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Abstract—This paper presents SAVE, for Stochastic Analysis
and aVailability of Energy, an analytical framework providing
closed form expressions for residual energy and lifetime
prediction of wireless sensor nodes. SAVE models a wide
umbrella of input factors, including channel characteristics,
different energy sources and harvesting policies, link layer
parameters (e.g., error control and duty cycling) and various
data traffic generation models. Our framework uses stochastic
semi-Markov models to derive the residual energy distribution
for each harvesting node accounting for practically observed
temporal variations. We validate the analytical expressions
derived by SAVE by means of simulations, and show that
SAVE predictions provide a remarkably close match to the
simulation results.

I. INTRODUCTION

Energy harvesting wireless sensor networks (EHWSNs)
are made up of wireless sensor nodes powered by recharge-
able batteries that are replenished through energy scav-
enged from renewable or ambient sources. Such a charging
paradigm extends the network lifetime by reducing the
charge drawn from the battery, prevents disruptions ow-
ing to battery replacement, and ensures environmentally
friendly operation. However, as the residual energy at the
node is time varying, and is subject to a variety of other fac-
tors, it is a challenge for the network designer to formulate
closed form expressions that indicate future energy levels
and lifetime of a EHWSN node. The analytical framework
proposed in this paper, called Stochastic Analysis and
aVailability of Energy (SAVE), takes the first step towards
this direction.

Recent research on analyzing the lifetime and energy
consumption in “classical,” battery-limited WSNs has been
presented in [1], [2], [3] (average analysis) and [4], [5]
(distribution analysis). However, the key consideration of
re-charging the energy reserve is not considered in these
works. Seyedi et al. present a Markov-based model for
energy harvesting nodes in a body sensor network [6]. The
work provides an an analysis of the probability of event loss
due to energy depletion. Moreover, Ventura and Chowdhury
present MAKERS, a Markov based model for one or
multiple-sources energy harvesting nodes in WSNs [7].
This work provides analytical model for predicting the
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probability of a sensor running out of energy with very low
computational complexity. In addition, it can model energy
harvesting sensors equipped with multiple energy harvest-
ing boards. Sus et al. present DTMC for environmentally
powered sensor nodes for assessing statistical properties
such as the probability of achieving a given operation
time and the expected downtime [8]. While re-charging is
considered, these models are examples of average analysis,
where only the long term, average behavior of the nodes
is ascertained, and do not consider the stochastic nature of
energy availability.

SAVE is a general analytical framework that provides
a stochastic tool for the analysis of the residual energy
and the lifetime distribution of EHWSN nodes. We model
the energy harvesting wireless sensor node (harvesting
node, from now on) as a stochastic semi-Markov process
and introduce a new analysis technique, called energy
transient analysis, for the computation of the net consumed
energy distribution. The amount of consumed and harvested
energy in each state of a node are modeled as random
variables, depending on discharging and recharging rates
and on the holding time distribution of that state. The
main contributions of this paper include the following:
(i) We introduce SAVE for node residual energy and
lifetime predictions at any time, based on the distributions
of harvested energy, net-consumed energy (by processing,
wireless re/transmissions, and sleep-awake cycles), and
node lifetime. (ii) We show that SAVE is not limited
to exponential or fixed holding time distributions in each
Markov state. The operational states can have general and
arbitrary holding time distributions, resulting in a more
accurate and flexible analytical framework. (iii) We present
a new technique called energy transient analysis serving as
a tool for deriving the energy distributions based on the
semi-Markov process of a harvesting node. This technique
is harvesting technology- and harvesting node-independent,
thus being applicable in a wide variety of practical settings.

II. THE SAVE ANALYTICAL FRAMEWORK

We consider nodes equipped with one or multiple en-
ergy harvesting modules, working under different energy
sources, each with their independent charging and discharg-
ing rates. SAVE models a harvesting sensor node as a semi-
Markov process (SMP) in which each state corresponds to
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a node operational mode. A SMP is a type of stochastic
process whose states change as in a Markov chain, but
where the permanence in a particular state happens for a
random amount of the time (called holding time), following
a given distribution. The holding time depends on the
current state and on the next state to be visited. In a SMP,
each state is associated with one or more reward variables
called reward rates. In the case of SAVE, every state i has
two reward rates: Power discharging (battery consumption)
rate di and power recharging (energy replenishment) rate
ri. The discharging rate depends on the node hardware
specifications and on the node operation of that state. The
power recharging rate depends on the renewable energy
source.

