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Abstract 

 Electroencephalography (EEG) signals have been an attractive choice to build non-invasive 

brain computer interfaces (BCI) for nearly three decades. Depending on the stimuli there are 

different responses which one could get from EEG signals. One of them is the P300 response 

which is a visually evoked response that has been widely studied. Steady state visually evoked 

potential (SSVEP) is the response to an oscillating stimulus with fixed frequency, which is 

detectable from the visual cortex. However there exists some work on using an m-sequence with 

different lags as the control sequence of the flickering stimuli. In this study we used several m-

sequences instead of one with the intent of increasing the number of possible command options 

in a brain computer interface setting. We also tested 2 different classifiers to decide between the 

m-sequences and study the performance of multi channel classifiers versus single channel 

classifiers. The study is done over two different flickering frequencies, 15 and 30 Hz to 

investigate the effect of flickering frequency on the accuracy of the classification methods. Our 

study shows that the EEG channels are correlated and although all the channels contain some 

useful information but combining them with a multi channel classifier based on the assumption 



of having conditional independence will not improve the classification accuracy. In addition we 

were able to get reasonably good results using the 30 Hz flickering frequency comparing with 15 

Hz flickering frequency which will give us the ability of having a shorter training and decision 

making time. 

Introduction 

Brain computer interfaces (BCI) establish a communication channel between the brain and 

the external world and allows the subject to communicate and control devices without the need 

to move a muscle, using brain signals only. So the immediate beneficiaries of this technology 

will be individuals with mild to severe disabilities (e.g., locked-in individuals) whose mobility 

are very limited or cannot move at all. Healthy individuals can also use a BCI to interface with 

computers and devices or to improve their performance in some tasks. For example, an 

individual can potentially use hands to manipulate one device while simultaneously using a BCI 

system to control another application. Over the recent decades there have been increasingly 

intense attempts to build a practical and easy to use BCI system (see for instance Sutter’s work 

[Sutter 1984] among many others from that decade and before). Today’s BCI systems use a 

variety of electrophysiological signals to determine the intent of the user. Slow cortical 

potentials, P300 potentials, mu or beta rhythms recorded from the scalp, and cortical neuronal 

activity recorded by implanted electrodes are examples of such signals [Wolpaw 2002]. 

Depending on how the BCI system captures signals from the brain, these systems are categorized 

into three groups: invasive, partially invasive, and non-invasive. In an invasive BCI, 

microelectrode arrays are inserted into the brain to measure neuronal spike activity and local 

field potentials. In a partially invasive BCI, the electrocorticogram arrays are placed under the 

skull, but on the surface of the brain. In non-invasive BCI, on the other hand, the electrodes are 



only in electrical contact with the scalp using a conductive paste or gel. Among all the BCI 

methods, those based on electroencephalography (EEG) are most attractive due to their 

noninvasive nature enabling a wide range of applications benefiting diverse populations. 

P300 and steady state visually evoked potentials (SSVEP) are two major responses from the 

brain which could be detected using EEG signals.1 There has been substantial amount of research 

on the P300 response of the brain to flashing stimuli [Pfurtscheller 2000, Wolpaw 2002, 

Pfurtscheller 2010]. P300-Speller system and its variations [Pfurtscheller 2000, Wolpaw 2002,  

Treder 2010], and P300 cursor movement control [Gao 2007] are examples of such P300 based 

BCI systems. Different methods of stimulating the brain to produce a P300 response has also 

been studied [Horki 2010]. In general certain conditions should hold for a system to produce a 

P300 response: events must be presented randomly, a separation rule must exist to separate the 

events into two categories, one category of events must be presented infrequently, and finally the 

subject’s response must be based on a pre-defined rule [Farwell 1988, Donchin 2000]. 

SSVEP refers to the response of the visual cortex induced by periodically flickering visual 

stimuli such as checkerboards consisting of two patterns with opposite colors [Pfurtscheller 

2000, Allison 2008]. Other stimulation methods have also been studied [Danhua 2010], but 

checkerboards remain the more common choice and they are known to exhibit EEG signals that 

are more consistent across subjects than block flickering stimuli. SSVEP response is mainly 

observable for stimulus frequencies in the interval of 3 to 75 Hz [Herrmann 2001]. In this 

method the subject needs to focus his gaze on the stimulus of interest to produce the strongest 

SSVEP response [Sutter 1992]. Focusing on the stimulus causes oscillations in the visual cortex 

matched with the frequency of the flickering stimulus and its harmonics. These oscillations could 

                                                       
1 Motor imagery induced cortical activity is the third popularly exploited brain signal in EEG-based BCI design. 



be quantitatively studied by observing the power density spectrum of the EEG signals from the 

electrodes placed on the visual cortex [Cheng 2002, Mast 1991, Horki 2010]. Gao and others 

[Gao 2002, Ortner2010, Gao 2010] have studied this phenomenon to build BCI systems with 

numerous options. However, since the response contains the 2nd, 3rd 4th, and maybe higher 

harmonics of the stimuli, it is difficult to find a set of distinct frequencies for which the leakage 

of power from harmonics due to system nonlinearity and signal sampling insufficiency do not 

overlap [Muller 2005]. Mukesh proposed double stimulation to produce more options and was 

able to achieve 6 options by using three different frequencies [Mukesh 2006]. Jia also proposed a 

method of mixed frequency and phase coding, which provides more options from each frequency 

[Jia 2010]. However, the number of choices for stimulus frequencies is very limited. 

