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Abstract

Single-trial evoked response potential detection is a fundamental problem that

needs to be solved with high accuracy before noninvasive brain computer inter-

faces (BCI) can become a widely used practical tool that enables seamless com-

munication with and control of a computer and any peripheral devices that can

be connected to it. While in current BCI prototypes multi-trial inference is uti-

lized with some success to convey user’s intent to the computer for various ap-

plications, speed of such communication is inherently limited by the number of

stimulus repetitions the subject has to go through before one command selection

can be transmitted to the computer. Consequently, number of stimulus repetitions

(i.e., number of trials) is inversely proportional to the speed of communication

and control that the subject can achieve.

In this chapter, we provide a review of our recent work on using mixed effects

models, a parametric modeling approach to statistically model trial-responses in

electroencephalography in a generative fashion. Emerging from this generative

model, we also develop a Fisher kernel that is in turn utilized in the support vec-
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tor machine framework to develop a discriminative model for single-trial evoked

response potential detection. Our results demonstrate that across multiple sub-

jects and multiple sessions, the Fisher kernel detector outperforms its likelihood

ratio test counterpart based on the generative model as well as other benchmark

classifiers, specifically support vector machines with linear and Gaussian kernels.

Key words: Brain computer interface, single-trial ERP detection in EEG, mixed

effects model, fisher kernel support vector machine

1. Introduction

Single-trial evoked response potential (STERP) detection is a fundamental

signal processing problem that needs to be solved effectively and efficiently for

noninvasive brain computer interfaces (BCI) operating synchronously with some

stimulus sequence to become a practical solution to assistive and augmentative

communication (AAC) needs of persons with disabilities. While in assistive com-

munication device applications the role of the BCI is to act as a keyboard-substitute,

there exist many other applications of noninvasive BCIs that could utilize similar

visual presentation paradigms where the displayed letters are replaced by images

of interest to achieve goals related to particular tasks involved; for instance im-

age retrieval from large databases for medical and civilian research and planning

purposes, as well as for image mining in the web for recreation are potential ap-

plications that will create a broader impact on the society.

Recent research that utilize the visual evoked potentials (VEP) in various vi-

sual presentation paradigms have primarily relied on multi-trial ERP detection to

achieve practically acceptable accuracy levels. For instance, the well known P300

Speller uses 8-16 repetitions typically [4], while G.tec claims accurate-enough de-
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tection for brain-controlled typing using only 2-repetitions in well-trained subjects

[2]. It is clear that, under the assumption of statistically independent electroen-

cephalography (EEG) measurements in response to different presentations of the

same stimulus, an exponentially diminishing ERP-detection error probability can

be attained by simply multiplying the class likelihoods obtained from a STERP

detector as in independent Bernoulli trials.

In statistical inference theory, the problem of signal detection in noise, when

framed as a hypothesis test, one usually constructs a generative probabilistic model

of the measured data, which then forms the basis for Bayesian inference - opti-

mal in terms of expected risk minimization. Deciding the class label (in our case,

ERP(or 1) or noERP(or 0)) of a novel EEG waveform obtained in response to a

particular visual stimulus could be achieved using the likelihood ratio test pro-

cedure for instance: specifically, the ratio of likelihoods of the new data under

the two competing generative models compared with a threshold reveals the op-

timal decision in this minimum expected risk framework (note that one might be

interested in other statistics of the risk as well, in which case, different optimal

decision rules would have been obtained) [1]. One particular strength of gener-

ative probabilistic models is that it provides an understanding of the underlying

mechanisms for the process and therefore they contain more information that one

can extract in addition to the optimal decision for the signal detection problem.

On the negative side, this could also be interpreted as a weakness of the genera-

tive approach - the model attempts to capture more information than needed for

the purpose, thus generalization might fail for complex classification boundaries

with small amount of training data.

Discriminative learning in machine learning is an approach that focuses on
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learning only the decision boundary in a classification problem, in an attempt

to avoid the shortcomings of a restrictive parametric generative model that tries

to fit to the data throughout the whole space. Linear discriminants, multilayer

perceptrons, support vector machines (SVM) that are trained to estimate a scalar

discriminant index (which essentially corresponds to identifying a linear or non-

linear data projection function after which simple thresholding can reveal optimal

decisions under the assumed model and criterion) are among the examples of this

approach [3]. Note that the Bayes minimum risk detector using true underlying

class distributions is also effectively a nonlinear dimensionality reduction that al-

lows for threshold comparison; while generative models attempt to approximate

the individual class distributions, discriminative models will attempt to model the

surface in the feature space which will be mapped to the threshold value. Due to

the reduced complexity of the function to be modeled, these latter models gener-

ally outperform the former approach in real world problems where true distribu-

tions of underlying generative mechanisms are difficult to formulate (usually due

to lack of understanding at the fundamental level or due to prohibitive computa-

tional complexity of such forward models in dynamic systems - both are influen-

tial in the case with brain signals).

