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� Abstract
Noninvasive enumeration of rare circulating cell populations in small animals is of
great importance in many areas of biomedical research. In this work, we describe a
macroscopic fluorescence imaging system and automated computer vision algorithm
that allows in vivo detection, enumeration and tracking of circulating fluorescently-
labeled cells from multiple large blood vessels in the ear of a mouse. This imaging sys-
tem uses a 660 nm laser and a high sensitivity electron-multiplied charge coupled
device camera (EMCCD) to acquire fluorescence image sequences from relatively large
(�5 3 5 mm2) imaging areas. The primary technical challenge was developing an auto-
mated method for identifying and tracking rare cell events in image sequences with
substantial autofluorescence and noise content. To achieve this, we developed a two-
step image analysis algorithm that first identified cell candidates in individual frames,
and then merged cell candidates into tracks by dynamic analysis of image sequences.
The second step was critical since it allowed rejection of >97% of false positive cell
counts. Overall, our computer vision IVFC (CV-IVFC) approach allows single-cell
detection sensitivity at estimated concentrations of 20 cells/mL of peripheral blood. In
addition to simple enumeration, the technique recovers the cell’s trajectory, which in
the future could be used to automatically identify, for example, in vivo homing and
docking events. VC 2013 International Society for Advancement of Cytometry

� Key terms
in vivo flow cytometry; automated; rare cell; computer vision

THERE are many areas of preclinical biomedical research that require high-

sensitivity detection and enumeration of rare circulating cell populations in the

blood stream of small animals, including early stage cancer metastasis, immunology,

and novel stem cell therapies (1–5). Although extraction of peripheral blood (PB)

samples and subsequent analysis with conventional flow cytometry is still the gold-

standard method for cell enumeration, “in vivo flow cytometry” (IVFC) approaches

are rapidly gaining acceptance since they allow continuous, noninvasive optical

detection of circulating cells in situ. For example, fluorescence microscopy IVFC uses

a laser line focused across a small arteriole in a mouse ear or retina. As fluorescently-

labeled cells pass through this excitation beam, a transient fluorescence “spike” is

detected with a photomultiplier tube (6,7). Since data can be obtained continuously,

changes in cell populations that occur over minutes or hours can be measured. This

is in contrast to more conventional techniques where PB samples can be drawn typi-

cally only once per day (8). In addition to fluorescence IVFC, two-photon IVFC

(9,10), photoacoustic IVFC (11,12) and photothermal IVFC (13) designs have also

been recently reported in the IVFC literature (14–17).

Despite these advances, one of the primary technical challenges associated with

IVFC is the relatively small blood sampling volume. For most reported IVFC meth-

ods, this is on the order of 1 lL/min, although Galanzha et al. recently reported pho-

toacoustic detection from a mouse aorta using a focused transducer where the flow

rate is on the order of 1–2 mL/min (18,19). Given that mice have �2 mL of circulat-
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ing blood, this limits the overall sensitivity of IVFC and in

most cases means that very rare circulating cell populations

(below about 103 cells/mL) are very difficult to detect. For

experimental applications where circulating cell concentra-

tions are sufficiently low (e.g. early-stage metastatic spread of

cancer), mice must be euthanized and the entire PB analyzed,

thereby eliminating the possibility of serial study of the same

animal (20). As such, new higher-sensitivity IVFC designs that

allow detection of very rare cell populations are needed.

One evident solution to the problem is simply to “zoom

out” to a larger fluorescence imaging field-of-view (for exam-

ple, to a larger region of the ear) so that more blood vessels and

correspondingly larger blood volumes are optically sampled. In

the context of rare-cell detection, the use of “macroscopic” flu-

orescence imaging with a wide field-of-view presents two sig-

nificant technical challenges. First, this requires relatively high

laser illumination intensity and high applied detector gain

which results in detection of substantial nonspecific tissue

autofluorescence. Further, individual cells become small relative

to the total image (1–5 pixels in dimension) and of comparable

intensity to noise on autofluorescence. As we demonstrate, cells

become difficult to distinguish from background autofluores-

cence and noise in a single image. Second, at low circulating

cell concentrations (as we use in the experiments described

herein) cells pass through the imaging field-of-view very infre-

quently, for example, on the order of one cell per minute or

less. As such, a method for automated detection and counting

of cells to assist a human operator is highly desirable.

In this work we approached this problem by utilizing a

simple a priori feature of circulating cells, that is, that they are

in motion. Circulating cells appear in multiple temporally-

related frames of an image sequence. As we demonstrate, this

simple property can be exploited to identify cells in noisy image

sequences. To our knowledge, this macroscopic computer vision

approach to rare cell fluorescence IVFC has never been studied

previously. It is important note that the idea of computer vision

“cell tracking” or “cell counting” is not novel (21–26). However,

previously reported methods typically identify clearly defined

objects with strong background contrast, for example, of cells in

culture on a microscope slide. In this case, our objective was to

image circulating cells in situ with a widefield imager so that

they appear as only a small cluster of pixels with comparable

intensity to the noise on the autofluorescence background.

