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a b s t r a c t

We report the design and performance of a brain computer interface for single-trial detection of viewed

images based on human dynamic brain response signatures in 32-channel electroencephalography

(EEG) acquired during a rapid serial visual presentation. The system explores the feasibility of speeding

up image analysis by tapping into split-second perceptual judgments of humans. We present an

incremental learning system with less memory storage and computational cost for single-trial event-

related potential (ERP) detection, which is trained using cross-session data. We demonstrate the

efficacy of the method on the task of target image detection. We apply linear and nonlinear support

vector machines (SVMs) and a linear logistic classifier (LLC) for single-trial ERP detection using data

collected from image analysts and naive subjects. For our data the detection performance of the

nonlinear SVM is better than the linear SVM and the LLC. We also show that our ERP-based target

detection system is five-fold faster than the traditional image viewing paradigm.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Brain computer interface (BCI) provides a non-muscular ave-
nue for the user to communicate with others and to control
external devices. In the past decade, there has been a tremendous
amount of research performed in the highly multidisciplinary
field of BCI [18]. The first convincing demonstration of a direct
functional interface between a brain and a robotic arm was
documented in 1999 [5]. BCI is primarily applied to restore motor
control for severely disabled people, particularly those suffering
from spinal cord injury, amyotrophic lateral sclerosis, stroke, or
cerebral palsy. The goal of BCI is to decode a user’s intents, using
only brain signals, in order to control an external device. There are
a variety of methods used to record brain signals that might be
used in an BCI. For example, electroencephalography, electrocor-
ticogram, magnetoencephalography, functional magnetic resonance
imaging, positron emission tomography. In reality, however, elec-
trical field recording is more practical at present and in the near
future [34]. The electrophysiological recording methods include:
(1) electroencephalogram (EEG), which is recorded by electrodes on
the scalp, (2) electrocorticogram, which is recorded by electrodes

on the cortical surface, and (3) action potentials (from a single
neuron or local field potentials), which are recorded by inserting
electrodes into the cortex. Notice that EEG, unlike the last two
invasive options, avoids the risks of brain surgery and is one of the
most popular BCI approaches.

One way to use EEG for BCI involves extracting neural
signatures from the data. Neural signatures, which are called
event-related potentials (ERPs), are associated with perceptual
and cognitive events. ERPs have drawn a lot of attention in the
field of cognitive neuroscience [21,1,25]. A successful ERP-based
BCI system depends on robust ERP detection, which can be very
challenging due to the low signal-to-noise ratio of an ERP (the
amplitude of a typical ERP is on the order of 1210 mV, whereas
the background EEG amplitude is on the order of 100 mV). The
conventional strategy is to average across trials with identical
stimuli, which increases signal-to-noise ratio and makes the ERP
more detectable [14,20,32]. However, the trial-averaged approach
filters out much of the information about cortical dynamics and
requires that each stimulus be presented multiple times, which
may not feasible for real-time systems. In order to avoid this
limitation, single-trial methods have been recently developed.
Instead of averaging across trials, one solution for single-trial
approaches is to integrate information over sensors.

Object detection is one of the many possible applications for
ERP-based BCI. A number of investigators have gained valuable
insights into the mechanisms of object recognition and limits of
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visual temporal processing [14,31,15]. Sajda et al. [27] have
recently demonstrated an object (referred to as target) detection
system, named cortically coupled computer vision, which uses
single-trial ERP detection. They proposed to detect a subject’s
ERPs, which are elicited by rare, attended targets, while the
subject views a stream of images presented at a high rate. This
presentation paradigm is known as rapid serial visual presenta-
tion (RSVP). They then use a weighted linear logistic classifier
(LLC) [23] for ERP detection. As an alternative to a brain evoked
response, RSVP could be combined with a behavioral response,
such as a button press, for a non-BCI approach. Moreover, a
button press could be fused with a ERP to bring performance
benefits [10,12]. However, comparing with a button press, the
ERP-based BCI approach can be used by people with motor
disorders, reduces fatigue, provides a continuous (as opposed to
binary) measure of confidence, has a lower latency, and has lower
variance in the timing. Therefore in this work we use ERPs as the
only source. Fig. 1 shows example ERP signals associated with
targets and distractors for one subject at channel Cz. The bottom
traces are the EEG signals averaged across trials (trial averaging is
shown here for visualization purposes only). When targets are
presented, one can observe a perturbation in the EEG signal with a
peak at 300 ms. Furthermore, there is no such discernable pattern
when distractors are presented.