Fisher kernels are proposed for data with variable lengths where generative

models can be formulated but discriminative learning is desired due to the in-

herent penalization of longer data [6], citeJaa00, [5]. This technique provides a

link between generative models and discriminative learning methods (although

the technique refers to the use of a kernel, in fact, it is mathematically an alter-

native model-based distance metric, thus can be utilized in various discriminative

methods if employed properly). Specifically, the intuition is that distances be-
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tween pairs of data points should be measured using geodesics on the manifold

induced by the generative probability density model; this approach is consistent

with the information geometry of statistical models and mathematically superior

to techniques that utilize Euclidean distances or other linear algebraic variations.

The Fisher information matrix is known to form a natural Riemannian metric for a

given parametric probability density model in its parameter space [8]. The Fisher

kernel exploits this property of the Fisher information matrix and employs the

Fisher score to construct an inner product that measures distances between datum

pairs informed by the underlying generative model.

In this book chapter we will review our recent work in the area of STERP

detection for the purpose of stimulus-synchronous BCI design. Specifically, we

will utilize the mixed effects model (MEM) approach (a graphical hierarchical

Bayesian special case) to develop a generative model for multichannel EEG sig-

nals and we will evaluate the performance of likelihood ratio test and Fisher kernel

SVM detectors in comparison to linear and Gaussian-kernel SVM detectors. In

this context, we will explore simple linear spatial dimensionality reduction tech-

niques as well as techniques for incrementally updating SVMs for long-term adap-

tivity of the BCI as additional training data becomes available.

2. MEM for Stimulus-Synchronized EEG

Mixed effects models [9] are utilized for longitudinal sequence data in bio-

statistics, where each subject/sample yields a sequence of measurements and these

measurement sequences are assumed to follow a temporal structure that consists

of three components: (i) population contribution, which corresponds to the pop-

ulation average; (ii) individual variability component, which determines the ran-
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dom variation of an individual from the population mean; (ii) stationary measure-

ment noise. The population and individual components are assumed to be linear

combinations of basis functions of time and the measurement noise is usually as-

sumed to be temporally white.

In BCI applications, for each visual stimulus, the corresponding VEP wave-

forms do not necessarily have exactly the same shape; specifically, ERP compo-

nents such as P300 may have variations in amplitude, duration, or latency from

trial to trial. These variations might arise from a variety of factors including fa-

tigue and attention, task difficulty and stimulus complexity (our unpublished re-

sults indicate that as stimulus presentation rate and stimulus image complexity

increases, the latency of the P300 increases –suggesting more processing is per-

formed by the brain– and the peak amplitude and duration of this component

decreases - suggesting that the decision reached has higher uncertainty).

Due to these observations, we will employ the MEM framework to develop

two generative models for EEG waveforms in response to target and distractor

visual stimuli. It is assumed in BCI design that target stimuli results in ERP

generation and distractor images are largely ignored by the brain.

2.1. Model Description

In the following, we will refer to the measured (vectorized) multichannel EEG

response for a particular visual stimulus as an individual and the group of indi-

viduals that come from the same type of stimulus (i.e., target or distractor) as a

population. For individual i of N from population c (where c ∈ {0, 1} denotes

class membership: ERP or noERP), the MEM is written as:

yci = Xc
iα

c + Zc
ib

c
i + εci . (1)
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In the MEM expression:

• yci is an nc × 1 vector of observations for the ith individual and ni is the

number of observations for the ith individual.

• αc is the pc × 1 population effect coefficient vector.

• Xc
i is an nc × pc population design matrix (basis vectors for fixed effects).

• bci is a kc × 1 individual random effect vector. These vectors are assumed

to have a hyper-distribution (e.g., zero-mean multivariate Gaussian with co-

variance Dc: bci∼N(0,Dc)) that needs to be learned from data.

• Zc
i is an nc × kc individual design matrix (basis vectors for random effects).

• εci is an nc × 1 vector of independent and identically distributed (iid) noise

with zero mean and positive definite within-individual covariance (typically,

εci∼N(0, σc2I)).

Thus, assuming that all distributions involved are Gaussian, the density model

corresponding to (1) can be written as yci∼N(Xc
iα

c, σc2I + Zc
iD

cZcT
i ). In (1), yci

is the vectorized spatiotemporal stimulus-time-locked EEG measurement (for in-

stance from 32 channels over the duration 0-500ms following stimulus onset). In

test mode, when class labels are not known, the superscript indicating class label

is to be determined. In the same equation, Xc
i and Zc

i are known design matrices

(consisting of preselected basis vectors for population and individual effects in

their columns). The parameters to be determined via model fitting using maxi-

mum likelihood estimation, for instance, are αc, the covariance Dc of the random

vectors bci , and the covariance of the additive background noise component εci ,

specifically σc2 if the noise is assumed to be spatiotemporally white for each class

(ERP and noERP).
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2.2. Model Parameter Estimation

The maximum likelihood estimates of MEM parameters can be identified us-

ing the available data with the Expectation-Maximization (EM) algorithm [10].