With Xh = {X(t) : t ≥ 0} we represents the SMP of the
harvesting node h with sample states S = {1, 2, ..,M}, M
being the number of a harvesting node operational states.
The random variable X(t) indicates the state of the system
at time t. The Markov renewal process Z = {(Zn, Tn);n ≥
0} is connected to the SMP Xh as follows:

X(t) = Zn, Tn ≤ t < Tn+1,

where n is the number of state transitions that has taken
place by time t, Zn ∈ S is the state after the nth transition
and Tn is the time of the nth transition. The state transition
probability Pij , which governs the change from state i to
state j, is defined as follows:

Pij = Pr{X(T1) = j|X(0) = i}.

Accordingly, P = [pij ] is the transition probability ma-
trix. The kernel of the semi-Markov process is independent
of the number n ≥ 0 of transitions, and it is defined as:

K(i, j, t) = Pr(Zn+1 = j, Tn+1 − Tn ≤ t|Zn = i),

or, equivalently:

K(i, j, t) = PijQij(t).

In the latter equation Qij(t) denotes the holding time
distribution of state i, after a transition from state i to state
j has occurred. More specifically:

Qij(t) = Pr(Tn+1 − Tn ≤ t|Zn+1 = j, Zn = i).

The state transition probabilities and holding time dis-
tributions depend on the specific network and protocol
parameters.

The matrix K(t) = [K(i, j, t)] is the kernel matrix of the
harvesting node and stores information on the harvesting
node operations. This is the information we need for
computing the energy and node lifetime distributions. In
other words, the stochastic nature of the harvesting node
is captured by the kernel of its SMP. The distribution of
the holding time in a particular state i is obtained from the
kernel matrix of the SMP as follows:

Qi(t) =
∑
j∈S

K(i, j, t).

Fig. 1 shows two generic states of the SMP representing a
harvesting node. The time-varying behavior of a harvesting
node from state i to state j is expressed by the transition
probability Pij and the holding time distribution Qij(t),
while the power discharging and recharging rates capturing
the consumed and harvested energies.
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Fig. 1: A harvesting node as a semi-Markov process.

A. Residual energy distribution

The amount of residual energy at a harvesting nodes over
time plays a key role in fundamental network functions,
such as its connectivity, coverage and lifetime. In this
section, we derive the distribution of the energy available
at a harvesting node at a given time T .

The amount of energy consumed in state i is a random
variable Ei that depends on the discharging rate di and
on the probability distribution of the holding time in that
state. Similarly, the amount of harvested energy in state i is
a random variable Hi that depends on the recharging rate ri
and the holding time distribution. The energy consumption
distribution in state i when a transition from state i to state
j occurs, is as follows:

Eij(e) = Pr(Ei ≤ e|Zn+1 = j, Zn = i).

For example, if the discharging rate in state i is di
and Qij(t) is the holding time distribution before the
harvesting node moves into state j, the energy consumption
distribution Eij(e) is:

Eij(e) = Qij(
e

di
).

Similarly, the energy harvesting distribution in state i
when SMP moved from state i to j is:

Hij(e) = Pr(Hi ≤ e|Zn+1 = j, Zn = i).

The unconditional energy consumption and harvesting
distributions in state i when a transitions form state i to
state j occurs are:

E(i, j, e) = Pr(Zn+1 = j, Ei ≤ e|Zn = i) = PijEij(e)

and:

H(i, j, e) = Pr(Zn+1 = j,Hi ≤ e|Zn = i) = PijHij(e),
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Clearly, considering the discharging and recharging rates,
both of the two last distributions could be computed based
on the kernel of the semi-Markov process. The distribution
of energy consumption and harvesting in state i are finally
obtained as follows:

E(i, e) =
∑
j∈S

E(i, j, e) and H(i, e) =
∑
j∈S

H(i, j, e).