Therefore, existing software packages for identifying or tracking

cells (e.g. Imaris, Bitplane (27–29) or Volocity, Improvision

(30–32)) in our experience are generally not suitable for track-

ing small moving cells in widefield fluorescence image sequences

such as those presented here. This motivated us to develop a

new computer vision algorithm as described in this work.

In this study, we describe and validate our rare-cell

“computer vision in vivo flow cytometry” (CV-IVFC)

method, first in flow phantom models and then in nude mice

in vivo. As we demonstrate, this method allowed us to sample

relatively large blood volumes and to detect circulating cells at

very low concentrations. We typically imaged three to four

large artery-vein pairs simultaneously along with the sur-

rounding capillary bed of the ear. Based on reported blood

flow rates of vasculature in the ear (6–19), we estimate that

the instrument samples about 10–12 lL of PB per minute. We

demonstrate that we could detect injected concentrations of

�2.5 3 103 cells/mL Vybrant-DiD-labeled multiple myeloma

(MM) cells. As we quantify in detail below, this algorithm

enabled high detection sensitivity with a small false alarm rate

(when compared to human operator), yielding an overall esti-

mated system sensitivity of 20 circulating cells/mL. To our

knowledge, CV-IVFC represents an entirely new, high-

sensitivity but easily implementable approach to rare cell sens-

ing and enumeration in preclinical small animal models.

MATERIALS AND METHODS

Fluorescence Macroscope Design

A schematic and photograph of the video-rate fluores-

cence macroscope used in these experiments are shown in Fig-

ure 1. The sample, either a tissue-mimicking flow phantom or

a mouse ear (see below), was placed on an adjustable imaging

platform and was trans-illuminated with the output of a 660

nm solid-state diode laser (DPSS-660; Crystalaser, Reno, NV).

The output beam was expanded to �5 mm full-width at half

maximum using a simple plano-convex lens pair (f 5 50 mm

and 200 mm; Edmund Optics, Barrington, NJ). A 660 nm

“clean-up” filter (d660/20x Chroma Technology, Rockingham,

VT) was also used in front of the laser to remove a small

amount of out-of-band near infrared (NIR) output from the

laser. The light intensity at the sample was 10 mW/cm2. At

this intensity, a small amount of tissue autofluorescence pho-

tobleaching (about 0.8% per minute on average) was observed

during the in vivo experiments.

We used a high-sensitivity, 14-bit electron multiplied

charge coupled device (EMCCD) camera (iXonEM 1 855

Andor Technology, Belfast, Northern Ireland) fitted with a

low-magnification objective with NA 5 0.055 (2X Mitutoyo

Plan Apo Infinity-Corrected Long WD Objective Edmund

Optics, Barrington, NJ) and 200 mm 1X tube lens (Mitutoyo

MT-1, Edmund), so that the imaging field of view was about

5 3 5 mm2. The depth of focus of this objective was 91 lm

and we were able to resolve cells within 75 lm above or below

this region (although cells were slightly blurry) so that the

effective working depth of field was about 241 lm in tissue.

This is well matched to the mouse ear, since the thickness is

about 250–300 lm and most of the blood vessels are located

within 100 lm of the ear surface (33,34). As such, essentially

all cells traveling in blood vessels in the field of view were

detectable. Fluorescence images were acquired with a 710 nm

filter with 50 nm bandpass filter in place (et710/50m;

Chroma) while the laser was illuminating the sample. The fil-

ter was mounted in a motorized six-position filter wheel

(FW102, Thorlabs, Newton NJ). Crossed linear polarizers (25

mm diameter, Edmund) were also placed between the laser

and the sample, and between the sample and the EMCCD to

further reduce leakage of the laser light into the imager. In

principle this polarizer pair was not required but was experi-

mentally found to reduce laser leakage into the fluorescence

channels, although this had the drawback of reducing the
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detected fluorescence by 50%. White light images of the sam-

ple were acquired by removing the fluorescence filter from the

optics train (i.e., moving to an open position of the filter

wheel) so that all wavelengths were detected by the camera

and by back-illuminating the sample with an LED ring (Digi-

Slave L-Ring 3200, Edmund). We chose to use a red laser and

a near-infrared fluorophore for these experiments since tissue

autofluorescence is markedly reduced compared to, for exam-

ple, the blue-green wavelength region. Other lasers in the

near-infrared range (such as a Titanium:Sapphire laser or

diode-pumped solid state lasers) could similarly be used with

near-infrared dyes such as Vybrant DiL, Alexafluor750 or

Cyanine-7. In principle visible lasers and fluorophores could

also be used (as is done routinely in microscopy IVFC (6,7)),

but as we discuss this would result in an increase in tissue

autofluorescence and potentially greater attenuation of light

through the �250–300 lm thick ear.