For a given class, let Vc
i = σc2I + Zc

iD
cZcT

i denote Cov(yci ), the covariance

of the measurement vectors from this class. If Vc
i was known, we could estimate

αc and bci . Assuming that the measured vectors are independent (and identically

distributed according to the Gaussian model prescribed by MEM, the joint data

likelihood would be given by

p(yc;θc) =
N∏
i=1

exp[−1
2
(yci −Xc

iα
c)TVc

i
−1(yci −Xc

iα
c)]

(2π)
ni
2 |Vc

i |
1
2

(2)

where θc = (αc; vec(Dc);σ) for white noise. For simplicity of model, Dc could

be assumed to be diagonal, in which case, the parameter vector would only include

the individual variances of the individual random effect coefficients. From this

expression, the log-likelihood as a function of the parameter vector is obtained as

l(θc) = −1

2
{Nncln(2π) +

N∑
i=1

[ln|Vc
i |

+(yci −Xc
iα

c)TVc
i
−1(yci −Xc

iα
c)]}. (3)

If the covariance parameter estimates σ̂c2 and D̂c were available, then the log-

likelihood function could be maximized by the generalized least squares estimator.

Specifically, taking the derivative of l(θ) with respect to αc and equating to zero,

we get

α̂c = (
N∑
i=1

XcT
i Vc

i
−1Xc

i)
−1

N∑
i=1

XcT
i Vc

i
−1yci . (4)

Once an estimate for αc is available, we can obtain bci using least square estima-

tion as follows:

b̂ci = DcZcT
i Vc

i
−1(yci −Xc

iα̂
c). (5)
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Next, we provide the EM estimates for σc2 and Dc.

M-step: If we were to observe bci and εci , we could easily obtain a simple

closed-form solution using ML estimates of variances,

σ̂c
2

=
1

Nnc

N∑
i=1

εcTi ε
c
i , (6)

D̂c =
1

N

N∑
i=1

bcib
cT
i . (7)

E-step: If σc2 and Dc estimates are available, we could calculate the sufficient

statistics as follows:

N∑
i=1

εcTi ε
c
i =

N∑
i=1

ε̂ci(θ̂)
T ε̂ci(θ̂)

+
N∑
i=1

tr{Cov[εci |yci , α̂c(θ̂c), θ̂c]}, (8)

N∑
i=1

bcTi bci =
N∑
i=1

{b̂ci(θ̂)T b̂ci(θ̂)

+Cov[bci |yci , α̂c(θ̂c), θ̂c]}, (9)

where ε̂ci(θ̂c) = yci −Xc
iα̂

c
i(θ̂

c) − Zc
i b̂

c
i(θ̂

c) and b̂ci(θ̂
c) were obtained from ML

estimation. Based on εci |θc∼N(0, σc2I), yci |εci ;θc ∼N(Xc
iα

c,Zc
iD

cZc
i
T ), and

yci |θc ∼N(Xc
iα

c, σc2I + Zc
iD

cZc
i
T ), we can derive

Cov[εci |yci , α̂c(θ̂c), θ̂c] = [(Zc
iD

cZi
cT )−1 + (σc2I)−1]−1. (10)

Similarly, based on yci |bci ;θc∼N(Xc
iα

c+Zc
ib

c
i , σ

c2I), yci |θc∼N(Xc
iα

c, σc2I+

Zc
iD

cZi
cT ), and bci |θc∼N(0,Dc) we can calculate

Cov[bci |yci , α̂c(θ̂c), θ̂c] = (Zi
cTZc

i/σ
c2 + Dc−1)−1. (11)
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Thus from (6)-(11), we obtain the variance parameter estimates as:

σ̂c2 = Nnc
N∑
i=1

ε̂ci(θ̂
c)T ε̂ci(θ̂

c)

+
1

Nnc

N∑
i=1

tr{[(Zc
iD

cZi
cT )−1 + (σc2I)−1]−1} (12)

D̂c =
1

N

N∑
i=1

{b̂ci(θ̂c)T b̂ci(θ̂c) + (
Zi

cTZc
i

σc2
+ Dc−1)−1}. (13)

Upon convergence of the EM iterations, we obtain σ̂c2 and D̂c.

3. Dimension Reduction in MEM Calculations

The model parameter estimation procedure provided in the previous section

involves nc × nc matrix inversions and determinants. These computations can

be reduced to k × k where k � nc using the following exact rank-reduction

formulas. Since these reductions apply to models of both classes, we will omit

the superscript indicating class label in the following expressions throughout this

section.

3.1. Simplified Formulas for Log-likelihood

Since Vi = σ2I + ZiDZT
i involves an k × k low-rank matrix inversion. We

can use the following dimension-reduction formulas to exploit the relevant rank-k

subspace:

V−1
i = σ−2In − σ−2InZi(D

−1

+ZT
i σ
−2InZi)

−1ZT
i σ
−2In

= σ−2Ik − σ−4ZT
i Zi(D

−1 + σ−2ZT
i Zi)

−1, (14)
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|Vi| = σ2(n−k)|σ2Ik + DZT
i Zi|. (15)

If matrix D is nonsingular, we can have the log of the determinant as a function

of D−1.

ln |Vi| = ln |σ2D−1 + ZT
i Zi|

− ln |D−1|+ (n− k) lnσ2. (16)