Among all BCI systems the ones based on SSVEP are probably the easiest to develop and 

most reliable. As a result, SSVEP methods are receiving more attention these days [Danhua 

2010]. Despite the advantages of SSVEP, successful application of this method involves certain 

complications, such as the limited number of choices for the frequencies, and keeping the 

subjects focused throughout the experiment as they get experience fatigue due to the flickering 

checkerboards (or other patterns). To solve the problem with limited number of choices for 

frequencies, Sutter proposed a method to build an SSVEP BCI using m-sequences [Golomb 

1967] as the control sequence for pattern flickering instead of just flickering checkerboards with 

constant frequencies [Sutter 1984, Sutter 1992]. Different phase offsets of one m-sequence are 

nearly orthogonal to each other by design. This property is used to enhance linear classification 

performance. The classifier is built by templates which are obtained during a training session. A 

template represents the average response of the subject to a stimulus. During the test phase, the 

classifier calculates the correlation between the EEG signal and templates corresponding to 



different offsets of the m-sequence. The template with the highest correlation will be chosen. 

This is basically a matched filter signal detector. Gao and colleagues recently tried to recreate 

this procedure [Gao 2009], but were not able to achieve the same throughput. Yun proposed a 

similar approach using coded VEP to increase the number of choices for stimulus [Yun 2010]. In 

Sutter’s approach, the number of options for stimuli increases to nearly equal to the number of 

variations (offsets) of the m-sequence. However, as the number of choices increases, the length 

of the m-sequence should increase too. Using a longer m-sequence, however, increases the time 

that is needed to calculate the correlation, and to classify the desired option. Although there have 

been a lot of work on SSVEP BCI systems, still there are many open considerations in designing 

an SSVEP-based intent classifier. Some of these complications are the length of the training 

session, the total time needed to make a reliable decision, the performance of the classifier, and 

of course, the overall cost of the system [Gao 2009]. 

Combinations of SSVEP and P300 methods have also been proposed in literature [Dornhege 

2003, Gert 2010]. Leeb proposed a system combining EEG and EMG [Leeb 2010]. Allison 

proposed a method of combining EEG with event-related desynchronization (ERD) [Allison 

2010]. Using multiple methods with the option of turning on and off one method may help to 

increase the number of choices for the stimuli, and the accuracy of the measurements, but it 

increases the training time and the complexity of the overall system. 

In this paper, we study the idea of using multiple m-sequences as the control sequences of 

stimuli flickering activity. The motivation behind using multiple m-sequences instead of shifted 

versions of one m-sequence is to eventually eliminate the need for perfect synchronization of the 

display and the EEG signal trace for classification purposes. The classifiers which use shifted 

versions of one m-sequence need perfect synchronization to discriminate between different 



offsets of the m-sequence [Sutter 1984, Sutter 1992]. In this study, we still assume that the 

timing information is available so that a basic template matching classifier can be. We will use 

two classifiers: (1) a basic template matching classifier using the best channel, and (2) a naïve 

Bayesian fusion classifier which has the ability of using one or multiple channels to make the 

final decision. The goal behind using the Bayesian fusion classifier is to extract information from 

the channels with low accuracy, and combine with the information from better channels to 

improve the overall accuracy. The fusion is naïve in the sense that it assumes contributions from 

each channel are statistically independent; future work will explore more advanced and accurate 

graphical models for statistical channel connectivity. We also studied the effect of two different 

flickering frequencies on the accuracy of classification. If the classification turns out to be at 

least equally successful, we can simply use the higher frequency of flickering the m-sequences, 

which in our case corresponds to a doubling of the bandwidth of the BCI system at no cost. In 

addition to faster classification in test mode, higher flickering frequency has the advantage of 

yielding a shorter training session. 

Methods 

a) Data acquisition 

 As the visual stimulus, we use two inverted checkerboard patterns with 1.75cmx1.75cm 

black-white blocks centered on the screen covering a 14cm x 14cm area. The subject is seated 

such that the checkerboard is approximately centered in the field-of-view and the eye to screen 

distance is approximately 60cm away, leading to an approximate visual angle of 20⁰. Figure 1 

part a and b show different patterns of a checkerboard according to a ‘0’ or a’1’ bit in the m-

sequence and part c shows a sample m-sequence of length 31. The subjects are not restricted to 

maintaining the visual or viewing angle during data acquisition. The binary sequence that is 



presented on the screen was also measured and recorded using an optical sensor synchronously 

with the EEG using a g.USBamp and g.TRIGbox acquisition system from G.tec (Graz, Austria). 

