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Abstract

We propose a principal curve tracing algorithm that uses the gradient and the Hessian of a given

density estimate. Curve definition requires the local smoothness of data density and is based on the

concept of subspace local maxima. Tracing of the curve is handled through the leading eigenvector

where fixed-step updates are used. We also propose an image segmentation algorithm based on the

original idea and show the effectiveness of the proposed algorithm on a Brainbow dataset. Lastly,

we showed a simple approach to define connectivity in complex topologies, by providing a tree

representation for the bifurcating synthetic data.
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1. Introduction

Principal curves has been found to have several applications in the areas of signal processing

as a dimensionality reduction technique. They are the smooth and self consistent curves that pass

through the middle/ridge of the data cloud or probability distribution such that each point on the

curve is the conditional mean of the points that orthogonally project onto that point of the curve [1].

Similar to the principal component analysis (PCA) that minimizes the least square construction

error, principal curves also satisfy second order statistical optimality conditions by mapping the

data to nonlinear manifolds. They provide a nonlinear summary of the data as low dimensional

embedded manifolds and they have been studied as a nonlinear dimensionality reduction technique

in the literate [2]. Various optimization approaches [1, 3–6] approaches have been proposed to

explicitly obtain principal curves.
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Principal curves can be used to define local adjacency in the data space and be used for clus-

tering. Local conditions for points on the principal curves have been discussed in [7–9]. Motivated

from [9], in our earlier work [10] we presented a method that uses locally defined principal curve

definition to trace the data. Our method extracts the topology without solving any optimization

problem and provides an implicit segmentation on topological manifolds of the data by linking the

adjacent data samples based on local coherency. Given a seed point (or any arbitrary feature vec-

tor) and an initial approximate direction, the proposed method highlights the underlying structure

in the data having locally similar characteristics with the seed. In order to achieve this, we first

find the corresponding locally defined principal curve in the vicinity that is aligned to the initial

direction and then trace it through the data space. Complex topologies having bifurcations can

also be handled by intra connectivity of piecewise curves with automated initialization and will be

discussed later.

2. Principal Curves

Let x ∈ Rn be a random vector with samples x1,x2, . . . ,xN with twice continuously differ-

entiable density/ridge function estimate f(x). Let g(x) and H(x) be the transpose of the local

gradient and Hessian of f(x) respectively and {(λ1(x),q1(x)), . . . , (λn(x),qn(x))} be the eigen-

value/vector pairs of H(x) such that λ1 ≤ λ2 ≤ · · · ≤ λn. In general, a point, x, is on the principal

curve if and only if the local gradient points in the principal direction [7–9] and the eigenvalues

corresponding to the eigenvectors that span the normal space that is orthogonal to the principal

direction are all negative (λ2(x) . . . λn(x) < 0). Here, the principal direction of a function x is

given as q1(x). For instance, without loss of generality, let S⊥(x) = span{q2(x),q3(x), . . . ,qn(x)}

be the normal space spanned by the n − 1 orthogonal eigenvectors and S∥(x) = span{q1(x)} be

the tangent vector at x. Based on the mentioned local conditions, if x is on the principal curve,

then g(x) is collinear with S∥(x), such that s(x) = g(x)TS⊥(x)g(x)
∥g(x)∥∥H(x)g(x)∥ = 0.

Geometrically rigorous way of defining connectivity between data samples is to seek geodesic

between pairs. Geodesic can be defined as the path that extremize the length function, such

that resultant pairwise trajectory between sample pairs is optimum,e.g. having shortest distance,

minimum construction error. Consequently, an iterative strategy that trace the principal curve

results in such geodesic. Given twice continuously differentiable function and its continuous eigen-
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Algorithm 1: Principal Curve Tracing

At iteration t=0 initialize x0, the direction of the curve γ0, the tangential and the normal step sizes µ∥ and
µ⊥ respectively.

Correction:

1. Evaluate the gradient, the Hessian, and perform the eigendecomposition of H(x) = VΓV, where V1:n are the
eigenvectors with corresponding eigenvalues Γ = diag{λ1 ≤ λ2 ≤ · · · ≤ λn}.

2. Let V1, and V2:n be the eigenvectors that consequently span S∥(x), and S⊥(x), calculate the normal update
such that τ(x) = V2:nV

T
2:ng(x).