3.2. Simplified formulas for σ2 and D

To avoid inverse matrices in Equation (10) and (11), by using matrix inversion

lemma, we have the following simplification,

[(ZiDZi
T )−1 + (σ2Ini

)−1]−1 = σ2Ini
− σ4Ini

V−1
i (17)

(Zi
TZi/σ

2 + D−1)−1 = D−DZT
i V

−1
i ZiD. (18)

Therefore Equation (12) and (13) can be simplified as follows

σ̂2 =
1

Nn

N∑
i=1

ε̂i(θ̂)
T ε̂i(θ̂) + σ2 − 1

Nn
σ4

N∑
i=1

tr(V−1
i ) (19)

D̂ =
1

N

N∑
i=1

[b̂i(θ̂)
T b̂i(θ̂)] + D− 1

N
D(

N∑
i=1

ZT
i V

−1
i Zi)D. (20)

Using (14), we also obtain

ZT
i V

−1
i Zi = ZT

i Zi(σ
2Ik + DZT

i Zi)
−1. (21)

If (ZT
i Zi)

−1 exists, we can have

ZT
i V

−1
i Zi = [σ2(ZT

i Zi)
−1 + D]−1. (22)

Furthermore from (20),
N∑
i=1

ZT
i V

−1
i Zi = σ−2

N∑
i=1

ZT
i Zi − σ−4

N∑
i=1

[(ZT
i Zi)

(D−1 + σ−2ZT
i Zi)

−1(ZT
i Zi)

T ]. (23)
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3.3. Simplified formulas for α and bi

In (4) we can substitute

N∑
i=1

XT
i V

−1
i Xi = σ−2

N∑
i=1

XT
i Xi − σ−4

N∑
i=1

[(XT
i Zi)

(D−1 + σ−2ZT
i Zi)

−1(XT
i Zi)

T ], (24)

N∑
i=1

XT
i V

−1
i yi = σ−2

N∑
i=1

XT
i yi − σ−4

N∑
i=1

[(XT
i Zi)

(D−1 + σ−2ZT
i Zi)

−1(ZT
i yi)], (25)

Similarly, in (5) we can substitute

ZT
i V

−1
i yi = σ−2ZT

i yi − σ−4(ZT
i Zi)(D

−1

+ σ−2ZT
i Zi)

−1(ZT
i yi), (26)

ZT
i V

−1
i Xi = σ−2XT

i Zi
T − σ−4(ZT

i Zi)(D
−1

+ σ−2ZT
i Zi)

−1(XT
i Zi)

T , (27)

4. MEM Likelihood-Ratio Test ERP Detector

Given one trained MEM per class, whose likelihood values for a given y are

denoted by MEM c(y), one can design an ERP detector using the standard like-

lihood ratio test (LRT) approach. The threshold for the decision boundary could

be obtained using minimum Bayes risk criterion, if the relative risk of missing an

ERP versus a false ERP detection can be assessed a priori together with the prior

probability of a true ERP occurrence [1]. Alternatively, the Neyman-Pearson ap-

proach could be adopted, for instance by setting a maximum allowable false detec-

tion rate or a minimum desired positive detection rate. Since during the algorithm
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Figure 1: Training structure of the mixed effects ERP detector

assessment phase we do not wish to commit to a particular risk assumption, we

utilize the area under the receiver-operator characteristic (ROC) curve (in short

AUC for area under the curve) as a measure of detector performance that does not

require making hard decisions.

The number of channels (spatial locations on the scalp) from which EEG is ac-

quired might be high if denser arrays are utilized. This factor directly affects the

dimensionality of the measurement vector being modeled in the MEM framework

and dimensionality reduction will generally benefit the learning process from a

parameter estimation variance perspective. Consequently, we employ a linear

channel mixture paradigm inspired by linear discriminant analysis for prelimi-

nary dimensionality reduction followed by the training of individual class MEM

parameters based on available training data for each class. Figure 1 shows the

training process in block diagram format.

4.1. Channel Dimension Reduction

We employ a linear channel dimensionality reduction method inspired by the

linear discriminant analysis (LDA) approach in classifier design [? ]. Specifically,

we seek to identify a set of channel linear combination coefficients that keep the
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average EEG responses between ERP and noERP classes as separated as possible

and also simultaneously attempt to minimize the total variance in the projected

data. For each ERP sample y1 and noERP sample y0 (which are C × T matrices

where C is the number of channels and T is the number of temporal samples fol-

lowing stimulus onset), we obtain the trial-average and trial-covariation matrices

as follows:

M1 =
1

N1

N1∑
i=1

y1
i

M0 =
1

N0

N0∑
i=1

y0
i (28)

C1 =
1

N1

N1∑
i=1

(y1
i −M1)(y1

i −M1)T

C0 =
1

N0

N0∑
i=1

(y0
i −M0)(y0

i −M0)T . (29)

For a single dimensional linear channel projection of the form wTy1
i and wTy0

i ,

the linear projection direction w is identified by maximizing the Fisher discrimi-

nant

J(w) = wTSbw/w
TSww. (30)

where the between cluster scatter matrix is Sb = (M1 −M0)(M1 −M0)T and

the within cluster scatter matrix is Sw = (C1 + C0). The solution to this is given

by the generalized eigendecomposition of this symmetric matrix pair, which can

also be obtained as the largest eigenvector of a nonsymmetric matrix as follows:

w = eig(S−1
w Sb). (31)
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For projections to higher-than-one dimension, we select the subset of largest eigen-

vectors with cardinality matching the desired reduced channel dimensionality.