The two inverted versions of the checkerboard are arbitrarily assigned the bit labels 0 and 1 and 

the appropriate checkerboard was sent to the screen using the Matlab Psychophysics Toolbox in 

the first possible monitor refresh cycle consistent with the desired flickering frequency 

(measured in Hz or bits per second). As monitor refresh rate is set to 60Hz, our frequency 

selections for bit presentation rate are guided by this limitation and we try 15Hz and 30Hz bit 

rates in order to ensure that visual stimulus transitions occur precisely at the intended times. 

For this study, the m-sequence set consists of 4 elements, each one with 31-bits. The 

sequences are selected from among all 31-length m-sequences in order to approximately 

minimize the pair wise cross correlations. During an experimental session, for each trial one of 

the four sequences is selected randomly in an independent identically distributed fashion 

according to a uniform probability distribution. The session consisted of 80 trials and each trial 

contained 12 periods of the designated m-sequence. For a given session, the bit presentation rates 

were fixed at either 15Hz or 30Hz. Each trial begins with a one second fixation period during 

which the subject is instructed to focus the gaze on the + sign at the center of the screen in 

preparation for the upcoming trial. Between consecutive trials (each of which approximately 

lasts 25s or 13s) the subject can rest as much as needed and initiates the next trial with a button 

press at will. 

EEG signals, along with the optical sensor data, are captured from the scalp using active 

g.Butterfly electrodes using a g.Gammabox and a g.USBamp by G.tec. A nonabrasive 

conductive gel is used to provide conductivity between the scalp and the electrodes. Since the 

goal is to detect modulated P100 signals from the visual cortex, EEG sites were selected to have 



a higher spatial density around the visual cortex. The channel numbers 16 to 1 in decreasing 

orders refer to sites O2, Oz, O1, PO4, POz, PO3, P4, P2, Pz, P1, P3, Cp2, Cp1, C4, Cz, C3, 

respectively. 

There were 5 subjects participating in this study. Each of them had 2 sessions, one with the 

m-sequences presented at the frequency of 15Hz and the other one with the presentation 

frequency of 30Hz. The subjects were all healthy with normal eye sight from 22 years old to 28.  

b) Classification methods 

 In this study we used two different classifiers. The first one is single channel template 

matching classifier which uses the best channel to make the final decision based on the 

correlation of the EEG from that channel with the template response at that channel for the 4 

different m-sequences. The second classifier uses a naive Bayesian fusion method with the 

assumption of channels being independent. This classifier is able to make the final decision 

based on the results of a single channel or multiple channels. 

1) Template matching single channel classifier 

This is a correlation based classifier. Each EEG trace to be evaluated receives 4 scores for 4 

m-sequences and the sequence with the maximum score is chosen as the shown sequence. The 

scores for each channel are the correlations between the EEG signal from each channel and the 

m-sequence response templates for the corresponding channel. The templates are built using the 

training data collected at the beginning of each session separately using the sample mean of the 

EEG signal for each channel in response to one period of the appropriate sequence, which leads 

to 4 templates for each channel in this case. We will use the name template order to refer to the 

number of response periods used to built the template; in other words, if we build a template 



using the EEG signal in response to presentation of one sequence for 10 periods then the order of 

that template is 10. To build the template, the EEG signals are aligned according to the start of 

the presentation of each sequence period using the optical sensor, and they are split in parts 

whose length is equal to the length of the presentation of one sequence for one period. Clearly 

templates with higher order will be smother and less noisy (noise power inversely proportional to 

the template order), but they will need a longer training session. We used sample averaging to 

obtain the maximum likelihood templates under the assumption of Gaussian measurement and 

background noise. The decision for channel ܿ is ݀௖ ൌ ௜ߩ ௜ݔܽ݉݃ݎܽ 
௖ where  ߩ௜

௖ is the correlation 

score between the ܜ௜
௖ template for the ݅௧௛ m-sequence for channel ܿ and the ܡ௖ the windowed 

EEG signal for that channel time-locked to period onset, given by ߩ௜
௖ ൌ ௜ܜ௖்ܡ 

௖. 

2) Naïve Bayesian fusion single channel classifier 

 The motivation to use a Bayesian fusion classifier is to complement the best channel by 

leveraging useful information from other EEG channels, in order to increase the accuracy of the 

BCI classifier. Independence of the channels is the key assumption behind this method, hence the 

descriptor naive. The naïve Bayesian fusion classifier uses the same scores from the template 

matching classifier described above; this allows for a simple linear dimension reduction in the 

overall feature vector though certainly this aspect could be improved and will be investigated in 

future work. For the training data correlation scores for each channel and m-sequence pair, a 

Gaussian Kernel Density Estimate (GKDE) is obtained. The bandwidth parameter for the 

Gaussian kernel is calculated using the Silverman rule of thumb specified below. During the test 

session, after receiving all scores for channel and m-sequence pairs for the new EEG trace under 

consideration, using the estimated GKDEs, a new probabilistic score for each correlation score is 

obtained. Using the channel-score conditional independence assumption (given the m-sequence) 



and taking the logarithm of the likelihood to obtain log-likelihood, the overall decision is 

obtained based on conditional a posteriori likelihood calculations; these are the summation of the 

logarithm of the individual channel/m-sequence probabilities. The sequence which has the 

highest a posteriori likelihood (assuming uniform priors for m-sequences) will be the winner. 