3. If s(x) = g(x)T S⊥(x)g(x)
∥g(x)∥∥H(x)g(x)∥ ̸= 0 x(t)← x(t) + µ⊥τ(x) and go back to step 1; else

Tracing:

4. Evaluate the new curve direction using the tangential vector γt = sign(γT
t−1q1(x))q1(x)

5. If p(x) < thr then stop, else x(t+ 1)← x(t) + µ∥γt and go back to step 1

vector/value pairs, updates constrained to the local tangent space S∥(x) trace the curve without

explicitly defining it. Similarly, S⊥(x) defines the orthogonal projection plane and updates con-

strained to this plane will converge to the principal curves with proper direction. So an iterative

tracing algorithm using correction-update scheme is possible by solving the ordinary differential

equations, incorporating the iterations on the normal plane(correction step) and the tangential

vector(tracing step) with proper directions. We used Euler integration [11] to project any point to

its corresponding principal curve in the correction step and then use a fix point update to propa-

gate on the curve in the tracing step. Alg. 1 outlines the principal curve tracing (PCT) procedure.

First three steps corresponds to the projection step. Convergence of the projection iterations is

guaranteed by correcting the sign of the direction to have positive inner product with the local

gradient g(x). Once the necessary condition is satisfied (s(x) = 0), a fix length step in the direction

pointed by the q1(x) traces the curve.

3. Estimation of the density/ridge function

In order to estimate the twice continuously differentiable density/ridge function, f(x), of data

samples x1,x2, . . . ,xN , we employed well known nonparametric weighted variable-width kernel

density estimate (wKDE) technique [12]. KDE is used as an example since it encompasses para-

metric mixture models as a special case; however as we will present in Sec. 5 method is general for

any pdf model and can also be used with parametric models such as GMM [13]. Weighted KDE

can be written as

p(x) =

N∑
i=1

w(xi)GΣi(x− xi) (1)

3



where w(xi) is the weight and Σi is the variable kernel covariance of the Gaussian kernel G(xi) =

CΣie
− 1

2
xT
i Σi

−1xi for the ith data sample xi.

There are various techniques to estimate the optimal kernel size from the data. In our calcu-

lations, we used leave-one-out maximum likelihood procedure to estimate the global scaling factor

for the local covariance [12]. The gradient and the Hessian of the KDE are:

g(x) = −
N∑
i=1

w(xi)GΣi(x− xi)Σi
−1(x− xi) (2)

H(x) =
N∑
i=1

w(xi)GΣi(x− xi)(Σi
−1(x− xi)(x− xi)

TΣi
−1 − Σi

−1) (3)

Note that, selection of the step sizes effect the computation time and the location of the projected

samples on the curve, but does not have any influence on the construction error. Since we project

the sample, x, to its underlying principal curve at every iteration t, reconstruction error with

respect to ridge function is ideally zero. However, this does not guarantee the zero reconstruction

error with respect to the original curve. This brings up the question “How well the ridge of KDE

approximates the original curve?”. In fact, this question can be interpreted by the robustness and

accuracy analysis of the KDE which has been well studied in the literature [14]. In general density

estimation utilizing variable width kernels with sufficient number of samples reported to perform

well [12]. In order to estimate the KDE with a given accuracy, the number of the samples increases

exponentially with the number of dimensions [15]- known as “The curse of dimensionality”. Since

our approach utilizes Hessian, we reported 100 Monte-Carlo simulation of the construction error (

in terms of the mean square error (MSE) between the projected samples and the original curve)

by varying the number of samples and the dimensions used in KDE in Fig.1. Here, N data

points are sampled from a 1-dimensional manifold (semi-circle ) in n-dimensional space. Data

is perturbed with a spherical Gaussian noise (0-mean 0.05I-std, I ∈ Rnxn: identity matrix) and

depicted in Fig.1(a) for n = 2 and N = 200. Initial direction ,γ0, and the location, x0 are

represented with a black arrow and a green dot, respectively. In the experiments, we fixed the

normal and tangential step sizes to µ⊥,∥ = 0.2 and uniform wi = 1/N kernel weights are selected.