We now describe a new energy transient analysis tech-
nique for computing the distributions of the consumed and
of the harvested energy. We assume that the harvesting node
starts in state i and after time T is in state k. Throughout
time T the node might have transitioned through different
sequences of states (paths in the SMP). However, indepen-
dently of the followed path, for each state m in the path
the harvesting node consumes a random amount of energy
Em and harvests a random amount of energy Hm. Both
random values Em and Hm depend on the state holding
time probability distribution, and on the discharging and
recharging rates associated to state m. Therefore, the total
amount of energy consumed and harvested over a path of N
states from state i to state k during time T can be obtained
as the sum of N independent random variables:

Eik(T ) = Ei + Ei+1 + . . .+ Em + . . .+ Ek, and

Hik(T ) = Hi +Hi+1 + . . .+Hm + . . .+Hk,

where k = N+i−1. The probability density function (pdf)
feik(e, T ) of Eik is defined such that:

Pr(e1 ≤ Eik ≤ e2) =
∫ e2

e1

feik(e, T ).

The pdf fhik(e, T ) of Hik is defined similarly. Recall that
the pdf of the sum of N independent random variables is
the N -fold convolution of their pdfs. Therefore, in order to
determine the joint conditional pdf of energy consumption
(conditioned with respect to time T and initial state i) it is
necessary to convolve the energy consumption pdfs of the
states, dEij(e)

de , over all possible paths starting from state
i and finishing in state k throughout time T . To this end,
we calculate the Laplace transform of the convolutions over
all possible paths with different state holding times. This is
done through the following theorem.

Theorem 1: For any given time T , the Laplace transform
Leik(s, T ) of feik(e, T ) with respect to e, is the solution of
the following equation:

Leik(s, T ) = e−sdiT (1− E(i, diT ))

+
∑
m

∫ Tdi

0

e−seLemk(s, T −
e

di
)dE(i,m, e),

where m ranges over all states in the SMP X , and di is
the discharging rate in state i.

Proof: Let E be a random variable with cumula-
tive distribution function (CDF) F(e). The Laplace-Stieltjes
transform (LST) of F is defined as follows:

E(e−sE ;E ≤ e|Z0 = i) =

∫ ∞
0

e−sedF (e).

The Laplace transform of feik(e, T ) is as follows:

Leik(s, T ) = E(e−sEik(T );Eik(T ) ≤ e|Z0 = i),

where the random variable Eik(T ) shows the total
amount of consumed energy during time T starting from
state i. Conditioning on the initial state energy consumption
Ei we have:

E(e−sEik(T );Eik(T ) ≤ e|Ei = c, Z0 = i) ={
e−sdiT c ≥ diT ,
e−sc

∑
m L

e
mk(s, T − c

di
) c < diT .

Now, unconditioning with respect to Ei, we obtain:

Leik(s, T ) =∫ Tdi

0

e−se
∑
m

Lemk(s, T −
e

di
)dE(i,m, e)

+e−sdiT (1− E(i, diT )) =∑
m

∫ Tdi

0

e−seLemk(s, T −
e

di
)dE(i,m, e)

+e−sdiT (1− E(i, diT )).

Similarly, Lhik(s, T ) is calculated as follows:

Lhik(s, T ) =∑
m

∫ Tri

0

e−seLhmk(s, T −
e

ri
)dH(i,m, e)

+e−sriT (1−H(i, riT )),

where ri is the recharging rate in state i. The energy
available at the harvesting node at time T is defined as
the residual battery energy taking into account the net
consumed energy until time T . The net consumed energy
includes both consumed and harvested energies. Since the
consumption process is stochastically independent of the
harvesting process, we can derive the Laplace transform of
the net consumed energy during time T as

Li(s, T ) = Leik(s, T )L
h
ik(s, T ),

Thus, the pdf f(e, T ) of the net consumed energy e
consumed through time T can be calculated by numeri-
cally inverting the Laplace transform Li(s, T ). Then, the
CDF E(e, T ) is found by

