requests
Cr related to the accepted sessions (the Cr is incremented
for each processed request belonging to an accepted
session). This provides an approximation of the average
session length: SesLength � Cr

Cs
. After that, using the

average session length, the server capacity in sessions Ss
can be computed using (1). Finally, by counting the number
of new sessions arrivals, Load can be evaluated. An
approximation of ac-cycle, discussed in Section 11, can be
done by measuring interrequest time (it is, essentially, the
sum of the request response time and the client think time)
multiplied by the average session length.

Remark. Clearly, the efficiency of the predictive strategy
depends on an accuracy of our prediction. The strategy
works much better when one keeps track of possible
inaccuracies occurring, for example, as a result of
rounding up fractions. A more serious source of
inaccuracy can occur because of mispredicting the Load
since our prediction is based on the previous interval.
For example, the Load during the previous ac-interval
was 200 percent and we estimated, using (7), how many
sessions can be accepted during the following time
interval. However, later analysis of the Load during this
time interval shows that it was 300 percent. It leads to
some mismatch, easily computed using (7): We accepted
slightly more sessions than is allowed since we assumed
a slightly smaller rejection overhead (or the situation can
be reversed). In order to eliminate further accumulation
of such inaccuracy, the next ac-interval quota has to be
adjusted (increased or decreased) by the computed
sessions amount. In our simulation model, we imple-
mented a predictive strategy which adjusts possible
inaccuracy as well as evaluates an amount of unused
quota for the last few ac-intervals to allow its usage in the
near future.

13 COMPARISON OF AC-STRATEGIES

The new adaptive admission control strategies, hybrid and
predictive, are designed to complement shortages of ac-
stable and ac-responsive strategies. Since these shortages
show up under different load conditions, we designed two
variable-load traffic patterns to verify whether the new
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Fig. 9. Percentage of aborted sessions from those admitted for

processing for a server with admission control under ac-interval = 5 sec.



admission strategies adequately adjust their behavior
depending on traffic load.

First, the traffic pattern is defined by the pattern shown
in Fig. 10a. We call it the ªusual dayº traffic pattern. It only
has a few intervals of not very high overload and, the rest of
the time, it has a load close to the server capacity. This type
of load might be typical in practice: Most of the time, the
load is manageable, only occasionally exceeding server
capacity. The second workload is defined by the pattern
shown in Fig. 10b. We call it the ªbusy dayº workload. This
traffic pattern spends half of the time in overload (reaching
a peak of 300 percent during one of the intervals) and, for
the other half of the time, it has a load close to a server
capacity. We do not include a ªbad dayº workload (with
consistently high overload for all intervals) since the results
are predictable and we will comment on them at the end of
the section.

Fig. 11a and Table 2a show the results for a ªusual dayº
traffic pattern: server throughput in completed sessions and
percentage of aborted sessions. These simulation results
demonstrate that, for a workload with an average session

length of 5, even for a ªusual dayº traffic load, ac-stable

strategy has 13.5 percent of aborted sessions (from accepted

ones), while ac-responsive strategy has no aborted sessions,

but its throughput is 6 percent less than the throughput of

the ac-stable strategy. The hybrid strategy has the same

throughput as the ac-stable strategy throughput (even

slightly better) and only 1.5 percent of aborted sessions.

Thus, the proposed hybrid strategy improves server

throughput while supporting a high quality of service-

level: a very low number of aborted sessions. The predictive

strategy shows even better results. It outperforms all of the

strategies: The server throughput is improved by 14 percent

comparing with the ac-responsive strategy and has no

aborted sessions.
The simulation results for workloads with average

session length of 15 and 50 are similar. The rates of aborted

sessions are significantly less for all the strategies. All of the

strategies are able to provide high levels of service.

However, the hybrid and predictive ac-strategies support

higher server throughput in completed sessions.
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Fig. 10. (a) ªUsual dayº workload traffic pattern. (b) ªBusy dayº workload traffic pattern.

Fig. 11. Throughput in completed sessions: (a) ªUsual dayº workload. (b) ªBusy dayº workload.



Fig. 11b and Table 2b show the results for a ªbusy dayº
traffic pattern. For a ªbusy dayº traffic pattern, the number
of aborted sessions is generally higher, especially for a
workload with average session length of 5. The ac-stable
strategy has 27 percent of the aborted sessions for this
workload. Moreover, even the ac-responsive strategy is
unable to provide a satisfactory level of service: It exhibits
13 percent of the aborted sessions. Since the hybrid strategy
is a special combination of the ac-stable and ac-responsive
strategies, it also has 13 percent of the aborted sessions with,
however, higher sessions throughput. Thus, none of these
three strategies provides an acceptable level of service for
workloads with short average session length. The predictive
strategy produces the best results. It provides both the best
overall server throughput (14 percent improvement) while
having no aborted sessions (or almost no aborted sessions:
0.27 percent).

Simulation results for workloads with an average session
length of 15 and 50 are similar. The rates of the aborted
sessions are less for all the strategies in this study. Only the
ac-stable strategy fails to provide an adequate level of
service: It still has 13 percent of the aborted sessions.
However, the hybrid strategy improves the situation: It has
only 1.6 percent of the aborted sessions and a 6 percent
improvement in throughput. The predictive strategy again
provides the best overall results.

For a ªbad dayº traffic pattern (with consistently high
overload for all intervals), the results are predictable and
show the same tendency observed for a ªbusy dayº traffic
pattern. For workloads with short average session length,
the only strategy which works consistently well is the
predictive one. For workloads with medium and long
average session length, both the hybrid and predictive
strategies provide the best results.

14 CONCLUSION

Today's web servers often perform poorly under overload.
In order to meet quality of service requirements, system
administrators are forced to significantly overprovision
their sites. In this paper, we introduced a new, session-
based workload for measuring web server performance. We
showed that an overloaded web server can experience a
significant loss of throughput in the number of completed
sessions compared against the server throughput measured
in requests per second. However, this loss is not always

easy to recognize. When the session lengths are exponen-
tially distributed (in other words, there is enough variability
in session lengths), the throughput in sessions for an
overloaded server decreases slightly, but not dramatically.

Analysis of the completed sessions reveals, however, that
the majority (up to 98 percent) of completed sessions are
short: The overloaded web server discriminates against the
long sessions. This could significantly impact sales and
profitability of commercial web sites because the sale-
sessions are typically 2-3 times longer than nonsale ones.
Based on this analysis, we formulate the web quality of
service requirements that a web server has to support. In
particular, a fair guarantee of completion, for any accepted
session, independent of a session length, is a crucial
requirement for a commercial web site to be successful.

Additionally, we proposed two adaptive, self-tunable
admission control strategies, hybrid and predictive ones,
aimed at optimizing the performance of the SBAC mechan-
ism and at improving the quality of service provided by the
SBAC. These strategies account for the bursty nature of web
traffic and they adjust and recompute the ac-mechanism
parameters accordingly. The proposed hybrid and predic-
tive admission policies allow the design of a powerful
admission control mechanism which tunes and adjusts itself
for better performance across different workload types and
different traffic loads.

We showed that a web server augmented with an
admission control mechanism is able to provide the
required web quality of service guarantees. Incorporating
this technique into a product allows HP to offer solutions to
customers that enables them to migrate core business
functions onto web-based technologies and to use web
applications for strategic advantage.
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TABLE 2
Percentage of Aborted Sessions: (a) ªUsual Dayº Workload, (b) ªBusy Dayº Workload
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