Estimated KDE for the particular choice is visualized in Fig.1(b). The traced curve in red color is

overlayed on the underlying curve in green and displayed in Fig.1(c). We selected 20 distinct N
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instances uniformly between 100 and 1000 in logarithmic scale. We repeated the calculations for

n = 2, 4, 8, 16, 32, 64, 100. Fig.1(d) shows the traced ridge accuracy in terms of MSE with respect

N for selected n values. As a consequence of the degeneracy in the estimation, accuracy decreases

with the increase in the dimension.

Number of iterations and the computation time depends on the the particular choice of the

selected step sizes. Fig.1(e) shows the required time for N = 200 sample points with different

µ⊥ and µ∥ selection. Similarly, Fig. 1(f-g) displays the total number of iterations during the

projection and tracing steps respectively. In general number of iterations and the computation

time is inversely proportional to the selected step sizes as expected. Deviation from the ridge

increases as we increase the µ∥ and in consequence number of iterations to converge to the local

principal curve increases. Although we fixed step sizes in our experiments, an adaptive strategy

that captures the local deviation and adjust the step length would be ideal. Moreover, in the

presence of multiple principal curves, this choice becomes more critical. For example, a large µ∥ at

a point with high curvature might result in another nearby principal curve, and result in inaccurate

tracing. High correlation between the process time and the overall total number of iterations in the

projection step indicates the projection procedure as the current bottleneck in the computations.

Moreover, total number of tracing updates is independent of the µ⊥. In fact, this implies that the

algorithm decouples the correction procedure from tracing.

4. Principal Curves for Fiber Tracing in Volumetric Images

We tested the described technique principal curve tracing method on color images of neural

tissue as seen in Fig.2. Our goal is to extract the topology of such curvilinear structures that will

help neuroscientists to make quantitative analyze based on the morphology/centerline informa-

tion (d = 1). Due to the high volume of data, in order to to reduce the computations we replaced

Gaussian kernels GΣi(x − xi) ← αB2,ϵ(p− pi)GΣi,p(p− pi) with bounded-support kernels con-

straining computations to neighboring pixels. Here, pi is the position of the voxel in 3D (n = 3).

B2,ϵ(p− pi) is the support ball with L2 norm radius ϵ, and α is the normalization constant of the

kernel. Since the traced structures have high intensity profile along the centerline of the curvilinear

structure, an adaptive weighting scheme that emphasis the luminance and the spatial continuity in

the appearance model is utilized. Weight of the ith sample is selected as wi = I(pi)GΣi,c(c− ci),
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Figure 1: Top row: Circular data. Black arrow and green dot show the initial direction ,γ0, and the location, x0,
respectively. (a) Underlying curve. (b) Estimated density. (c) PCT result. Bottom row: Algorithm performance.
(d) MSE vs number of samples for 100 Monte-Carlo simulation. (e) Elapsed time for varying µ⊥ and µ∥. (f) Total
number of iterations during the orthogonal projection steps for different µ⊥ and µ∥ selection. (g) Similarly, total
number of iterations in tracing steps.

where I(pi) is the intensity of the voxel. In fact proposed weighting scheme has connections to

the bilateral filter [16] and has shown to be having superior outlier robustness compared to simple

intensity based appearance models. Moreover, in order to reduce the computations at an arbitrary

point p, support of the nearest grid location, B2,ϵ(pi), is used to make the calculations such that

i = argj min ∥pj − p∥,∀j = 1 . . . N . In this way, we reemploy precalculated nearest neighbors and

avoid recalculation of pairwise distance at every correction iteration.

Image dataset composed of 62 confocal microscopy image slices (with z-direction resolution of

32µm) with each slice being 341× 341 pixels (x & y directions at 33µm resolution) is used. Fig. 2

shows a sample slice. We used an ϵ-ball having a radius sufficient to cover Nx = 250 neighbors

(approximately radius of 4 voxels). Kernel covariances ΣP
i and ΣC

i are selected as σ2
pI and σ2

c I

where σp = 5 and σc = 0.3. At each step, direction of the principal curve is calculated (γt) as

described in Alg. 1. The immediate neighbor voxel center that is closest to the direction pointed

by γt is selected as the next approximate curve sample. Fig. 2(b) shows the trajectories of some

selected axons.
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Figure 2: (a)Axial (xy-plane) slices of a sample brainbow image stack showing a bundle of axons of motor neurons
connecting from the spinal cord to a muscle. (b)Tracing result.