∫ e
0
f(e, T )de. Note that such

distribution depends on the initial state i, which in this
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work is assumed to be always the sleep state. Finally,
the distribution of the energy available to harvesting node,
residual energy, after time T is given by:

PA(e, T ) = E(E0 − e, T ), (1)

which depends on the overall net consumed energy
distribution E(e, T ) and the initial energy of the primary
battery E0. The set of transitions from one specific state
(e.g., sleep state) to the next visit to that state construct a
harvesting node operational cycle. As a special case, the
energy distributions regarding the number of cycles can be
found based on the steady-state probabilities of the SMP, πi,
and the average time spent in each state, µj . In particular,
the average length of one cycle is equal to

∑
j πjµj , and

accordingly one can compute the Laplace transform of the
net consumed energy and its equivalence residual energy
for different number of cycles.

B. Node lifetime distribution

In this section, considering the sensor semi-Markov
model X(t), we characterize the harvesting node lifetime
distribution as a function of time (or number of cycles). Let
g be the power consumption reward function which for any
time t over the operation of the sensor defined as:

g(X(t)) = di ≥ 0, if X(t) = i,

where g(X(t)) indicates the power consumption per unit
time in the state i (at time t). Similarly, we consider f to
be the charging reward function as:

f(X(t)) = ri ≥ 0, if X(t) = i,

ri represents the energy recharging rate of the harvesting
sensor in state i. We define the net consumed energy
E(t) as a random variable which takes into consideration
both accumulated charging and discharging energies of a
harvesting sensor node in time as follows:

E(t) =

∫ t

0

[g(X(τ))− f(X(τ))]dτ

=

∫ t

0

[dX(τ) − rX(τ)]dτ =

∫ t

0

eX(τ)dτ.

where ei indicates the combined reward rate in state i when
X(t) = i and E(t) is a stochastic process based on X(τ)
for 0 < τ < t. The harvesting sensor node lifetime can
be defined as a random variable T representing the time
to accumulate a combined reward requirement equal to a
random variable w which represents the initial energy of
the sensor’s battery (w = E0) :

T (w) = min{t ≥ 0 : E(t) = w},

Moreover, node lifetime T is the time instant at which the
overall (net) consumed energy by the sensor node reaches
the value w for the first time. Given that the initial state
is i, the probability that harvesting node consumes more

TABLE I: Parameters of SAVE Framework for the Case
Study

Parameter Meaning

E0 Initial energy of the on-board battery
G Maximum number of retransmissions
BER Channel bit error rate
Pe Packet error rate
PB Channel busy probability
K Maximum number of backoff occurrences
Ts Sleeping period
Tw Wakeup period
λe Average event arrival rate
Sp Data packet size
SM Data message size
SH Packet header size
Rtx Channel transmission rate
tch Average charging time
Psc Charging probability
B Average processing time per event
PI Event of interest probability

Sleeping
(S)

Charging
(C)

Listening
(L)

Processing
(P)

Transmitting
(T)

P s
c

P
cl

P
lp

Ppt

P
ts

Psl

Pls

P
ps

Fig. 2: Semi-Markov Chain of a Harvesting Sensor Node

accumulated energy than w during sensor operation time t
is :

Pr(E(t) > w|X(0) = i),

which is exactly the probability that the lifetime of the
harvesting node is shorter than t. Correspondingly, the
conditional node lifetime distribution which is the proba-
bility distribution that the sensor node achieves the desired
lifetime t, when i is the given initial state, would be as :

Pr(T (w) ≤ t|X(0) = i) = Pr(E(t) > E0|X(0) = i),

III. FRAMEWORK ANALYSIS: A CASE STUDY

In section II, we described a general analysis framework
for any arbitrary state diagram that defined the operation
of an energy harvesting sensor. In this section, we take a
specific example of a sleep-awake duty cycled sensor that
harvests energy with an exponential charging time, and uses
a CSMA-based MAC protocol with ARQ for error recovery
at the link layer. A detailed description of the variables used
is given in Table I.
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A. Semi-Markov chain overview