The number of eigenvectors to be retained must be determined using cross-validation

or similar proper procedure from machine learning literature under the guidance

of other constraints, such as computational complexity considerations.

4.2. Population and Individual Design Matrices

After some experimentation and cross validation, we have decided to develop

the population and individual design matrices for both ERP and noERP MEMs

using PCA and LDA, respectively [1]. This also intuitively means that the popu-

lation components in the models will attempt to capture the average large power

trends in the signals of each class while the individual ERP variations will be

modeled trying to exploit discriminative patterns.

The population design matrices for the ERP and noERP classes are obtained

as the largest few eigenvectors of the corresponding class sample covariation ma-

trices (without subtracting the class averages as one would do in covariance cal-

culations). Specifically, the number of eigenvectors retained for use as columns in

the population design matrix is selected such that a user-defined percentage of the

total variation (sum of eigenvalues, or equivalently trace of the covariation ma-

trix). The same percentage is used as the threshold for minimum retained energy

for both classes/models.

The individual design matrices are developed using LDA. Specifically the

largest generalized eigenvectors of the within and between class scatter matri-

ces are retained. Since the LDA approach uses data from both classes to select

the projection directions, both models use the same individual design basis vec-

tors. Our experiments using cross-validation showed that in most datasets, using
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the largest generalized eigenvector gave optimal generalization capability, while

adding more basis vectors did not improve performance significantly.

Once the population and individual design matrices are selected, the maxi-

mum likelihood MEM parameters for each class can be obtained using the EM

procedure provided earlier. Fig. 1 illustrates the overall block diagram of the

MEM model for each class. In our experiments, for model order selection and pa-

rameter regularization we employ 10-fold cross-validation [1] within the datasets

for each subject. The optimal number of channel-LDA generalized eigenvectors

(N eigs1 LDA) in initial dimension reduction as well as in the individual design

matrices, and the percentage of energy retained (Perc eigs PCA) in the popula-

tion design matrices are selected using exhaustive search within discrete sets of

values. Cross-validation performance measure utilized for these assessments is

the average of the the AUC estimates within the 10-fold validation framework. 1

4.3. MEM Operation in Testing Mode

In testing mode, for each incoming sample yTesti the MEM still needs to iden-

tify the best individual effect coefficient vector bc,Testi . Specifically, for each test

pattern it is assumed that under MEM c, the following generative model is accu-

rate:

yTesti = Xc
iα

c + Zc
ib

c,Test
i + εci (32)

1We also employ the same approach for parameter regularization in support vector machine

training when obtaining baseline performance results for comparisons. These parameters include

the kernel width for the isotropic Gaussian kernel (σ2) and the overlap penalty parameter in its

training (C) [11], [12].
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where bc,Testi ∼N(0,Dc) and εci∼N(0, σc2I). Since we have

p(yTesti |αc,bc,Testi )∼N(Xc
iα

c + Zc
ib

c,Test
i , σc2I) (33)

we can maximize this posterior for each class and obtain the optimal individual

random effect parameter bc,Testi for the test pattern. This yields:

bc,Test
∗

i = DcZcT
i Vc

i
−1(yTesti −Xc

iα
c). (34)

After we obtain b1,T est∗

i for the ERP model and b0,T est∗

i for the noERP model

using appropriate design eigenvectors in (34), we can employ the likelihood ratio

test using the respective model log-likelihood estimates:

l(bTest
∗

i ) = ln[N(Xiα+ Zib
Test∗

i , σ2Ini
)] + ln[N(0,D)]

= − 1

2σc2
‖yTesti − (Xc

iα
c + Zc

ib
c,Test∗

i )‖22

−1

2
bc,Test

∗,T
i Dc−1bc,Test

∗

i + ln(Cσc2) + ln(CDc)

where Cσc2 and CDc are normalization constants for noise and prior Gaussian

densities. The discriminant value of the MEM (the estimates of target likelihood)

is the difference between the log-likelihood values of the ERP and noERP models.

5. Fisher Kernels for SVM

The operation of SVM (and any other nonparametric approach) relies heavily

on the distance metric used in assessing how close or far two data points are. The

distance is then monotonically related to an assumed similarity kernel (which rep-

resents an inner product in a corresponding high dimensional space determined

by the eigenfunctions of the kernel selected). The Fisher kernel is a particular
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similarity measure that is constructed using an underlying generative probabilis-

tic model for the data. It is informed by the information geometry induced by

this generative model and provides a local approximation based on the Rieman-

nian geometry of the model. This distance metric is a natural choice for pairs of

samples that are close to each other – for farther pairs, the distance is a coarse

approximation, but in practice seems to provide sufficient performance.