The exposure time for fluorescence images was typically

0.05 s, resulting in a frame rate of �19 Hz (allowing time for

data transfer to on-board memory). We also rebinned the

1,024 3 1,024 imaging array to 128 3 128 pixels in on-board

camera hardware, which also increased the frame rate on the

camera. Given our optics and camera configuration, a 10 lm

diameter cell occupied an object only about 1–5 pixels in

dimension in each image (rapidly moving cells were often

recorded as a streak that were up to 5 pixels in length). Fur-

ther, given the large imaging field of view relative to cell size,

detection of fluorescently-labeled circulating cells required

application of gain to the EMCCD camera. This could be con-

figured with a personal computer running Andor software,

and typically we operated this between 10 and 90 out of a

maximum of 300 (arbitrary units). This resulted in substantial

imaging noise (as opposed to background intensity) on the

order of the detected cell intensity which necessitated the

development of the imaging algorithms described here. Use of

a higher magnification objective with a larger NA would have

resulted in greater sensitivity and required less camera gain to

resolve cells; however, this would have come at a cost of

smaller imaging field of view and depth of focus, so that the

overall cell detection sensitivity of the CV-IVFC instrument

would have been reduced. During data collection we acquired

1,000 frames per imaging sequence (52 s), but this could be

repeated an arbitrary number of times with only about 0.5 s

lag between image sequence acquisition to allow transfer of

image sequences to the PC.

Computer Vision Algorithm

We developed a two-step algorithm to analyze image

sequences and extract the tracks of moving cells from noisy

widefield fluorescence images as shown schematically in Fig-

ure 2. The overall strategy was as follows: in the first step we

identified candidate cells in individual images in the sequence,

and in the second step we connected cell candidates in multi-

ple image frames into cell tracks. We first performed basic

flat-field correction of the image (for the laser beam profile),

followed by pixel-by-pixel background subtraction. This was

done by taking the mean value mij of each image pixel pij in all

N image frames in the sequence,

mij5
1

N

XN

k5t

pij (1)

Next we converted the 14-bit image sequence into a

binary image sequence by subtracting this mean value (pixel-

by-pixel) and comparing the resulting value to a threshold

value s as follows:

bij5
1 if jpij2mij j > s

0 otherwise

(
(2)

Figure 1. (a) Schematic and (b) photograph of the fluorescence macroscope used to acquire image sequences for this work (see text for

details). M, mirror; Lin Pol, linear polarizer; Obj, 2X objective. (c) Photograph of a mouse ear positioned on the imaging stage for in vivo

experiments. As shown, a large region of the ear is illuminated and imaged. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Original Article

Cytometry Part A � 83A: 1113�1123, 2013 1115



Therefore, in general there was no condition that a cell be

a specific size or shape. Rather at least 1 pixel must have

exceeded the threshold for a cell to be identified as a candi-

date. As we discuss, selection of the particular threshold s for

each sequence was very important since it altered the per-

formance of the algorithm with respect to overall sensitivity

and false alarm rate (see Performance Metrics in Materials

and Methods section and Performance Metrics in Results sec-

tion given below for more details). We observed substantial

inter-experimental variability in overall image intensity

(�50%) and therefore determined that a fixed threshold

across all experiments was not suitable. Instead, we set the

threshold as a function of percentile of all pixel intensities

(ranging from 0 to 16,383) in the image sequence; as we dem-

onstrate, threshold percentiles in the range of 99.93–99.99

were empirically determined to work well in mice in vivo. We

further note that the raw image intensity data sets directly

from the EMCCD were processed by the algorithm and no

prior image manipulation filters (such as edge, sharpen, con-

trast, etc.) were employed since these can often exacerbate

existing noise or introduce additional artifacts in the image

sequence.

Following this operation, the resulting binary image

sequence contained the set of circulating cell candidates which

in practice greatly outnumbered the actual number of cells.

Specifically, many post-threshold cell candidates were due to

image noise (as we show, for in vivo data this was about 97%

of candidates). Therefore, in Step 2 cells were distinguished

from background noise through dynamic analysis of image

sequences to identify cell “tracks.” First, (Step 2A) cell candi-

dates were connected into tracks in consecutive frames. For

each cell candidate, a search §k was performed on pixels pij in

the next image frame inside a radius equal to two times the

dimension (e.g. diameter) of the candidate cell Ak from the

center of the candidate cell Pij:

§k : pij where jPij2 pij j < ð2UkÞ (3)