The functions of the harvesting sensor node is modeled
as a semi-Markov chain consisting of (i) charging (C), (ii)
sleeping (S), (iii) listening (L), (iv) processing (P), and (v)
transmitting (T) operational states, which are represented
in Fig. 2 with their corresponding abbreviations in the
parenthesis. The operation of the sensor for this example
scenario is described in the following, assuming the above
states:

1) Energy Harvesting Policy: The initial energy of the
primary battery is E0. During its reduced activity sleep time
(i.e., in state S), the sensor may either transition into deep
sleep and charge (i.e., enter state C) with the probability
Psc, which is equal to a given charging probability, for an
exponentially distributed time with the mean value of tch,
or continue in its current state with probability 1−Psc for
a fixed sleeping period Ts. Note that while our framework
supports any arbitrary harvesting policy, for the purpose of
tractability, we assume here an exponential charging time.
After completing the sleeping period Ts, the node switches
to the listening state (i.e., state L) and starts sensing the
environment.

2) Event Processing: The node returns back to the
sleeping state when no event is detected, or else it processes
the detected events in the processing state (i.e., state P) to
find out if any of them are the events of interest. The pro-
cessing time per event follows an exponential distribution
with mean B, though our general model supports arbitrary
distributions. Consequently, the processing time of R events
has R-stage Erlang distribution.

3) MAC Protocol: After completion of the processing
stage, if any desired event is detected, the node switches
to the transmitting state (i.e., state T) with probability Ppt,
which is derived later in Section III-B. If the sensor node
finds the channel idle during its initial carrier sensing, it be-
gins transmitting. But if the channel is busy with probability
PB , the node defers its transmission for a random amount
of time. It waits in the idle mode, and probes the wireless
channel again after that time. A maximum number of K
backoff occurrences for each packet is assumed. Moreover,
the path loss wireless channel is modeled with a two-state
discrete Markov chain known as Gilbert model in which
Pe indicates the average packet error probability and is
computed based on the wireless channel bit error rate.
Finally, an ARQ error control mechanism with G maximum
number of packet retransmissions is considered.

B. Constructing the SMP kernel

In this section, we construct the kernel matrix of our
example. In particular, each kernel has two elements: prob-
ability transition matrix (P) and holding time distribution
matrix (Q). Next, we derive the transition probabilities
and holding time distributions of our SMP described in
Figure 2. Note that the matrix elements for non-existent
transition paths in SMP are zero.

P =


Pss Psc Psl · · · Pst
Pcs Pcc Pcl · · · Pct

...
...

...
. . .

...
Pps Ppc Ppl · · · Ppt
Pts Ptc Ptl · · · Pts



Q =


Qss(t) Qsc(t) Qsl(t) · · · Qst(t)
Qcs(t) Qcc(t) Qcl(t) · · · Qct(t)

...
...

...
. . .

...
Qps(t) Qpc(t) Qpl(t) · · · Qpt(t)
Qts(t) Qtc(t) Qtl(t) · · · Qtt(t)


The holding time distributions of sleeping state is Qsl(t) =
U(t−Ts) and Qsc(t) = 0, here U is the unit step function.
Furthermore, the holding time in charging state has expo-

nential distribution Qcl(t) = 1 − e
−
t

tch . Since the event
arrivals occur during the awake period follow a Poisson
process with average rate λe, the transition probabilities of
listening state are Pls = e−λ

eTw and Plp = 1−e−λeTw , and
staying time distribution is Qls(t) = Qlp(t) = U(t− Tw).

Assuming N l
E is the number of received events during

listening time, then the probability that n events are de-
tected and the average number of sensed events are:

f le(n) = Pr(N l
E = n) =

(λeTw)
ne−λ

eTw

n!
,

E[N l
E ] = λeTw.

Additionally, when n events are detected during the listen-
ing time, the total summation of the exponential processing
time approaches the n-stage Erlang distribution with density
function fErlang(n,B, t) with the cumulative distribution
HErlang(n,B, t). The probability that the processing state
reveals no event of interest is equal to transition probability
Pps, and is calculated by:

Pps =

∞∑
n=0

f le(n)(1− PI)n.