The Fisher kernel operates in the parameter-gradient space of the generative

model; specifically the gradient of the log-likelihood with respect to the model

parameters. It utilizes information on how sensitive the parameters are to the

parameters of the generative model. For any data vector yi and model parameters

θ, the Fisher score is a row vector and which is defined as

Uyi
= ∇θ log p(yi|θ). (35)

The Fisher Information matrix is defined as

I = Ep(yi|θ){UT
yi
Uyi
}, (36)

where Eyi
{ } is the expectation over p(yi|θ). The Fisher kernel is defined as

KF (yi,yj) = Uyi
I−1UT

yj
, (37)

where yi and yj are two data samples. Detailed information and properties of the

Fisher kernel can be found in Jaakkola’s and Tsuda’s papers [6], [13].

6. Fisher Kernel Derived From The MEM

The ERP and noERP generative models offered by the MEM paradigm can be

utilized. Since in test mode the class label is not known, one option is to utilize
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a mixture of MEM models to derive the Fisher kernel. Another approach is to

put the emphasis on similarities as measured by the ERP model (or the noERP

model) depending on under which model we would like the similarities to be

accurate. The Fisher kernel will then be utilized in the SVM formalism to achieve

ERP detection. The Fisher information matrix in (36) is approximated by sample

averaging over the training dataset.

6.1. Fisher scores derived from the MEM

Given the parametric density model of the observation from MEM (we use

the ERP model MEM1) the Fisher score is calculated from the corresponding

log-likelihood as follows:

Uyi
= ∇θlog p(yi|θ)

=
[
∇αlog p(yi|α),∇vec(D)log p(yi|D),∇σlog p(yi|σ2)

]
,

(38)

where the model parameters of the MEM θ = (α; vec(D), σ2) and data samples

obey yi∼N(X1
iα

1, σ12
I + Z1

iD
1Z1T

i ).

6.1.1. Fisher scores of parameter α

Fisher scores respective to the fixed effect parameter of the MEM α is a 1× p

row vector
∂l

∂α
=

[
∂l

∂α1

, ...,
∂l

∂αm
, ...,

∂l

∂αp

]
(39)

where α = [α1, ...,αm, ...,αp]
T is a column vector. Based on the log-likelihood

expression, if we let a = y−Xα, where y is a concatenated column vector of all
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training samples and X is a concatenated population design matrix, we have

∂l

∂αm
= −1

2

∂(aTV−1a)

∂αm
= aTV−1X:m (40)

where X:m denotes the mth column of basis vectors and V−1 is the symmetric

blockwise covariance matrix consisting of all covariances in the the Gaussian dis-

tributions p(yi|θ), we have

∂l

∂α
= (y −Xα)TV−1X (41)

6.1.2. Fisher scores of parameter D

The covariance matrix D of the random effects of the MEM is a k× k matrix,

where k is the number of basis vectors used in individual random effect modeling.

The Fisher scores with respect to the entries of D are given by:

∂l

∂D
= −1

2

[
∂ln |V|
∂D

+
∂(aTV−1a)

∂D

]
. (42)

For each entry (m, l) of D, we have

∂l

∂Dml

= −1

2

[
∂ln |V|
∂Dml

+
∂(aTV−1a)

∂Dml

]
. (43)

The first part of (43) is

∂ln |V|
∂Dml

=
∑
ij

∂ln |V|
∂Vij

· ∂Vij

∂Dml

=
∑
ij

(V−1)ij · (Z · Eml · ZT )ij, (44)

where Eij is an elementary matrix with only nonzero entry of 1 occurring at loca-

tion (i,j). The second part of (43) is

∂(aTV−1a)

∂Dml

= −aT (V−1 · Z · Eml · ZT ·V−1)a. (45)
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Based on (44) and (45), (43) can be written as

∂l

∂Dml

= −1

2
[
∑
ij

(V−1)ij · (Z · Eml · ZT )ij

−aT (V−1 · Z · Eml · ZT ·V−1)a]. (46)

Therefore (42) can be written as

∂l

∂D
=
∑
ml

Eml
∂l

∂Dml

(47)

6.1.3. Fisher scores of parameter σ2

Under the white spatiotemporal noise assumption, the noise covariance matrix

is determined by the scalar σ2, which is the noise variance in any spatiotemporal

sample value. The Fisher score for this parameter is

∂l

∂σ2
= −1

2

[
∂ln |V|
∂σ2

+
∂(aTV−1a)

∂σ2

]
. (48)

The first term is explicitly given by

∂ln |V|
∂σ2

= tr(V−1). (49)

The second term is
∂(aTV−1a)

∂σ2
= −aT · (V−1)2 · a (50)

Therefore we can write (48) as

∂l

∂σ2
= −1

2
[tr(V−1)− aT · (V−1)2 · a] (51)

Concatenating all of these terms, we obtain the Fisher score with respective to the

overall parameter vector as

Uyi
=

[
∂l

∂α
,

∂l

∂vec(D)
,
∂l

∂σ2

]
. (52)
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6.2. Fisher Kernel from MEM

Once the Fisher scores are available, they can be used to construct the (linear)

Fisher kernel using the Mahalanobis inner product with the Fisher information

matrix as the scaling matrix as in (54). The exact analytical calculation of the

Fisher information matrix under the expectation with respect to the MEM might

be infeasible or cumbersome. Assuming that the MEM is an accurate approxi-

mation of the true underlying data distribution, we employ sample averaging over

the training data to obtain an approximate expression for this matrix. Other sim-

plifications in the literature (also suggested by Jaakkola) include simply using the

identity matrix in place of the Fisher information matrix.