The main challenges of single-trial ERP detection are the high
dimensionality and the scarcity of labeled EEG data. Although the
existing methods [27,19,14,2] have been successful, they have
several shortcomings. In particular, the algorithm for each obser-
ver must be trained anew for each session, and the system does
not benefit from adding other observers. Most of the existing
methods for single-trial ERP detection are trained using within-
session data. The problem with using within-session data is that
we may not record enough ERPs from a single subject in one
sitting to sufficiently train the classifiers, at least in part because
the amplitude of the ERP reduces for closely spaced targets. The
natural tradeoff is that cross-session ERPs are expected to have
considerably higher variation than within-session ERPs. Recently
researchers start to explore cross-session training [16] and cross-
subject training [28].

Here we develop an ERP-based BCI system for visual target
search using RSVP based on incremental learning and cross-
session training. We propose to use incremental learning as an
alternative to batch learning [13] for ERP detection. The impetus
for using incremental learning is to combine additional available
training examples without having to retrain classifiers from
scratch to reduce the computational load and memory storage,
which is critical for real-time implementations. We also describe
an adaptive training method that uses cross-session data. Fig. 2
shows the framework of our ERP-based BCI system. The experi-
mental paradigm relies on the generation of ERP(s) in the frontal

cortex of the subject who is instructed to look for specific kinds of
scenes or target objects. The ERP is the brain response associated
with the detection of a pattern matching a predefined target.
When the subjects search for the objects in the image sequences
in RSVP mode, their brain responds to the presentation of a
relevant target scene/object and the EEG signals can be used to
detect this cognitive process. The upper portion of the figure is the
classification scheme. The stages include data collection, data
extraction, ERP detection and image triage based on the ERPs
associated with targets or distractors. The lower portion of the
figure is the training schemes, which include the support vector
machine (SVM) naive training using single-session data, the SVM
batch learning using cross-session data and the SVM incremental
learning using only support vectors.

This paper is organized as follows. First, we show that non-
linear SVM has a better single-trial ERP detection performance
than the linear SVM and the LLC on our data. Second, we
demonstrate that our ERP-based target search system using
within-session training has a throughput that is five times higher,
in terms of square meters per unit time, than the traditional
image viewing approach currently used by image analysts. Third,
we demonstrate that the cross-session training approach is
feasible on single-trial ERP detection problem, which could have
large inter-session variances. Fourth, we introduce a novel incre-
mental approach with less storage space and computational cost.
We show that even though the incremental learning is as effective
as batch learning, the memory storage is only 1/3 that of the
batch learning (measured in terms of number of training samples)
and the computational complexity is liner growth compared to
the exponential growth of the batch learning.

2. Empirical data collection

The subjects performed target detection by clicking on a
button (button presses in our experimental protocol were used
to confirm targets explicitly recognized by subjects for proper
data labeling) as soon as they saw a target. At the same time, we
recorded their EEG signals. We used two computers to acquire
data, one for image display and one for data collection.

2.1. RSVP image display paradigm

A large-scale satellite image (27 000�6500 pixels, represent-
ing an area of over 200 km2) was decomposed into hundreds of
smaller chips, which were labeled according to whether or not
they contained a target. Each chip (500 �500 pixels) represented
an area of 0.09 km2. The targets were surface-to-air missile sites
found in the gray scale satellite imagery, as shown in Fig. 3. While
very low level features like local textures are similar between

Fig. 1. Images of signals associated with targets (left) and distractors (right) respectively for one subject at channel Cz. The stimulus onset in each trial corresponds to

0 ms. The bottom traces are the EEG signals averaged over trials.
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target and nontarget image samples, target objects have larger
scale correlations (e.g. specific layout of roads) – though
non-systematically consistent – that can help a human expert/
subject detect them accurately. In this study, the size of the targets
was small and the scale, orientation, and position of the targets
naturally varied. The subjects were shown multiple examples of
missile sites and then asked to find other (similar) missile sites.