Typically this diameter was about 1–3 pixels, but could

be slightly longer for fast moving cells where �5 pixel long

“streaks” were observed. This search was performed for all

candidates in the image sequence. When multiple cell candi-

dates were observed inside this radius, the closest candidate

was selected to merge to the track. Because cells were relatively

dim and the intensity could intermittently drop below the

threshold, gaps in a given cell’s track (of up to �10 frames)

were often observed after Step 2A. As such, in Step 2B these

were connected together by merging individual tracks that

occurred relatively close together in space and time as follows:

when the final position of one track (identified in Step 2A)

occurred within a radius of 15 pixels and within 15 image

frames from the first position of the next identified track in

the image sequence, the tracks were merged. We then applied

a second condition for merging cell tracks in Step 2C that

combined the start and end points of consecutive identified

tracks ST
m(start) and ST2t

n (end) observed at times T and T-t,

respectively,

M5
1 if ST

n ðstartÞ2ST2t
m ðendÞ 2 ð§m1; §m2; §m3

�
0 otherwise

(

(4)

where M was the condition for merging the tracks. The search

area was determined by analyzing the final position and veloc-

ity v of the previous track (ST2t
m ),

v5
ST2t

m ðendÞ2 ST2t
m ðend21

�
s

(5)

where s was the inverse of the frame rate (in this case 0.052 s)

and by extrapolating the final position assuming a speed in

the range of 0.5v to 2v as follows:

Pm15ST2t
m ðendÞ10:5 � t � v

Pm25ST2t
m ðendÞ1t � v (6)

Pm35ST2t
m ðendÞ12 � t � v

where t was the elapsed time since the end of the previous

track. The three search regions §m1, §m2 and §m3 centered on

Pm1, Pm2, and Pm3 with a radius of 0.5vt, vt, and 2vt, respec-

tively; in practice, this produced a cone-shaped search area.

Therefore, Steps 2B and 2C differed in the search region for

Figure 2. Flow chart of the two-step automated computer vision

analysis of fluorescence image sequences as well as example

images obtained after each step. The algorithm identified cell

candidates (Step 1) from image sequences, and then connected

them dynamically into cell tracks (Step 2). The position of the cell

is indicated with a red arrow and dotted circle. See text for details.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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merging as follows: Step 2B used a circular search radius

whereas Step 2C used a cone oriented in the direction of cell

movement. At the end of Step 2, remaining cell candidates

that did not connect to any track (i.e. were observed in only

single frames) were discarded from the analysis. As we show,

this was the case for about 97% of cell candidates that were

identified in Step 1. As such Step 2 was critical in the rejection

of false positive counts. Last, for visualization, cell tracks were

overlaid onto the white light image of the sample (mouse ear

vasculature). A total cell count in an image sequence was

obtained by simply counting the total number of identified

cell tracks detected in an image sequence.

Phantom Measurements

We first tested our imager and algorithm in an optical

flow phantom model which was intended to mimic a blood

vessel in a mouse ear. Disk shaped phantoms (Fig. 3a) �2 mm

thick by 20 mm in diameter were made from polyester resin

(Casting Craft, Fields Landing, CA) with titanium oxide

(TiO2; Signa-Aldrich, St. Louis, MO) and India ink added at

50 parts per million to yield optical properties similar to bio-

logical tissue at near-infrared wavelengths. Specifically, based

on previously published characterization of similar phantoms

(35) the final optical properties at 700 nm were estimated to

be as follows: reduced scattering coefficient l0s 5 15 cm21

and absorption coefficient la 5 0.1 cm21. Strands of micro-

bore Tygon tubing (250 lm internal diameter, TGY-010C,

Small Parts, Seattle, WA) were embedded in the phantom in

either an arc or in a straight line (N 5 2 each) before harden-

ing to mimic a blood vessel. The position of the clear tubing is

indicated with an overlaid dotted line in Figure 2a. These were

attached to a syringe mounted on a precision microsyringe

pump (70-2209, Harvard Apparatus, Holliston, MA), so that

solutions of fluorescent micropsheres suspended in PBS could

be passed through the phantom at controlled linear flow rates

between 0.5 and 10 mm/s, therefore approximately matching

the blood flow rates in large ear blood vessels reported in the

literature (6,12). We used 6 lm diameter fluorescent micro-

spheres with absorption maxima at 645 nm, and emission

maxima near 695 nm (Peakflow Claret, P-24670, Invitrogen,

Calsbad, CA), to match commonly used Cyanine5.5 and

Alexafluor-680 organic fluorophores. Microspheres were sus-

pended at a concentration of 3,000 spheres/mL. For these

experiments, the EMCCD gain was set to 10 (arbitrary units;

out of a maximum of 300). Image sequences were acquired

for a total of 5 min for each phantom.

In Vivo Measurements

We performed in vivo testing of our system and algo-

rithm using six nude (nu/nu) mice injected intravenously

with Vybrant-DiD-labeled multiple myeloma (MM) cells. All

mice were handled in accordance with Northeastern Univer-

sity’s Division of Laboratory Animal Medicine rules on animal

treatment and care. MM cells were grown in culture and sus-

pended in RPMI with 0.1% bovine serum albumin (BSA) at a

concentration of 1 3 106 cells/mL. Cells were labeled with 1

lmol/L of Vybrant-DiD and incubated for 30 min at 37�C
and then spun down and re-suspended at a final concentra-

tion of 5 3 104 cells/mL prior to injection. Mice were anesthe-

tized with a combination of ketamine (100 mg/kg) and

xylazine (5 mg/kg). About 100 lL of the cell suspension were

injected intravenously via the tail vein, so that the injected cell

Figure 3. (a) Photograph of an ear-mimicking phantom with curved length of embedded Tygon tubing. The position of the clear tube is

indicated with the dotted black line. (b–f) Raw fluorescence image sequence (separated by 0.25 s) showing a fluorescent microsphere (red

arrows and dotted circles) flowing in the phantom. The stationary white points were autofluorescent inclusions in the flow tube, simulating

stationary tissue autofluorescence observed in vivo. (g–k) the same image sequence is shown after application of Step 1 of the algorithm.

