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We apply reparameterization and the maximum likelihood method to a specific fluorescence-mediated tomography
problem where the solution is known a priori to be extremely sparse (i.e., all image values are zero except for one).
Our algorithm performs significantly better than a standard image reconstruction method, particularly for
deep-seated targets, and achieves close to 150 pm accuracy in a 3 mm diameter cross-sectional area with only
12 measurements. Moreover, results do not depend on the selection of a regularization parameter or other ad
hoc values, and since reconstructions can be computed very quickly, the algorithm is also suitable for real-time

implementation. © 2013 Optical Society of America
OCIS codes:
laser-induced.
http://dx.doi.org/10.1364/0L.38.002357

There are many areas of biomedical research where
counting very rare circulating cells in small animals is
important, such as studies of the immune system and
early stage circulating tumor cells [1,2]. Fluorescence
in vivo flow cytometry relies on microscopic interroga-
tion of very small arterioles in the ear or retina of a mouse
to noninvasively detect fluorescently labeled cells [3], but
the sensitivity of this method is limited by the small blood
volume sampled. Motivated by this, we recently devel-
oped a new technique termed diffuse fluorescence flow
cytometry [4,5] that allows sampling of larger blood ves-
sels with diffuse photons. In principle, the entire blood
volume of a mouse can be interrogated in minutes, per-
mitting detection of very rare labeled cell populations.
We also demonstrated that we could coarsely localize
labeled cells in the instrument field of view (FOV) using
fluorescence-mediated tomography (FMT) [5]. Since
both arteries and veins may be present in the FOV, locali-
zation is necessary to prevent cell overcounting, as the
same cell may be redetected in a different blood vessel
on the return trip through the vasculature. In practice,
given our sampling rate, instrument FOV, and operating
range (cell concentrations <10?/mL), we expect only
one cell in the FOV at a time. In this Letter, we show
that we can leverage this sparsity to dramatically im-
prove localization performance with low computational
burden.

In recent years, regularizing inverse problems with an
L1 norm has become a popular way of imposing a spar-
sity constraint [6,7]. Here we show that when the solution
is known to be extremely sparse (i.e., all image values are
zero except for one), an optimal approach is to repara-
meterize the problem and solve it with the maximum like-
lihood (ML) method. ML estimators are known to yield
optimal performance in the limit of high signal-to-noise
ratios (SNRs) and/or long data records [8], so they are
often used to great advantage by the statistical signal
processing community. In the field of diffuse optical im-
aging, this approach was employed in [9] for a case
where the data was insensitive to target size, but the
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connection to sparsity was not made. We demonstrate
that our algorithm performs significantly better than a
standard FMT image reconstruction method, particularly
for deep-seated targets, and achieves close to 150 pm
accuracy in a 3 mm diameter cross-sectional area with
only 12 measurements. Moreover, these results do not
require the selection of a regularization parameter, and
the algorithm is suitable for real-time applications.

A detailed description of the diffuse fluorescence flow
cytometer (DFFC), along with analysis of in vivo data,
has been previously reported in [4,5]. Briefly, the instru-
ment consists of two 642 nm lasers that sequentially illu-
minate the sample from opposite sides [Fig. 1(a)]. The
emitted fluorescent light is collected by six fiber optodes
arranged in a ring around the sample and coupled to a
high-sensitivity photon-counting photomultiplier tube ar-
ray. The lasers are on—off modulated at a rate of 10 Hz to
obtain 12 measurements (six measurements with each
source) every 0.1 s, although the modulation rate could
be increased for faster-moving cells. For the results
presented here, we utilized a cylindrical cast polyester
resin phantom with optical properties designed to match
those of a mouse limb [4]. A picture of the 3 mm diameter
phantom positioned in the center of the ring is displayed
in Fig. 1(b). A strand of 250 pm (inner wall) diameter
Tygon tubing, simulating a large blood vessel, was em-
bedded in the phantom and is also visible. Flow cytom-
etry calibration microspheres in a phosphate-buffered
saline solution (which we showed previously to result in
a negligible difference in signal strength compared to
whole blood [10]) were pumped through the tube to
mimic fluorescently labeled circulating cells.

As the microsphere travels through the instrument
FOV, a transient “spike” is generated on all 12 channels
[Fig. 1(c)], and it is the relative spike height differences
across channels that allow us to localize the microsphere
in the phantom cross section. Our previous results,
obtained with a common FMT iterative image reconstruc-
tion algorithm, r-ART, demonstrated that we were
able to successfully determine the angular position of
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Fig. 1. (a) Schematic of DFFC with (b) photograph of detector
ring and phantom in center; lasers and detectors labeled.
(c) Sample data for microspheres (3 of 12 channels shown);
one spike circled to highlight interchannel differences. The
background was subtracted from each data set and an offset
added for display purposes.

o

microspheres flowing through a shallowly embedded
tube [Figs. 2(a) and 2(b)] [5]. When the tube was located
deeper in the phantom, however, performance degraded
significantly [Figs. 2(d) and 2(e)]. In our current ap-
proach, we assume that the signal from a microsphere or
cell will occupy no more than one pixel. We are therefore
interested in recovering the position of a point target, and
it is by reparameterizing the problem in this manner that
we can obtain an optimal ML solution without the use of
a regularization parameter.