The decision criterion is  ݀௖ ൌ ௟ߩ|ሺ݈݌ ௟ݔܽ݉݃ݎܽ 
ଵ, … , ௟ߩ

஼ሻ where C is the number of channels, ߩ௟
௖ 

is the correlation score for channel ܿ and template for sequence ݈ defined as given above in the 

template matching. The GKDE for the probabilistic distribution of these correlation scores, 

obtained using training set data is given by  ݌ሺߩ௟
௖|݅ሻ ൌ  ଵ

ே೔  ∑ Gσ೔
మ൫ߩ௟

௖ െ ௜,௦ߩ
௖ ൯ே೔

௦ୀଵ  where ߩ௜,௦
௖ ൌ

௦ܡ
௖்ܜ௜

௖ . Under the assumption of conditional independence of the channels given the sequence, 

the decision ݀௖ will be simplified as  

݀௖ ൌ ௜ݔܽ݉݃ݎܽ  ෍ log݌ሺݕ௖
௟|݅ሻ

஼

௖ୀଵ

ൌ ௜ݔܽ݉݃ݎܽ ෍ log ቌ
1

ܰ௜  ෍ ఙ೔ܩ
మሺߩ௟

௖ െ ௜,௦ߩ
௖ ሻ

ே೔

௦ୀଵ

ቍ
஼

௖ୀଵ

 

where ߩ௟
௖ is the new correlation score from the test data and ߩ௜,௦

௖  is the correlation score from the 

training data sample s for channel c and m-sequence i. 

In this GKDE model, the bandwidth parameter is calculated using Silverman’s rule of thumb 

(Silverman 1986) 

௜ߪ
ଶ ൌ

1
݊ tr൫Covሺሼߩ௜,௦

௖ ሽሻ൯ ൬
4

ሺ2݊ ൅ 1ሻܰ௜൰
ଶ

௡ାସ
 

where ݊ ൌ 1 is the dimension of the data, set to unity in this case. The covariance also reduces to 

standard deviation due to the unit dimension of correlation score data. 



This classifier could use one or multiple channels up to the total EEG channels. By adding 

more channels which contains some information to the Bayesian fusion classifier, the overall 

results would improve as long as the assumption of having individual conditionally independent 

channels holds. In the cases where the channels have some correlation, adding the more channels 

with the independence assumption may decrease overall classification accuracy, especially if 

these correlated channels are poor performers themselves. 

Results 

 In this study we used templates of order 60 for all the subjects, however the needed template 

order to achieve a certain accuracy differs from subject to subject and our best subject was able 

to achieve the accuracy of more than 95% with templates of order 20. Also we did not include 

the results of our fifth subject in the analysis, because the subject reported after the session that 

he was not actively paying attention to the flickering checkerboards and occasionally visualizing 

other thoughts. Consequently, his data analysis results shows 40% accuracy in classification of 4 

m-sequences. This is an experiment which shows that although the SSVEP response is in visual 

cortex and is expected to be strongly influenced by the external stimulus, internal thoughts and 

visualization processes can inhibit and reduce the effect of the external visual stimulus leading to 

poor BCI performance. 

 The results from the template matching classifier show that the Oz channel, which is placed 

right on the center of the occipital lobe where the visual cortex is located, has the maximum 

accuracy among the 16 scalp locations used. As it was expected, the channels located farther 

from this site, hence the visual cortex, contain less information about the visual stimulus and 

yield lower accuracy. Figure 2 shows the test classification accuracy for each channel on the 

individual m-sequences with chance level of 25% using the template matching classifier and the 

flickering frequency of 15Hz for one of the subjects. Figure 3 shows the same for 30Hz 

flickering frequency. 



Table 1 shows the performance results in(%) for the template classifier for different channels 

averaged over subjects and four m-sequences in the session with 15Hz flickering frequency. 