(l–p) The CV-IVFC algorithm successfully connected the sphere path in a trajectory over the arc. This trajectory was over-laid on the white

light image of the phantom (green line). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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population was 5 3 103 cells, or �2.5 3 103 cells/mL of PB

(assuming about 2 mL of mouse blood). Mice were then

placed on the translation stage and positioned so that the ear

was flat on a microscope slide in the imager field of view. A

glass cover-slip was also added (with a drop of water) to keep

the ear flat during imaging. For in vivo experiments, we

increased the EMCCD gain to 90 (arbitrary units; out of a

maximum of 300) due to the relative dimness of the labeled

MM cells compared to the fluorescent microspheres. As above,

image exposure times were set to 0.05 s, yielding a frame rate

of about 19 Hz. Images were acquired for �30 min for each of

the six mice.

Performance Metrics

We used two standard metrics to assess the performance

of our imaging system and cell detection algorithm, specifi-

cally, sensitivity 5 TP/(TP 1 FN) and false alarm rate (FAR)

5 FP/min. Here TP is “true positive” cell count, FN are the

“false negative” counts (in this case, cells that were undetected

by the algorithm) and FP are the “false positive” counts. As

noted in Computer Vision Algorithm section, we tested a

range of histogram threshold percentiles from 99.93 to 99.99,

and quantified each performance metric at each level. To

determine the “true” cell counts, a human operator manually

counted the circulating cells appearing in the image sequences

and compared them with those identified by the algorithm.

Therefore, these metrics do not reflect circulating cells that

may have been missed if they were not sufficiently bright to be

visible on image sequences. However, the number of detected

cells was generally in good agreement given the low concentra-

tion of injected cells and PB volume in the imager field-of-

view.

RESULTS

Optical Flow Phantom Testing

We first tested our CV-IVFC approach in tissue-

mimicking optical flow phantoms (Fig. 3a) with fluorescent

microspheres. We tested a range of flow speeds (0.5–10 mm/s)

as well as straight and curved flow channel geometric configu-

rations. An example set of fluorescence images acquired dur-

ing the experiment is shown in Figures 3b–3f, along with the

corresponding mean background subtracted and thresholded

image sequence (after Step 1) in Figures 3g–3k. In this case, a

phantom with a curved flow channel and linear flow speed of

5.1 mm/s is shown. By inspection of Figures 3b–3f, fluores-

cence contrast was excellent in the optical flow phantom

model and this allowed us to verify that the algorithm could

correctly identify and track small (�1–3 pixels diameter) fluo-

rescent targets (indicated by red arrows and dotted circles),

even when significant directional changes were observed. The

extracted microsphere track (green curve) was overlaid on the

white light images of the phantom as shown in Figures 3l–3p.

It is important to note that the algorithm successfully distin-

guished moving fluorescent targets from stationary bright pix-

els or pixel groups. For example, two stationary bright pixels

can be clearly observed in the raw fluorescence images in Fig-

ures 3b–3f, but these points were rejected (primarily) during

Step 1 of the CV-IVFC algorithm (Figs. 3g–3k). Residual sta-

tionary pixels that were not rejected in Step 1 (for example

due to photon counting noise as in Figs. 3g and 3h) were

rejected in Step 2, since they did not form trajectories in sub-

sequent image frames (see Computer Vision Algorithm sec-

tion). In general, microspheres were successfully tracked at

speeds up to 10 mm/s, which exceeds the expected flow speeds

in blood vessels in the mouse ear in vivo of 0.5–5 mm/s from

literature values (6,12). Since fluorescence contrast was

extremely high in the flow phantom models, it was not neces-

sary to adjust the threshold value in Step 1 (as opposed to the

in vivo experiments where this was necessary; see below) so

that we used a single threshold value of 99.96% of maximum.

The overall system performance over all four phantoms and

flow speeds tested was sensitivity 5 0.993 and the false alarm

rate 5 0.074/min.