Îtr =
1

Ntr

Ntr∑
k=1

Uytr
k
UT

ytr
k
. (53)

The Fisher kernel between any two samples x and y, where in training both of

these samples are training samples and in testing one is a support vector sample

and the other is a test sample, is finally given by

K(x,y) =
1

s
UxÎ−1

tr UT
y , (54)

where s is scaling constant. The Fisher kernels above can be used in the SVM

formalism as a replacement for the commonly used Euclidean/Mahalanobis simi-

larity measures.

7. Data Acquisition and Preprocessing

Throughout the study a large number of healthy subjects with normal or cor-

rected vision were recruited to identify target objects of various types, qualities,

and difficulty levels. In all experiments, the nominal image duration in RSVP
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Figure 2: Illustration of RSVP paradigm (left) and typical EEG responses for target and distractor

stimuli (right).Images of ERP and non-ERP signals associated with targets (left) and distractors

(right). Time-zero corresponds to stimulus onset in each trial.

paradigm was 100ms/image (different subjects preferred varying rates around this

speed). The RSVP paradigm consists of a sequence of blocks of images (con-

taining multiple trials) where each block has a probability of containing a target

image (in training this is set to 0.5 or 0.75) and in each block a single target image

occurs (while in real testing scenarios, we did not control for this, due to the rarity

of targets in most tasks, it is unlikely that multiple distinct targets occur consecu-

tively or very close to each other in the sequence; also in some applications such

as a BCI typewriter, the sequence can be controlled to achieve this property). This

paradigm is illustrated in Fig. 2. For confirmation purposes, the subjects were

asked to click a button as quickly as possible when they detect a target. The EEG

signals used in the classification of each stimulus image were limited to the post-

stimulus interval from 0ms to 500ms under the supposition that motor response

corresponding to the button press would occur after 500ms (our experience shows

that most subjects press the button in the interval 350-1000ms with the average

of each subject falling in 475-620ms). This time limitation ensures that our ERP
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detectors do not exploit the energy contained in the motor response activation pro-

cess to achieve falsely high performance results - levels that one would not obtain

if such motor response was not requested from or initiated by the subject.

The EEG is recorded using a 32-channel Biosemi ActiveTwo system at a sam-

pling rate of 256Hz. To evaluate session-to-session generalization performance,

we employed some subjects in multiple sessions (for instance we had four sub-

jects attend 10 sessions distributed over 5 days - one morning and one afternoon

session). Each session typically lasted about 2 hours in which 200 blocks of im-

ages containing 50 stimuli each were shown. Each block lasting only 5 seconds,

the subjects were instructed to start a block of trials by a button press at will and

try to avoid eye blinks and other muscle movements during the block duration.

The subjects were given as much time as they wanted between blocks and they

had complete control over the speed at which they complete the session.

The EEG signals were filtered using a Butterworth bandpass filter with pass-

band set to 1 − 45Hz. In training, target images that received a button response

within 1.5sec of image onset were designated as ERP samples and those that did

not receive a button response were removed. In an attempt to reduce the corre-

lations and cross-contamination, between EEG samples, nonoverlapping samples

were selected in training phase; that is, if a target image is designated as an ERP,

the EEG responses for distractor images preceding and following this target im-

age in the sequence up to 1000ms were omitted - specifically it is undesirable to

have stimulus-locked responses spanning [−100, 500]ms response intervals that

overlap with that of the selected target image (ERP sample) during training and

these are omitted from training data since they might contain traces of the ERP at

a shifted location. A similar nonoverlapping window constraint is applied to all
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Figure 3: EEG responses recorded at Pz for target images (top) and distractor images (bottom)

from stimulus onset to 500ms.

distractor images among themselves as well to avoid correlated samples. Fig. 3

shows sample EEG responses at Pz in response to a number of target and distractor

trials.

8. Results

We demonstrate a selection of results from our application of the classifiers

developed above to STERP detection in RSVP paradigm for BCI-based image

retrieval form a database. Data from seven subjects will be used for this pur-

pose. Dataset 1 contains 10 sessions of data from 4 subjects (acquired at OHSU).
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Dataset 2 contains 8 sessions of data from 3 subjects and 5 sessions from 2 ad-

ditional subjects (acquired at Honeywell). First, we demonstrate the superiority

of an SVM classifier over the simpler logistic linear classifier (LLC) scheme. on

these datasets. This prompts the use of SVM classifiers with generic linear or

Gaussian kernels as a benchmark for performance analysis and comparison for

future STERP detector designs.