Here, PI is the probability of a single event being of
interest. We approximate Pps = (1 − PI)

E[N l
E ] with the

average number of detected events, without a significant
loss of precision. Similarly, the distribution of the holding
time at the processing state can be computed by using the
k-stage Erlang distribution, with the average value E[N l

E ]
as follows:

Qps(t) = Qpt(t) = HErlang(dE[N l
E ]e, B, t).

Let NT
E indicate the number of events of interest detected

after processing, having the average value equal to λeTwPI .
Thus, the probability of detecting i events of interest is:

gte(i) = Pr(NT
E = i) =

∞∑
n=0

f le(n)

(
n

i

)
(PI)

i(1− PI)n−i.
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Considering the average number of desired events, this
probability is approximated by:

gte(i) = Pr(NT
E = i) =

(
λeTw
i

)
(PI)

i(1− PI)λ
eTw−i.

(2)
The transition probability from transmitting state to sleep-
ing state is equal to one. Furthermore, the staying time
at the transmitting state is related to the back-off time,
packet transmission time, wireless channel error probability,
and maximum allowable number of retransmissions. Ac-
cordingly, we first compute the holding time distribution
of transmitting one packet and then extend it to the total
number of packets sent in the burst (i.e., in state T of the
current cycle).

Let TPT be holding time for one packet transmission in
the state T . Then TPT and its pdf fpt (t) can be represented
as follows:

TPT = Tbackoff + TTx,

fpt (t) = fbackoff (t) ∗ fTx(t), (3)

where * represents a convolution operation. Accordingly, to
compute the fpt (t), we need to find the probability density
of back-off time as well as the probability density of a
packet transmission time. Clearly, as the transmission time
of a packet Tpacket is a constant value, fTx(t) is:

fTx(t) = δ(t− Tpacket), (4)

Tpacket =
Spacket + Sheader

Rtx
,

which based on the convolution property of the delta
function results in fpt (t) = fbackoff (t − Tpacket). Next,
assume Xi′ is a random variable that indicates the backoff
time of i′ + 1-th attempt and Yi′ is random variable of the
total (sum) backoff time for i′ + 1 backoff attempts. The
probability density function of Yi′ can be calculated based
on the pdf of Xi′ as shown:

fYm
(t) = fX0

(t) ∗ fX1
(t) ∗ ..... ∗ fXm

(t),

fYm(t) = fY (m, t) = fXm(t) ∗ fY (m− 1, t),

where:

fXi
(t) = U(0, 2i+1) =


1

2i+1
0 ≤ t ≤ 2i+1,

0 t > 2i+1 or t < 0.

Consequently, the probability density function of total back-
off time for one packet transmission would be determined
as follows:

fbackoff (t) = fY0(t)P0 + fY1(t)P1 + ......

......+ fYK−1
(t)PK−1 + fYK

(t)PK
(5)

Pi =

{
(PB)

i(1− PB) 0 ≤ i ≤ K − 1

(PB)
i i = K

where PB is the probability that the sensed channel is busy
before transmission and where K is the maximum number
of allowable back-offs. Then the pdf of holding time in
state T for one packet transmission (Equation 3) can be
computed based on the equations 4 and 5.

The above analysis considers a single packet transmis-
sion. However, the wireless channel introduces an average
packet error rate Pe and ARQ error recovery permits
G number of packet retransmissions. Moreover, for each
detected event of interest, the sensor node packs its sensed
information into a data message and transmits to the base
station. Therefore, there are a number of packets sent per
desired event, depending on the size of packet and data
message, that is calculated as α = dSM

SP
e, where SM and

SP represent the sizes of the data message and packet,
respectively. Accordingly, next we extend this analysis for
the case of multiple packet transmissions that result from
wireless channel errors and the message.

The expected number of transmissions for one packet
E[γ] until it is successfully transmitted or dropped is
computed as follows:

fγ(i) =

{
(Pe)

i−1(1− Pe) 1 ≤ i < G,

(Pe)
i i = G.