Testing in Mice In Vivo

We next tested the CV-IVFC in nude mice injected with

very low concentrations (injected concentrations of �2,500

cells/mL PB) of fluorescently-labeled multiple myeloma

(MM) cells. An example fluorescence image sequence acquired

in vivo is shown in Figures 4a–4e. By inspection, the noise

and background autofluorescence (for example, from seba-

ceous glands on the ear (37)) observed were significantly

higher than in phantoms, and made discrimination of cells in

individual frames (red arrows with dotted circles) more diffi-

cult. As is evident in Figures 4f–4j, a much larger number of

“cell candidates” (i.e. pixels that exceed the threshold after

background subtraction) were identified after Step 1, which

greatly outnumbered the true numbers of cells. However, the

vast majority of these cell candidates did not form cell tracks

as defined in Step 2 and were therefore rejected by our algo-

rithm (please see Performance Metrics in Results section). The

trajectories of the subset of cell candidates that did form

tracks (in Step 2) were stored and counted by the CV-IVFC

algorithm. Example tracks of two circulating cells are shown

in Figures 4k–4o, overlaid on white light images of the mouse

ear vasculature. In this case (and in about 95% of cells

observed), these cell tracks appeared to correlate to the large

blood vessels indicated by dark regions in the white light

image. This specific example also demonstrates the ability of

the algorithm to distinguish between multiple circulating cell

tracks in the same image sequence (indicated by green and

yellow tracks). Likewise, Figure 5 shows an example case

where a single cell changed speed and direction rapidly as it

moved from one blood vessel to another (Figs. 5c, 5h, and

5m). Other example cell detection events are shown in the

movie files included online (“cell_detection1.avi” to

“cell_detection4.avi”). It is possible that a given volume of PB

may pass twice through the imager field of view so that this

could potentially result in over-counting of cells. In the future,

this effect could be corrected by considering the direction of

movement (distal or proximal) and adjusting the cell count

accordingly.

Cells that were moving rapidly were often recorded as

“streaks” rather than single points (for example, as observed
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in “cell_dection3.mov,” about 1.5 s into the video). In general

this had the effect of reducing the recorded intensity, that is,

since the intensity was divided over the pixels in the streak.

However, as long as the intensity exceeded the threshold (Step

1B) and the object appeared in multiple frames of an image

sequence (Steps 2B and 2C), it was recorded as a cell track.

Moreover, the ear was easily immobilized (by securing the

mouse and using a drop of water on the ear) so that image

sequences were generally free of breathing artifacts. It is also

worth reiterating that the injected cell concentrations used

here were extremely low and were generally below the operat-

ing range of other reported optical IVFC techniques. There-

fore, occurrences of circulating cells passing through the

imager field of view were very rare compared to the total

length of video sequences (specifically about 0.5/min on aver-

age) thereby underscoring the importance of the automated

detection algorithm.

While it is difficult to exactly quantify the number of cells

in circulation during these experiments (as opposed to the

injected concentration), we estimate this concentration as fol-

lows: we injected on average 5 3 103 labeled MM cells sus-

pended in 100 lL of media, which were diluted in the �2 mL

blood volume for a total injected concentration of �2.5 3 103

cells/mL of PB. From previous analysis of extracted PB sam-

ples, it is estimated that about �10–20% of injected cells were

retained in circulation 5 min after injection, with the balance

either trapped at the site of the tail vein injection, or trapped

rapidly in the lungs and in the spleen after injection of the ini-

tial bolus. Moreover, MM cells are known to home to the

bone marrow continuously during circulation, so that we esti-

mate that overall there was 250–500 cells/mL in circulation

during these experiments. At this concentration, we observed

0.5 cells/min over all experiments performed. Assuming that

the lower limit of sensitivity for our system would occur when

only 1 cell observed in a 60-min period, this is about 17 cells/

mL. Conservatively then, we estimate that the practical lower

limit of detection sensitivity of our approach is about 20 cells/

mL. To better quantify the true circulating cell population in

the future, we could extract PB samples and analyze them

using conventional flow cytometry. However, the low concen-

trations of circulating cells used here would necessitate

euthanizing the mouse and analyzing PB volumes on the

order of 1 mL. Moreover, measurement of cell populations at

multiple time points in the 30-min period following injection

would be required because MM cells are known to clear rap-

idly from circulation (6,7).

Figure 4. (a–e) An example fluorescence image sequence obtained from the ear of a mouse, where each image is separated by 0.4 s. Two

fluorescently-labeled MM cells (red arrows and dotted circles) passed through the field of view, with the second cell appearing in (c) and

the first disappearing in (e). By inspection, these were difficult to discriminate from autofluorescence in a single image. (f–j) The corre-

sponding image sequence is shown after the background subtraction and thresholding operation performed in Step 1. The relatively large

number of “false alarm” cell candidates in the sequence are evident, but these were rejected by dynamic analysis of the image sequence

in Step 2 (see Computer Vision Algorithm section for details). (k–o) The extracted tracks of the two cell candidates are shown (here indi-

cated by green and yellow curves), overlaid on the white light image of the mouse ear vasculature. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Performance Metrics