In the typical FMT problem, one seeks to recover a
(vectorized) image 7 (e.g., fluorophore yield) defined by
the linear system of equations y = Wz, where W is the
sensitivity or weight matrix and y is the measurement
vector. We computed W here by employing the diffusion
approximation to the Boltzmann transport equation for
an infinite homogeneous medium. Our photon-counting

Fig. 2. (a) Photograph of phantom cross section with shallow
tube. (b) Previous r-ART result. (c) ML surface; dot indicates
position of peak. (d)-(f) Same as (a)—(c) but for deep tube.

measurements have additive, channel-independent
Poisson noise, but we have sufficient counts that we may
approximate the Poisson distribution with a Gaussian. In
the case of a point target, we can express i as the product
of a scalar n and a unit vector e, which contains zeros
everywhere except for one component which is equal
to 1. Our data model is therefore

y ~ N (7We(r).R), D

where the location of the nonzero component of e de-
pends on the position of the point target r, and R is a
diagonal covariance matrix containing the mean of the
measurements on its diagonal (ie., [R]; = [yWe(r)];).
We estimated the components of R by using the mean
of the background signal in a 10 s window centered
on each measurement, since even our tallest spikes
are usually only ~5% of the background level. The ML
estimates of n and r are obtained by maximizing
Eq. (1) with respect to these variables, which yields
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where we have let # = 7j(r) in Eq. (3) to eliminate the
dependency on 5. We note that in the case of Gaussian
noise, the ML approach reduces to a weighted least
squares estimate of # and r. In other words, to determine
the position of a cell, the ML method takes each column
of the sensitivity matrix, scales it appropriately, and cor-
relates it with the data. The one that best matches the
data maximizes Eq. (3) and indicates the location of
the cell.

We plotted Eq. (3) as a function of r for two different
measured data vectors in Figs. 2(c) and 2(f). As shown,
the resulting surfaces are smooth with a single peak. The
location of the peak, indicated by a blue dot, corresponds
well with the location of the tube in Figs. 2(a) and 2(d),
respectively. We performed simulations at various SNRs
to determine the accuracy with which the position of the
peak may be ascertained. Although the details of that
analysis are beyond the scope of this Letter, we have de-
termined that in the instrument’s operating SNR range,
easily including the microsphere data reported here,
the ML estimate of the position of the peak is unbiased
and the precision is better than 50 pm. In theory, we can
therefore obtain excellent accuracy with this approach,
although in practice performance is affected by unmod-
eled sources of error, such as (mouse) movement arti-
facts, interchannel calibration, and data-forward model
mismatch. Generating this surface and determining the
position of the peak on a 50 pm grid (dimension of W
is 12 x 2817) takes ~0.02 s with nonoptimized Matlab
code on a laptop, so this algorithm is suitable for real-
time implementation.

We used our algorithm to determine the position of
microspheres flowing through a tube embedded in a
phantom at various orientations and depths. Each 0.1 s
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Fig. 3. (a)-(d) Two-dimensional histograms of microsphere
positions obtained with ML method; left insets show close-
ups for (a) and (c). Circumference of phantom and the inner
wall of tube is overlayed in light blue.

time bin was processed independently, meaning that
each position determination was based on only 12 mea-
surements. Typical results from four of seven experi-
ments are displayed in Figs. 3(a)-3(d), which show
two-dimensional histograms of microsphere positions,
with each pixel color-coded according to how many
times the algorithm selected that pixel as the location
of the microsphere. A total of ~1200 microsphere posi-
tion estimates were analyzed.

In general, localization performance was very good.
The results were tightly clustered, possessing a spread
(i.e., standard deviation) of ~100 pm, well within the
250 pm inner diameter of the Tygon tube. Performance
for the deeply embedded tube [Fig. 3(c)] is comparable
to that observed in the shallow cases, in contrast to [5],
where performance was significantly worse at greater
depths. In most instances, the centers of the recon-
structed clusters in the histograms were within 3 pixels
(150 pm) of the center of the tube. The larger bias
observed in Fig. 3(d) occurs in a minority of cases and
is most likely caused by phantom positioning errors.

In this initial implementation, we made a number of
simplifications that may have adversely impacted algo-
rithm performance. For example, the sensitivity matrix
employed was based on the diffusion equation approxi-
mation, which is known to be problematic in the case of
small path lengths on the order of 3 mm. Additional bias
may have also resulted from coregistration errors be-
tween the white light cross-sectional images, which were
used to determine the location of the tube, and the
DFFC data sets. We expect performance to improve with
a Monte Carlo-derived sensitivity matrix that more
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accurately models the instrument and sample geometry
and a better coregistration procedure.

In conclusion, we have demonstrated that in cases
where the point-target model applies, an effective way of
imposing a sparsity constraint is to reparameterize the
problem and solve it with the ML method. Examples
of other situations that might justify a point-target model
include the detection of early stage tumors or microme-
tastases in bulk tissue [11] and cases where the data is
insensitive to target size [9]. Our approach leads to an
algorithm that delivers significantly improved localiza-
tion performance, especially in the case of deeply
embedded targets. The algorithm is also quick and there-
fore amenable to real-time implementation. Furthermore,
performance does not depend on the selection of a regu-
larization parameter.

In the future, we hope to extend this approach to the
case where more than one cell is present in the FOV.
Preliminary modeling suggests that if anatomical prior in-
formation is available, we can accommodate 2-3 cells
present in the FOV simultaneously and still maintain close
to real-time performance. We also plan to incorporate
the time history of our detections to improve specificity.
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