The image chips were presented using the RSVP paradigm.
RSVP is an image presentation method previously used in beha-
vioral studies [26,6]. During each RSVP session a sequence of
images is displayed at a high presentation rate, such as 100 ms/
image, as shown in Fig. 4. Recognition of a rare target image,
which is embedded in a sequence of distracter images, elicits an
ERP approximately 300 ms after the target stimulus onset. Images
were presented in short bursts of approximately 5 s duration. To
break monotony and minimize possible eye strain, consecutive
blocks were separated by a fixation screen of user-controlled
duration. The chips were presented on a 21 in CRT monitor using

Presentation software (Neurobehavioral Systems, Albany, CA).
Each image subtended 22 �22 degrees of visual angle.

The RSVP sessions were structured in two phases, the training
phase and the test phase. The stimuli were presented at the rate
such as 100 ms/image controlled by the presentation experimen-
tal control software and the observers were instructed to respond
as soon as they detected a target described above. Each subject
was trained prior to testing. In the training phase, images were
drawn with replacement from the image chip set and shown in a
random order. Subjects received feedback on their responses at
the end of each block. In the test phase, the chips were presented
in the spatial order in which they occured in the broad-area
image. There was no feedback in the test phase.

2.2. EEG acquisition

In the RSVP condition, EEG data were collected using a
32-channel BioSemi ActiveTwo system (BioSemi, Amsterdam,

Fig. 3. A sample broad-area aerial image is segmented into hundreds of image chips (left). These chips are rapidly displayed to the subjects one-at-a-time. Target chips are

encountered rarely (typically � 1%). Examples of target and distractor chips are shown on the right.

Fig. 2. The framework of the ERP-based image search system. The upper half portion is the classification scheme. The stages include data collection, data extraction, ERP

detection and image triage. The lower half portion is the training schemes, which include the SVM naive training using single-session data, the SVM batch learning using

cross-session data and the SVM incremental learning using only support vectors.
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Netherlands). The data were sampled at 256 Hz. The presenta-
tion of each image was associated with a trigger generated by
the Presentation script to mark the onset of target and dis-
tractor stimuli were received by the BioSemi system over a
parallel port and recorded concurrently with the EEG signals.
The user’s button presses, indicating the presence of perceived
targets, were also recorded by the Biosemi system.

2.3. Three datasets

We used three datasets in this study. For the first dataset (IA
Dataset #1), the subjects were intelligence analysts (IAs). Three
professional IAs were recruited for the experiment. None of them
had previous experience with the RSVP modality. The RSVP rate
was 100 ms/image for subject 1 and 3 and 150 ms/image for
subject 2. Each subject was trained on one (training) session and
tested on seven (test) sessions.

For the second dataset (naive dataset), we used naive subjects.
Four graduate students were recruited for the experiment. None
of them had previous experience with the RSVP modality. To
assess cross-session performance, we collected test data at
different times and under different experimental conditions.
Namely, data were collected from each subject during one
morning session and one afternoon session each day on five
consecutive days. Each session contained 200 trials. Each trial
contained 37 images and was 5 s in length. Seventy five percent of
the trials contained a single target instance. Images were drawn
with replacement and shown in a random order. Each subject
participated in 10 sessions in total.

For the third dataset (IA Dataset #2), the subjects were once
again image analysts. Three professional IAs were recruited for
this experiment, which compares the neurophysiologically driven

target image search to the conventional broad-area manual image
search. All subjects had experience with a broad range of imagery
and target types. They were all trained in the use of geo-spatial
analysis tools. None of them were familiar with the RSVP para-
digm. The RSVP rate was 100 ms/image for subject 1 and 2.
Subject 1 was tested on one session and subject 2 was tested on
four sessions. Subject 3 was tested on seven sessions. The RSVP
rates for this subject were 60 ms/image for training and four of
the test sessions and 100 ms/image for the remaining three test
sessions.

2.4. Data preprocessing

The raw EEG data were segmented into task-relevant epochs.
Each epoch corresponded to a single image and consisted of a
short segment of EEG (from the stimulus onset to 500 ms after the
stimulus onset). Each epoch was associated with an image chip.
The EEG was bandpass filtered between 1 and 45 Hz, using a
6th-order Butterworth filter to correct for DC drift and to limit the
effects of 60 Hz electrical line noise. Based on other studies the
peak latency of the recognition-related ERPs varies from 250 to
600 ms post-stimuli depending on stimulus and subject para-
meters [21]. Fig. 5 shows the electrical activity over the scalp as a
function of time. One clearly discernible feature is a peak in the
trial-averaged activity around 300 ms when target stimuli are
present, whereas no amplitude change occurs for distractor
stimuli. There are some amplitude changes around 700 ms, which
are believed to be mainly caused by motor responses (button click
activities). Based on our another study on the same set of stimuli,
the averaged button response time (RT) across subjects is in the
range of 500–600 ms with RT variance 20–50 ms depending
on the stimuli difficulty for the RSVP rate of 100 ms/image.