Table 2 shows the same results from the template matching classifier for the 30Hz flickering 

frequency. We have visualized the overall template classifier accuracy for each channel as a 

scalp distribution in Figure 4. This figure clearly shows that probability of correct decision 

increases as the EEG acquisition is made closer to the occipital areas. This is more explicitly 

observed by investigating the confusion matrices of the template classifiers for each 

channel.Table 3 shows the mean performance in percent and the standard deviation of the 

confusion matrix entries across subjects for different channels for the session with 15Hz 

flickering frequency. Table 4 shows the mean performance in percent and the standard deviation 

of the confusion matrices for the session with 30Hz flickering frequency. From channels 14, 15, 

and 16, which correspond to the best-performing O-sites, we see that sequence 4 is most 

confused with another and sequence 1 receives most erroneous decision labels from other 

sequences. Our m-sequence selections attempted to maintain a maximum correlation coefficient 

of 0.3 between pairs and this result indicates the importance of sequence design in SSVEP and 

code-VEP based BCI configurations. It is also interesting that the accuracy of the template 

classifier is consistently higher for the 30Hz flickering rate than 15Hz. This is encouraging as 

faster bit presentation allows for increased decision speed (hence bandwidth) and these results 

demonstrate that it also helps improve performance for this particular classifier. 

 We now investigate the performance of the naïve Bayesian fusion approach. Figure 5 shows 

the accuracy of the overall classification accuracy across 4 m-sequences using the naïve 

Bayesian fusion of best-m channels (best-m for each m taking values 1 to 16 are obtained using 

brute force combinatorial search to provide the best possible results). Figure 6 shows the same 



performance results for 30Hz flickering frequency. These results clearly demonstrate that the 

naïve Bayesian fusion approach is not effectively combining information from different 

channels; this can be attributed to the likely fact that EEG signals, therefore correlation scores 

extracted from them via template projections, are correlated with each other especially between 

neighboring and nearby sites. As a result the accuracy of this classifier begins with the same 

accuracy of the previous classifier and goes down as the number of channels included in the 

fusion increases. Consequently, a Bayesian fusion approach such as the one attempted here must 

utilize graphical models that allow for higher order connectivity between features from different 

sites. 

Discussion and future work 

Looking at the accuracy results from both classifiers the overall performance is better for 

flickering frequency of 30Hz. Also the subjects notified us about being subjectively more 

comfortable with the experimental paradigm for which the flickering frequency was 30Hz. 

Another benefit of using higher bit presentation frequency is shorter BCI decision time. To make 

a decision the classifiers based on templates wait for one period of a sequence to be shown; 

considering the sequence length of 31 bits in our examples, this takes roughly one second at 

30Hz and 2 seconds at 15Hz. For this reason, besides test mode decision time, training data 

collection duration is also shorter for the 30Hz case, which is a great advantage for practical 

BCIs. 

Although the performance of the classifiers differ from one subject to the other, both of the 

classifiers was able to classify with good accuracy using the best channel (Oz). The performance 

results for naïve Bayesian fusion show that the performance decreases as the number of channels 

used in the classifier increases. Our attempt to use naïve Bayesian fusion classifier to use the 

information from the other channels was not successful, which shows that the key assumption of 



correlation scores for channels being conditionally independent is very likely not true. As future 

work we will pursue several enhancements: (1) use graphical models to take into account the 

higher order correlations between EEG sites in order to be able to extract the information from 

neighbor channels, (2) replace template based linear dimension reduction with an information 

theoretic nonlinear feature projection mechanism in order to extract the most relevant and 

discriminative information from each channel’s signal, (3) develop a methodology to design 

improved stimulus control sequences that will enhance discriminability of EEG responses, (4) 

utilize a better statistical signal model that allows for nonstationarities in EEG signal statistics by 

allowing period to period variability in the visual cortex response, using hierarchical Bayesian 

models such as mixed effects approaches and (5) learning artifact models during the training 

session and rejecting or reducing them during classification. 
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Figure 1:(a) Checkerboard pattern according to ‘1’ bit (b) Checkerboard pattern according to a 
‘0’ bit (c) a sample m-sequence of length 31 bit 



 

 

Figure 2: Template matching performance in percent for 15Hz flickering frequency. 
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Figure 3: Template matching performance in percent for 30Hz flickering frequency. 
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Table 1: Template classifier performance in 
percent for 15Hz flickering of checkerboards 

Channel 
Placement Min Max Mean Std. 

C3 36.5 84.5 55.5 7.39 
CZ 44.75 63.75 53 7.13 
C4 38.5 83.75 55.75 6.20 

CP1 39.5 56.25 47.25 11.67
CP2 23.5 57.25 43 6.27 
P3 19 84.25 51.25 10.16
P1 22.75 67 45 10.15
PZ 47.75 79.75 64.25 10.21
P2 40 99 63.75 6.30 
P4 36.75 68 53.25 5.64 

PO3 39.75 73.25 52.5 12.28
POZ 48 87.75 66 10.15
PO4 44.75 82.5 58.5 7.34 
O1 50.75 99.25 77 10.48
OZ 48 95 73.25 3.96 
O2 25 89 65 6.09 

Table 2: Template classifier performance in 
percent for 30Hz flickering of checkerboards 

Channel 
Placement Min Max Mean Std. 