In Figures 4 and 5, the threshold value s used in Step 1

[Eq. (2)] was arbitrarily selected to be the 99.96th percentile

of all measured pixels in the image sequence. However, the

overall performance of the algorithm could be controlled by

adjusting this threshold. The concept is shown in Figure 6a,

where the distribution of background (autofluorescence)

noise is shown for a typical mouse (blue curve), along with

the distribution of fluorescence intensities of circulating cells

(red curve). Here, all pixel values for all image frames of full

30 min acquisition for a single mouse are represented. Data is

presented following mean background subtraction, so that

that mean value for the background is zero but the standard

deviation was 980 counts. Likewise the mean and standard

deviation of the cell intensities were 7,304 counts and 1,955

counts, respectively. The dotted vertical line indicates the

value of the 99.96th percentile (i.e. the threshold) which in

this case was 4,200 counts. Although only a small overlap

between the blue and red curves is evident by inspection, it

should be emphasized that the number of points in the blue

distribution outnumbers the number of points in the red dis-

tribution by a factor of 104; as such, this small overlap results

in many potential false positive cell candidates that are

removed in Step 2 of the algorithm. We therefore quantified

the performance of our CV-IVFC method over all six in vivo

data sets according to sensitivity and FAR as a function of the

selected threshold. As shown in Figure 6b, use of a lower

threshold (i.e. 99.93rd percentile) resulted in a sensitivity of

better than 0.9, but resulted in a relatively high FAR of 1.5/

min (Fig. 6c). Increasing this threshold (e.g. to 99.99th per-

centile) reduced to false alarm rate to only 0.04/min on aver-

age, but likewise this resulted in a reduction of sensitivity to

0.65. Therefore, it is possible for the end user to adjust this

threshold to trade-off sensitivity and FAR depending on the

specific cell-counting application. This is illustrated explicitly

in the operating curve shown in Figure 6d. As we have noted

(and by inspection of the image sequences) the use of simple

background subtraction and thresholding (in Step 1) was not

sufficient to identify circulating cells in the image sequences.

This is shown in Figure 6e, where the FAR realized after Step 1

(threshold step) and Step 2 (merging step) as described in

detail in Figure 2 and Testing in Mice In Vivo section shown

above. As indicated, the dynamic merging analysis performed

in Step 2 reduced that FAR by at least 97% for all threshold

values used. As such, the second step was critical for the CV-

IVFC approach, as noted primarily due to substantial tissue

autofluorescence and EMCCD imager noise. Moreover, we

note that less brightly labeled cells (e.g. with a fluorophore

with smaller extinction coefficient or quantum yield) would

result in a shift of the dotted curve to the left, so that more

overlap between the distributions and a greater potential

increase in the false alarm rate would be observed. Similarly,

Figure 5. (a–e) Example fluorescence image sequence of a single MM cell (red arrows and dotted circles) that was observed to rapidly

change direction in two blood vessels in the mouse ear. Images shown were separated by 0.4 s. (f–j) Corresponding images sequence

after thresholding operation performed in Step 1, and (k–o) the full track of the MM cell that was correctly recovered and over-laid on the

white light image of the mouse ear. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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an increase in autofluorescence noise (e.g. if a visible fluores-

cent dye were used) would result in increased overlap. In this

case, the threshold in Step 1b could be increased, or the radius

of merging (Steps 2b and 2c) decreased to reduce the FAR,

but this would most likely come at a reduction in sensitivity.

Likewise, a microscope objective with greater magnification

Figure 6. Performance metrics of the computer vision algorithm as a function of the threshold level (as a function of maximum pixel

intensity—see text for details) over all six mice studied. (a) Example distributions of background signal (blue curve) and cell fluorescence

signal (red curve) following mean background subtraction. Data shown is for all pixels in a 30-min image sequence from a single mouse.

The dotted vertical line indicates a threshold of 99.96th percentile, which in this case was 4200 counts. (b) Sensitivity of the CV-IVFC

method in vivo as a function of threshold level. (c) The corresponding false alarm rate (FAR) as a function of threshold, and (d) the sensi-

tivity and FAR operating curve. (e) The overall average FAR as a function of threshold, obtained over the six mice studied after Steps 1 and

2 of the detection algorithm. As shown, the dynamic analysis in Step 2 resulted in rejection of >97% of false alarms over all thresholds

tested. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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could be used to reduce the autofluorescence noise, but this

would come at a cost of a smaller imaging area and less overall

sensitivity.

Finally, we note that in addition to detection and count-

ing, our computer vision IVFC approach allows us to auto-

matically extract cell behavior information. For example, as

shown in the histogram in Figure 7, we extracted the speed of

circulating cells from the detected cell tracks. These data were

generated from a total of 85 tracked cells, and the mean speed

from each cell is displayed (i.e. since cells frequently changed

speed during the track). A wide range of speeds were observed,

and the mean speed was about 1.2 mm/s over the experiments

performed which is in good agreement with literature values.

We also observed events such as rapid changes in flow speed

(Supporting Information “cell_detection3.avi”); in this case,

the cell rapidly changed speeds from 7.4 mm/s to 1.5 mm/s,

presumably as it entered a smaller region of the blood vessel.

Generally the range of cells speeds observed were consistent

with previously reported literature values in the mouse ear.

For example Novak et al. (6) reported flow speeds of 1–3 mm/

s, and Zharov et al. (12) reported flow speeds of 0.5–4 mm/s.