E[γ] =

G∑
i=1

(i)fγ(i) =

G−1∑
i=1

[i(Pe)
i−1(1− Pe)]

+G(Pe)
G =

1− (pe)
G

1− Pe
.

(6)

where γ is a random variable of the number of trans-
missions per packet. The average number E[NT ] of total
transmitted packets NT (also considering retransmissions)
in the state T in the current cycle is:

E[NT ] = (α)E[γ]E[NT
E ].

The probability density function of the holding time of the
transmitting state can be derived by the using equations 2, 3,
and 6 as follows:

fts(t) =

∞∑
j=1

gte(b
j

α
c)Gt(jE[γ], t),

Gt(n, t) = fpt (t) ∗Gt(n− 1, t),

which is also approximated by fts(t) = Gt(E[NT ], t).
Then, the holding time distribution at state T is computed
from the density function by integrating fts(t) from 0 to t.

IV. PERFORMANCE EVALUATION

In this section, we present the simulation and analytical
results of the energy and lifetime distributions evaluated
through MATLAB. The packet data size is 140 bytes, with
the data and header sizes being Sp = 128 bytes and
Sh = 12 bytes, respectively. The data message size SM
is set to 1 kbyte. The event arrival rate is λe = 0.15.
The wireless channel bit error rate (BER) is 10−3, and
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Fig. 3: Probability density functions of net consumed energy for different operational cycles n=10 and n=30.

channel busy probability is set to PB = 0.2. The packets
are transmitted with a rate 250 Kbps and the maximum
number of retransmissions G = 3. Also, a CSMA-based
MAC with maximum five allowable backoff occurrences is
employed. The sleeping and wakeup periods are simulated
with Ts = 0.2s and Tw = 1.8s, respectively. For the
harvesting parameters, the charging probability is equal to
0.3 and the average charging time is set as 2s, tch = 2.
Each packet or event would be processed for an average
of 0.2s, while the probability of the event being of interest
is 0.8. The energy consumption rates are set based on the
Imote2 sensor mote [1]. More specifically, the discharging
rates for sleeping, listening, processing, and transmitting are
set to 1.8, 88, 237, 273 mW , respectively, and recharging
rate is set to 50mW . The simulations are performed 200
times for each node with different random number seeds.
Fig. 3(a) shows the simulation and Fig. 3(b) presents the
corresponding analytical results of net consumed energy
after 10 and 30 cycles. It is shown that in both of simu-
lation and analytical analysis, the density of net consumed
energy is converging to an asymptotic Normal distribution.
Moreover, comparing the density functions of simulation
and analytical results in Fig. 3, the accuracy of the analysis
in predicting the probability of net consumed energy can
be observed. Clearly, by knowing the net consumed and
initial energy, the residual energy is determined by using
Equation 1. However, due to space limitations, here, we
have presented only the net consumed energy distributions.
It worth to notice that since the number of simulation runs
are finite, the histogram (pdf) of net consumed energy is
computed by employing discretization and bins.

Since the node lifetime is defined as the time until the
residual energy drops below a minimum energy require-
ment, the initial energy of the on-board primary battery
directly affects the distribution of lifetime. Fig. 4 depicts
results for node lifetime, analysis and simulation, with
E0 = 10 Joules. We observe an accurate match between
the simulated results for node lifetime and the analytical
model derived in this paper.

V. CONCLUSION

In this paper, we proposed a generic framework for
analysis of energy and lifetime distributions in energy har-

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Cycles

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

 

 

simulation

analytical

Fig. 4: Distribution of node lifetime with E0 = 10 Joules.

vesting sensor nodes. The behavior of a harvesting sensor
node is modeled by a semi-Markov model, in which the
discharging and recharging rates are assumed as the semi-
Markov state reward rates. The node lifetime is calculated
through the energy transient analysis approach. Finally, the
simulation and analytical results for net consumed energy
and node lifetime distributions reveal a close match thereby
verifying the correctness of our approach.
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