C3 33 82 55.75 9.31 
CZ 36.75 69.25 55.5 10.73
C4 38 87.75 61.25 10.09

CP1 34 61.25 50.5 8.73 
CP2 32.75 65.75 48.75 8.65 
P3 31 83.5 56 10.56
P1 37 71 54.25 8.00 
PZ 42 86.25 65.25 7.50 
P2 41 96.75 66.5 6.47 
P4 40 72.25 60.5 7.67 

PO3 41.75 88.25 59 9.29 
POZ 51 94 67.25 8.13 
PO4 41 87.25 61 6.92 
O1 52.25 96.75 77.25 6.32 
OZ 55.75 99 74.75 1.71 
O2 37.25 92.75 67.75 7.40 

 

 

 

 

 

 

 

 

 

 

Figure 4: Probability of correct decision among 4 m-sequences as a spatial scalp distribution at 
15 and 30Hz flickering frequencies for subjects 1 to 4 from left to right. 

  



Table 3: Confusion matrices for all 16 channels at 15Hz flickering frequency. 
  Channel Template   Channel Template 
  1 Sequence 1 Sequence 2 Sequence 3 Sequence 4   2 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 37.16 7.04 22.22 4.01 21.66 8.20 18.97 5.76 

Se
qu

en
ce

 1 45.23 3.70 20.56 4.30 19.68 4.22 14.53 0.86 
2 16.19 2.16 49.95 5.19 18.03 3.80 15.82 5.51 2 14.13 4.16 57.61 6.12 16.00 3.38 12.26 1.17 
3 19.37 4.99 16.33 3.85 47.46 5.78 16.84 1.92 3 15.91 4.46 8.89 5.12 56.16 6.48 19.05 2.48 
4 19.08 2.64 20.60 5.38 21.62 3.43 38.69 8.35 4 15.60 5.83 13.62 6.19 19.83 2.78 50.96 13.37 

  Channel Template   Channel Template 
  3 Sequence 1 Sequence 2 Sequence 3 Sequence 4   4 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 44.67 6.32 19.45 8.83 21.38 8.98 14.50 3.07 

Se
qu

en
ce

 1 44.58 13.31 17.42 6.93 16.91 12.18 21.09 13.60 
2 19.67 5.16 48.24 10.27 17.07 4.77 15.02 6.61 2 21.40 13.68 42.53 18.95 14.93 10.02 21.13 14.36 
3 19.25 5.30 11.05 2.87 51.16 9.61 18.54 5.50 3 22.28 6.95 12.46 5.68 41.51 27.99 23.74 16.76 
4 19.42 6.06 16.51 0.76 18.54 1.95 45.54 7.81 4 21.36 9.87 16.94 6.67 17.13 11.83 44.57 9.52 

  Channel Template   Channel Template 
  5 Sequence 1 Sequence 2 Sequence 3 Sequence 4   6 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 46.92 9.05 20.53 8.29 19.70 9.72 12.85 2.62 

Se
qu

en
ce

 1 52.37 25.60 15.55 10.20 20.16 12.27 11.92 4.66 
2 18.76 5.89 51.16 4.55 17.28 5.63 12.80 2.92 2 16.55 3.57 54.83 11.61 16.76 5.17 11.85 5.55 
3 17.80 7.71 10.19 3.05 54.61 13.60 17.41 3.01 3 17.54 2.62 16.19 9.39 51.89 12.39 14.37 5.07 
4 19.83 2.58 16.70 5.07 18.85 5.73 44.62 5.24 4 15.77 3.14 19.88 7.20 20.53 5.62 43.82 10.46 

  Channel Template   Channel Template 
  7 Sequence 1 Sequence 2 Sequence 3 Sequence 4   8 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 56.94 21.67 12.81 8.03 18.14 12.21 12.11 4.18 

Se
qu

en
ce

 1 58.78 21.41 12.62 8.26 17.22 10.94 11.38 4.01 
2 12.86 5.77 58.16 9.37 18.23 3.64 10.75 3.62 2 12.27 0.93 60.99 4.51 17.46 2.67 9.29 2.17 
3 17.56 2.95 13.59 8.29 56.65 14.08 12.20 3.90 3 16.47 5.25 9.67 5.72 63.34 12.42 10.52 2.88 
4 14.14 5.32 14.55 6.40 21.84 2.56 49.47 10.74 4 14.14 2.06 15.08 6.20 19.47 2.84 51.32 10.82 

  Channel Template   Channel Template 
  9 Sequence 1 Sequence 2 Sequence 3 Sequence 4   10 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 55.25 16.47 15.01 7.78 18.56 7.69 11.18 5.98 

Se
qu

en
ce

 1 52.85 14.86 16.31 7.06 18.04 6.76 12.81 8.06 
2 15.03 2.41 54.89 7.44 18.01 2.93 12.07 5.09 2 18.36 4.93 51.94 11.61 19.32 3.56 10.38 6.46 
3 15.51 5.41 12.08 6.59 57.09 17.42 15.32 6.88 3 17.19 5.98 13.53 5.81 50.25 19.22 19.03 8.42 
4 15.58 3.66 17.43 5.53 17.98 1.87 49.02 7.14 4 20.36 4.58 17.41 3.83 16.49 3.58 45.74 8.11 