It is possible that faster moving cells were recorded less fre-

quently than slower moving cells due to the streak effect

described above. However, observed tracks consistently coin-

cided with the location of larger blood vessels with larger

blood flow rates so that we do not believe this was a major

effect. MM cells were also observed to stop at a site in the tis-

sue (e.g. Supporting Information video “cell_detection4.avi”),

which we interpret to have been a possible docking event at

the blood vessel wall. In the future, we could modify our algo-

rithm to automatically identify and characterize homing and

extravasation events for example, for immune cells in response

to inflammatory injury (36). As such, this approach can yield

information that cannot be obtained with existing IVFC tech-

niques that simply count cell events.

DISCUSSION AND CONCLUSIONS

In summary, we have developed a new computer vision

IVFC method for detection and enumeration of very rare cir-

culating cells. The CV-IVFC algorithm utilized a fairly

straightforward “detect-and-connect” methodology that

nonetheless resulted in a powerful IVFC instrument. The

main advantage of the CV-IVFC approach is the high detec-

tion sensitivity, owing to the relatively large imaging area (5 3

5 mm2) and correspondingly large blood sampling volume. In

the experiments shown here, three to four large artery-vein

pairs in the ear and the surrounding capillary bed were typi-

cally simultaneously sampled. To our knowledge, this has

never been implemented previously. In future work, it could

also allow us to automatically characterize cell behavior in

vivo, for example, in studying the adhesion, rolling and extra-

vasation of immune cells in response to insult. Moreover,

although we have chosen to focus on rare circulating cells in

this work in principle the algorithm would also work with

higher circulating cell concentrations. As shown in Figure 4,

multiple cells could be tracked simultaneously in an image

sequence, so that operation with several orders of magnitude

greater cell concentrations is feasible.

While in principle the automated computer vision algo-

rithm is “optional” (since a human operator could manually

count cells in a fluorescence video sequence) in the case of

the rare circulating cell populations shown here the frequency

of cell detection events was 0.5/min or less on average,

thereby making this extremely tedious in practice. Another

advantage of our computer vision IVFC approach is that false

positives identified by the algorithm can easily be rejected by

a human operator, simply by reviewing the video sequence

and checking the identified cells (again, this is not possible

with many existing IVFC systems). The use of the dynamic

analysis (Step 2) rejected >97% of false positives, making this

a much less time consuming activity.

Although we have chosen to use a cell membrane-

labeling fluorophores (Vybrant-DiD) for these proof of con-

cept experiments, in principle the CV-IVFC system could be

used for a wide range of biological models using, for example,

constitutively expressed red fluorescent proteins (RFPs),

although to date we have not explicitly tested this. RFPs would

most likely yield less-brightly labeled cells than the Vybrant-

DiD dye used here (38–40). Comparison of the extinction

coefficients quoted in the product literature, for example, for

Turbo-FP650 (Evrogen, Moscow, Russia) and Vybrant DiD

(Life Technologies, Carlsbad, CA) suggests that RFP-MM

labeled cells would be on the order of three times less

brightly-labeled than the cells used here (although a literature

search failed to reveal the relative quantum yields and

expected local fluorophore concentrations of labeled cells

which also contribute to brightness). The fluorescence distri-

butions presented in Figure 6a imply that cells three times less

bright would be detectable, but with a greater false alarm rate

Figure 7. Incidence of cell speed range observed from all tracked

cells in vivo, normalized to the total number of cell observations.

The average cell speed was about 1.2 mm/s.
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(or decreased sensitivity). Again, this could be accommodated

by adjustment of the merging algorithm in Step 2 or use of a

higher powered objective with smaller field of view but better

contrast. Likewise, receptor targeted near-infrared fluorescent

nano-particles (41–43) in principle could be used with the

instrument. Moreover, we have chosen to use a near-infrared

dye here but in principle the CV-IVFC approach could be

used for virtually any visible or near-infrared fluorophore,

simply by changing the laser and filter combinations of the

instrument. Again, we have not yet explicitly tested this and

we anticipate that the associated increase in background auto-

fluorescence noise may result in increased false alarm rates,

which would also necessitate optimization of the instrument

and cell tracking algorithm. Optimization of the collection

optics, for example, through alternative selection of filters or

removal of the second linear polarizer may also improve col-

lection of fluorescence light and further improve sensitivity of

the instrument in future versions.

Finally, we note that the false alarm rate could be reduced

simply by restricting the area under consideration to regions

corresponding to large artery-vein pairs (i.e. the dark regions)

on white light images. We chose not to do this here since we

observed a small fraction of cells (about 5%) moving between

these larger vessels, presumably in the capillary bed in the ear.

As such this improvement in FAR would have come at a pen-

alty of about 5% in sensitivity, which was deemed to be more

important for the CV-IVFC approach. Moreover, MM cells

were intravenously injected immediately prior to imaging in

the case and therefore were generally circulating in larger

blood vessels. In the case of, for example, a metastatic cancer

model this fraction could be significantly higher and have

even greater effect on the overall instrument sensitivity.
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