5. Connectivity in Tree and Graph Structures

In most cases data samples do not lie on a smooth varying manifold and dataset includes

bifurcations and self intersections resulting in complex topologies. However, it is easy to define

topological manifolds in a rigorous way by constructing a tree/graph structure that represents the

data distribution in the locally. This section describes a method to construct a complete connec-

tivity map from learned piecewise curve manifolds. In order to show the generic applicability of the

method, this time we used a parametric model and generated samples from a 5-component Gaus-

sian mixture. Density, gradient and Hessian are estimated for the Gaussian Mixture Model (GMM)

and mixture parameters are obtained using the Expectation-Maximization algorithm [17]. Figure

3-a shows a 5-component Gaussian Mixtures (GM) that is spatially connected. Given that the

principal curves pass through density modes, and assuming that the GMM modes are well ap-

proximated by the component means/modes we assumed that local density peaks overlap with the

mixture modes (θi, i = 1, 2, . . . , 5), where modes are represented with black dots in Fig. 3, two

tracing algorithms (as described in Alg. 2) are initialized in opposite directions to each other at

every mixture mode θi. Initial tracing directions (S∥(θi),−S∥(θi)) are estimated from the local

covariance as in the KDE case and termination of each trace is controlled by a threshold. To make

the process more presentable and prevent possible ill-posed locations, we used a relatively high

threshold value resulting in more separated mixtures. Each trace is labeled with a different color

in the figure.

Although we have compact representations for individual piecewise curves, in order to form a

complete connectivity, one also needs to define intra connections between these curves. Theoreti-
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Figure 3: Connectivity of piecewise curves.(a)Tracing of GMM.(b)Constructed tree overlayed with pdf.

cally, if the stopping threshold applied to the pdf is reduced sufficiently, the curves will eventually

connect to each other by the virtue of principal curve continuity. One approximate method is to

define a distance measure between curves and construct a pairwise distance matrix between curves.

The distance between curves is defined as the shortest Euclidean distance between the pairwise

curve samples. Minimum Spanning Tree (MST) algorithm is used in our experiments to analyze

the connectivity of the obtained reduced distance graph. Fig. 3-b shows the final constructed tree

on the GM pdf estimate. Black lines represent matched samples across piecewise curves. Although

piecewise curves are lines since the underlying distribution is a GMM with some symmetry, the

method is still valid for nonlinear structures as demonstrated in Sec. 2.

6. Discussion and Conclusion

In this paper, we presented a curve tracing algorithm that uses locally defined critical set

definitions. Proposed method uses the gradient and the Hessian of the density estimate to calculate

the principal curves as the underlying structures. While iterations on the constrained normal space

pull samples towards the principal curve, fixed step size or fixed-length updates trace the curve

along the center of the data (if local maximum coincides with local conditional mean). Termination

of traces is related to density estimate at that location. Selection of the step size and kernel

bandwidths are manual and proper selection should be determined by data geometry. Depending

on the curvature, large step sizes might result in irrecoverable errors (one possible case in Brainbow

analysis is two fibers with similar colors and high curvatures getting very close to each other - this

might result in the traced curve to jump from one axon to the other).

We also describe a methodology to construct complete connectivity from traced piecewise curves
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for complex topologies. Based on our knowledge there is no rigorous global coordinate unwrapping

technique that can be directly applicable to tree/graph data distribution structures, and the method

described here can be classified as a topological skeletonisation process. Currently, it is still too

early to mention complete charts for the whole data, but our method locally trace the data on one

dimensional manifolds, then globally connect piecewise manifolds based on a distance measure.

In this work, we mainly focussed on building tree-structured one-dimensional data representa-

tion to describe the complex connectivity in the data topology. We assumed that samples from the

traced curves in a very close proximity lie on the same tangential plane (in fact on the same line)

around the intersection points and we simply used Euclidean distance to connect the piecewise

curves while employing MST. Effectively, nonlinear manifolds are connected with linear measures

around zero gradient locations as a practical approximation. Future work will entail extracting

any-dimensional manifold graphs from data samples for dimension reduction.
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