  Channel Template   Channel Template 
  11 Sequence 1 Sequence 2 Sequence 3 Sequence 4   12 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 61.06 31.26 8.77 8.42 12.81 15.23 17.36 17.60 

Se
qu

en
ce

 1 67.65 25.70 5.29 7.43 12.45 13.24 14.61 18.34 
2 17.68 16.74 57.78 33.03 8.61 7.13 15.94 18.48 2 11.87 18.86 68.68 35.83 4.82 2.58 14.63 18.53 
3 16.40 8.33 10.46 9.57 54.15 37.11 19.00 21.10 3 13.67 10.94 7.30 6.80 62.04 40.04 16.98 22.61 
4 14.80 14.14 15.66 8.07 13.16 11.09 56.37 19.77 4 11.34 15.49 10.17 10.98 5.28 3.98 73.22 22.63 

  Channel Template   Channel Template 
  13 Sequence 1 Sequence 2 Sequence 3 Sequence 4   14 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 65.22 20.03 9.15 7.25 14.65 10.89 10.98 6.09 

Se
qu

en
ce

 1 73.16 29.46 5.47 7.57 7.31 10.70 14.05 19.29 
2 10.74 6.68 71.06 11.66 9.30 1.61 8.89 4.54 2 12.06 18.93 72.34 38.99 2.43 1.87 13.17 19.86 
3 16.39 8.20 9.47 6.68 61.37 18.41 12.76 7.87 3 12.04 12.78 5.32 8.70 66.75 44.18 15.89 23.04 
4 10.15 7.66 12.64 6.30 15.38 3.81 61.84 13.59 4 11.34 15.69 10.56 11.05 6.40 7.00 71.69 24.58 

  Channel Template   Channel Template 
  15 Sequence 1 Sequence 2 Sequence 3 Sequence 4   16 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 94.33 5.30 1.09 1.40 2.75 1.61 1.82 2.42 

Se
qu

en
ce

 1 80.80 15.28 4.01 7.09 10.06 5.87 5.12 4.16 
2 2.97 4.99 94.06 9.03 1.85 2.80 1.12 1.28 2 5.92 8.05 83.32 16.59 5.40 2.68 5.36 6.49 
3 4.45 2.18 2.10 4.20 90.07 8.48 3.38 3.97 3 13.23 6.58 5.44 5.91 73.52 16.90 7.81 5.53 
4 2.61 4.74 2.97 3.23 6.11 6.62 88.32 14.38 4 7.43 9.56 6.44 3.49 12.86 5.85 73.28 17.62 



Table 4: Confusion matrices for all 16 channels at 30Hz flickering frequency. 
  Channel Template   Channel Template 
  1 Sequence 1 Sequence 2 Sequence 3 Sequence 4   2 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 37.19 5.70 24.69 3.01 21.09 4.63 17.03 5.28 

Se
qu

en
ce

 1 42.98 8.33 19.77 2.35 23.45 5.56 13.80 5.36 
2 12.80 5.16 54.55 9.99 15.50 5.75 17.15 2.46 2 9.93 8.00 62.29 13.85 12.80 2.85 14.97 4.57 
3 20.69 10.45 16.17 5.49 50.81 9.78 12.33 3.38 3 13.36 10.84 14.17 3.16 61.75 15.46 10.72 2.82 
4 16.92 9.23 24.92 9.33 17.61 5.27 40.55 14.36 4 15.63 4.81 19.45 11.13 15.83 4.84 49.08 15.31 

  Channel Template   Channel Template 
  3 Sequence 1 Sequence 2 Sequence 3 Sequence 4   4 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 44.26 4.04 19.60 5.92 21.11 6.30 15.03 4.70 

Se
qu

en
ce

 1 49.22 11.74 16.34 3.27 19.25 7.88 15.20 3.88 
2 14.41 9.54 57.98 13.93 10.82 2.90 16.79 6.02 2 22.31 22.41 47.55 23.41 14.80 3.46 15.33 2.71 
3 18.42 13.64 13.46 4.52 52.87 14.29 15.25 2.36 3 25.28 9.24 14.00 0.98 48.19 9.21 12.53 4.63 
4 20.93 9.74 18.04 6.29 17.31 7.97 43.72 20.17 4 24.25 15.35 19.81 6.94 16.55 5.48 39.39 16.37 

  Channel Template   Channel Template 
  5 Sequence 1 Sequence 2 Sequence 3 Sequence 4   6 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 47.58 4.12 15.54 7.31 20.19 4.41 16.69 4.45 

Se
qu

en
ce

 1 52.44 16.40 16.62 7.67 16.30 6.59 14.64 7.50 
2 13.35 7.61 59.58 14.72 11.19 2.40 15.87 6.49 2 14.43 8.71 61.20 14.15 11.55 4.42 12.82 1.24 
3 17.33 12.36 12.91 2.91 59.05 15.20 10.71 1.93 3 17.35 10.17 11.61 3.51 61.26 16.32 9.78 4.55 
4 18.00 7.09 17.30 6.42 15.84 7.44 48.86 15.92 4 17.63 9.29 17.44 3.74 19.83 4.32 45.10 16.04 