Fig. 4. An illustration of the RSVP image display modality (left). On the right, the upper trace is the trial-averaged ERP associated with the target stimuli (in one

representative channel) and the lower trace is the trial-averaged ERP associated with the distracter stimuli. The stimulus onset corresponds to 0 ms.

Fig. 5. Averaged ERP scalp distributions for a subject at 100 ms intervals following target (top) and distracter (bottom) stimulus onset. Notice that the spatiotemporal

activity changes for the target trials and does not change for the distractor trials.
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To extract the neurally relevant portion of the ERPs (and to avoid
EEG signals associated with motor responses, which are
presumed to be unavailable in many practical applications), we
utilized only the EEG signals from the stimulus onset to 500 ms
post-stimulus. To normalize the EEG signals, we used the data
from 100 ms before the stimulus onset to the stimulus onset. The
data were normalized to have zero-mean and unit variance in
each channel.

We used three steps to preprocess the training data. First, we
removed targets that do not have an associated button click
within 1.5 s of the stimulus onset (many studies in the literature
have reported that the reaction time of a button press ranges from
300 to 500 ms depending on the complexity of the visual
discrimination task [29]). We assumed that if there was no button
press then there was no ERP. Second, we omitted all distractor
samples within 1 s before or after the target stimuli so that the
distractor windows were not contaminated by ERP leakage
(hence, the windows are not contiguous when they are near
target stimuli). Third, we created non-overlapping (disjoint)
windows of EEG activity corresponding to distracters. The disjoint

windowing scheme reduces the temporal correlation between
data from two different windows. Each window was 600 ms in
length and extended from 100 ms before the trigger (normalized
window) to 500 ms after the trigger (epoch window). In non-
overlapping windowing scheme, we discarded distractor samples
occurring within the 600 ms window.

For test data, on the other hand, we used overlapping windows
because we did not know the class label in advance. The
32-channel data in each 500 ms epoch were eventually concate-
nated to form a feature vector (32� 129 dimension) and then the
processed EEG measurements were subjected to the classifiers.

3. ERP-based target detection

Our goal in classification is to build a reliable ERP detector to
accurately detect the brain responses associated with target
stimuli. The inputs of the classifiers are raw EEG measurements
and the outputs of the classifier are the likelihood values, which
are used to label the EEG epochs according to whether or not they
contain an ERP pattern.

3.1. ERP detector #1: linear logistic classifier

For the baseline ERP detector we adopt a linear discrimination
approach based on a logistic regression model [11]. This method is
based on the assumption that the EEG signals are a linear combina-
tion of distributed source activity and zero-mean white Gaussian
measurement noise. The goal is to determine the linear projections
of the EEG sensor measurements that maximize discriminability. To
optimize the projection we assume that the probability of belong-
ing to a class is represented by a logistic function. In particular the
likelihood of sample belonging to the class follows a logistic model.
To obtain the optimal weights, we use the batch gradient-descent
algorithm and the least-square criterion. Given the linear projection
and the corresponding class, we use the minimum overall Bayes
risk as the criterion to determine the optimal threshold. Once we
obtain the weights and the threshold from the training data, we can
apply the linear detector to the test data to conduct the ERP
detection. Note that the logistic classifier can also be trained using
the maximum likelihood.

3.2. ERP detector #2: support vector machine

To explore more flexible classification strategy for
high-dimensional data, we apply SVM on ERP detection. The

SVM is a widely used statistical learning algorithm, especially
for large data sets with high dimensionality [33,8,7,4]. Many
researchers have reported that the SVM outperforms competing
methods for their data [22,4,3].