8.1. Gaussian Kernel SVM as a Benchmark STERP Detector

Linear/Gaussian kernel SVMs (LKSVM and GKSVM) and LLC are trained

on one session of data for each subject using 10-fold cross-validation to select op-

timal values for each applicable model and optimization parameter (if applicable)

using exhaustive search on a discretized grid. The optimal parameter values are

then employed in training these classifiers on the complete training session data

and they are then tested on the remaining sessions for each subject (test set con-

sists of 9 sessions for Dataset 1 subjects and 7 sessions for Dataset 2 subjects 1-3).

The aggregated ROC curves and AUC values for each subject are shown in Fig. 4.

While LLC and other linear classifiers have been used in the literature extensively

in the past, our experience here demonstrates that a GKSVM outperforms an LLC

significantly (both in the literally and in the statistical sense: comparison of the

SVM AUC values with those of LLC via DeLong et al’s method [? ], we find that

the hypothesis that GKSVM AUC is greater than that of LLC using a two-tailed

t-test is accepted with p = 4× 10−4).

8.2. Channel Dimensionality Reduction

An important aspect in any classifier design is dimensionality reduction, since

this is a process that enables robustness and better generalization when carefully
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Figure 4: ROC curves and AUC values for Linear and Gaussian kernel SVMs as well as LLC for

(top row) fours subjects in Dataset 1 (training with one session, testing on nine sessions each) and

(bottom row) three subjects in Dataset 2 (training on one session, testing on seven sessions each).

implemented. Earlier, we described an LDA-inspired channel dimensionality re-

duction procedure. This procedure is implemented to all data prior to all classi-

fier designs following this section. Specifically, using the GKSVM benchmark

performance, one can easily observe that channel dimensionality reduction im-

proves classifier generalization performance. We demonstrate this using Dataset

2 subjects 1-3 in Fig. 5. It has been our experience that optimal linear channel

projections of dimensions 2-5 are typical with our data and setup.

8.3. Comparison of Classifiers

The data for each subject is projected from 32-channels to the appropriate

optimal dimension using the method and in correspondance with the results pre-

sented above. For each subject, using the reduced dimension data, four classifiers

are trained using one training session: MEM Likelihood Ratio Test (MEMLRT),

Linear Kernel SVM (LKSVM), Gaussian Kernel SVM (GKSVM), and Fisher

Kernel SVM (FKSVM). The ROC of each classifier as well as the correspond-
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Figure 5: Channel dimension reduction using the LDA-inspired method is demonstrated here

using GKSVM benchmark performance on Dataset 2 subjects where training is done using one

session via 10-fold cross-validation and test performance is depicted above in the form of AUC

values for various number of dimensions retained after LDA dimension reduction. The GKSVM

performance with all 32-channels is provided as the red-dashed line to provide a reference that

illustrates the case of no dimension reduction.

ing AUC values over the corresponding test sessions for each subject in Dataset

2 are shown in Fig. 6. The significance levels of the hypothesis comparing the

mean of FKSVM to others are shown on the title of each subgraph. On average,

FKSVM outperforms the other classifiers: mean MEMLRT AUC is 0.846, mean

LKSVM AUC is 0.846, mean GKSVM AUC is 0.874, and mean FKSVM AUC

is 0.892. These results indicate that FKSVM significantly outperforms MEMLRT

and provides better performance than LKSVM and GKSVM.

9. Conclusions and Future Work

Discriminative classifiers have been more successful than their generative coun-

terparts in many tasks since the task of the former is to model the lower dimen-

sional classification boundary while the generative model needs to distribute its

accuracy effort across the whole data space. In BCI literature, discriminative

classifiers are quite popular for this reason, however, generative models of EEG
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Figure 6: Comparison of ROC and AUC between four classifiers (The p-values in the titles are

for AUC difference comparison t-test between FKSVM and the following, respectively: (p1)

MEMLRT, (p2) LKSVM, (p3) GKSVM.

signals also offer additional opportunities for future BCI algorithm development,

separation of muscle and other artifacts from components of interest while detect-

ing relevant brain signals within one generative model framework being the most

important one.

Fisher kernel formalism provides a way to incorporate information obtained

from a generative model into the design of a kernel that can be utilized by an SVM

classifier. In this chapter, we have developed a generative model for single trial

ERP responses using a relatively simple hierarchical Bayesian model, referred to

as an MEM. The likelihood ratio test based on this model, as expected did not

outperform a well designed Gaussian kernel SVM - however, upon introducing

Fisher kernels obtained from this model, we have obtained improvements in single

trial ERP detection accuracy of SVMs, especially in subjects where the overall
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performance is lower. Clearly, for subjects where the performance is on the high

end, improvements are also more difficult to obtain.

This work indicates the potential of the Fisher kernel formalism in SVM de-

sign and while our underlying MEM has been relatively simple, we believe that

future work in this direction where the generative model will be developed using

more rigorous signal propagation models such as those used in source localiza-

tion could yield Fisher kernels that dramatically outperform generic kernels such

as Gaussian in BCI design.
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