  Channel Template   Channel Template 
  7 Sequence 1 Sequence 2 Sequence 3 Sequence 4   8 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 54.93 12.78 15.92 5.18 17.22 6.98 11.93 4.87 

Se
qu

en
ce

 1 58.37 12.59 13.00 5.82 15.44 5.45 13.19 6.58 
2 13.90 9.01 63.91 18.40 10.10 6.40 12.09 3.21 2 12.82 8.97 64.62 18.89 9.56 7.12 12.99 3.56 
3 15.02 9.93 11.81 1.10 64.28 11.03 8.89 1.81 3 13.91 10.60 11.09 2.74 65.56 10.48 9.45 1.50 
4 16.55 8.76 13.63 4.63 15.64 6.62 54.18 17.79 4 17.08 6.52 13.83 5.59 13.63 6.67 55.45 13.41 

  Channel Template   Channel Template 
  9 Sequence 1 Sequence 2 Sequence 3 Sequence 4   10 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 60.16 9.77 12.99 8.19 13.81 5.17 13.04 5.73 

Se
qu

en
ce

 1 52.89 7.07 17.53 9.72 14.73 3.91 14.85 6.00 
2 14.63 8.68 63.90 18.01 7.57 3.23 13.89 7.49 2 17.69 10.12 57.06 20.08 9.37 3.34 15.87 7.66 
3 18.07 12.30 10.54 1.44 60.13 13.70 11.27 3.59 3 18.45 9.69 11.08 3.15 56.30 13.01 14.17 2.85 
4 19.09 7.42 12.74 2.76 14.02 6.85 54.15 14.90 4 17.45 5.90 10.75 3.98 16.76 7.54 55.05 15.76 

  Channel Template   Channel Template 
  11 Sequence 1 Sequence 2 Sequence 3 Sequence 4   12 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 68.06 19.58 8.86 6.95 14.79 10.55 8.28 5.87 

Se
qu

en
ce

 1 73.89 19.19 6.84 4.72 10.43 10.82 8.84 5.96 
2 20.87 22.69 65.02 32.86 8.69 8.04 5.43 3.39 2 21.95 22.88 65.22 31.54 7.60 6.75 5.23 5.36 
3 17.40 15.35 7.83 4.36 68.39 23.09 6.38 4.72 3 15.07 14.73 7.11 7.31 72.73 24.58 5.09 3.59 
4 19.90 16.31 10.55 6.72 16.19 7.46 53.36 27.57 4 17.55 17.01 6.04 7.28 13.29 4.99 63.12 27.60 

  Channel Template   Channel Template 
  13 Sequence 1 Sequence 2 Sequence 3 Sequence 4   14 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 72.02 14.49 9.01 6.38 7.78 4.16 11.19 8.36 

Se
qu

en
ce

 1 76.62 22.30 4.50 3.98 10.62 10.30 8.26 9.04 
2 12.99 10.22 69.86 20.80 8.31 3.76 8.84 7.26 2 19.61 24.23 68.28 33.06 7.59 8.20 4.53 3.99 
3 14.44 13.10 6.19 4.26 68.82 20.21 10.55 6.01 3 13.26 15.55 4.55 4.19 77.62 25.24 4.57 5.96 
4 12.18 6.51 9.11 7.19 15.85 6.42 62.86 18.07 4 16.46 18.94 6.00 5.45 8.00 3.76 69.54 25.24 

  Channel Template   Channel Template 
  15 Sequence 1 Sequence 2 Sequence 3 Sequence 4   16 Sequence 1 Sequence 2 Sequence 3 Sequence 4 
    mean (std.) mean (std.) mean (std.) mean (std.)     mean (std.) mean (std.) mean (std.) mean (std.) 

Se
qu

en
ce

 1 89.73 10.09 1.08 1.73 4.70 7.12 4.49 4.49 

Se
qu

en
ce

 1 79.62 12.40 4.88 1.86 7.22 5.86 8.28 6.41 
2 4.34 4.82 90.78 8.76 3.26 2.98 1.62 1.36 2 11.20 11.73 77.78 18.59 5.78 4.12 5.24 3.61 
3 4.49 6.65 1.63 1.92 90.77 10.35 3.10 4.51 3 12.81 14.14 3.84 4.90 74.42 23.70 8.93 8.50 
4 2.73 2.54 1.63 1.91 5.47 3.19 90.16 7.19 4 6.74 3.00 6.00 5.22 10.02 3.02 77.24 8.77 



 

 

Figure 5: Classification accuracy of naïve Bayesian fusion of best-m channels for m from 1 to 16 

at 15Hz flickering rate. 



 

Figure 6: Classification accuracy of naïve Bayesian fusion of best-m channels for m from 1 to 16 

at 30Hz flickering rate. 

 

 