The SVM algorithm is to map input observations to a high-
dimensional feature space via kernel tricks and then optimize the
decision boundary by constructing a maximum-margin hyper-
plane. A hyper-plane is an affine subspace which divides the high-
dimensional feature space into two half spaces, each of which is
associated with one of the two classes. The optimization is a
convex quadratic programming problem. After training, the
optimal Lagrange multipliers and weights for each sample are
obtained. The SVs, which are the data points lying at the border of
the margin, have non-zero optimal solutions for their coefficients
in the final discriminant, whereas the coefficients for the other
data points converge to zero. Thus the training leads to a sparse
non-parametric forward discriminant function. Once we train the
SVM, we simply determine on which side of the decision bound-
ary a given test ERP pattern lies and assign the corresponding
class label to it. The parameters, such as kernel width s2, in the
radial basis function (RBF) kernel, and the cost parameter C,
which is a tradeoff parameter determining the relative weight
of the penalty compared to the fit of the data, can be chosen by
the users.

We applied the linear SVM and the RBF SVM on single-trial
ERP detection. We adopted 10-fold cross-validation on the train-
ing session to adjust two regularization parameters of the RBF
SVM: the kernel width of Gaussian kernels, s2, and the cost
parameter, C, for each subject. We let the kernel size, s2, range
from 0.01 to 500 and we let the cost parameter C range from 1 to
106. We vary s2 and C over the logarithmic grid formed by the
selected values above. The SVM classifier is trained using the s2

and C giving the best validation performance.

3.3. Cross-session ERP detection

Given the low prior probability of a target in this task, we obtain
very few ERP samples associated with targets within a long
sequence of ERP samples associated with distractors because the
amplitude of the ERP reduces for closely spaced targets. Since it is
impractical to train a subject extensively in one session to obtain
the sufficient ERP training samples, we train the classifiers using
data aggregated across multiple sessions. Instead of conventional
single-session training, we explore the feasibility of cross-session
training on ERP detection to improve the generalization perfor-
mance of classifiers. To assess cross-session performance, we use
the RBF SVM as the cross-session ERP detector on the data collected
at different times and under different experimental conditions.

3.3.1. Learning method #1: naive learning

We use the term ‘‘naive learning’’ to refer to single-session
training. To compute the averaged single-session performance,
we use only the current session as the test set and the previous
session as the training set. For instance, we train on session 1ðS1Þ

and test on S2; then we trained on S2 and tested on S3; and so on
until we trained on S9 and tested on S10. We compute the mean
and the standard deviation across trials for the single-session
performance.

3.3.2. Learning method #2: batch learning

We use the term ‘‘batch learning’’ to refer to cross-session
training using all data from multiple sessions. In batch learning,
we aggregate the data across all previous sessions for training. For
instance, We train on S1 [ S2 and test on S3; and so on until we
train on S1 [ � � � [ S9 and test on S10. The aggregated data are

Y. Huang et al. / Neurocomputing 74 (2011) 2041–2051 2045
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subjected to the classifier to evaluate the cross-session perfor-
mance. We use the RBF SVM with kernel size k ¼ 1 and cost
parameter C¼10 as the ERP detector to evaluate the cross-session
performance.

We use Monte Carlo method to repeat pseudorandom sam-
pling to compute the averaged cross-session performance. To
simulate a realistic scenario, we use only the current session as
the test set and the previous sessions as the training set to create
Monte Carlo pseudorandom sessions. In batch learning using
cross-session data, we train on S1 [ S2 and test on S3; train S2 [ S3

and test on S4; and so on until we train on S8 [ S9 and test on S10.
We compute the mean and the standard deviation across trials
for the double-session performance. Similarly we use the Monte
Carlo method to create pseudorandom sessions for multiple-
session training and computer the averaged performance.

3.3.3. Learning method #3: incremental learning

The cross-session training in batch mode may produce higher
performance than the single-session training due to more training
samples. However, such batch training is computationally inten-
sive and it is infeasible for real-time systems. Incremental learn-
ing paradigm, as opposed to the batch learning paradigm in which
all training examples are provided at once for optimization, is a
training mode where only a few training examples are added at a
time to update model parameters. The motivation of incremental
learning is to deal with very large training sets or non-stationary
data. An important advantage of incremental learning is that it
allows the algorithm to combine additional available training
examples without having to retrain classifiers from scratch. This
has numerous benefits, including saving a substantial amount of
storage space and speeding the computation up. One of the main
difficulties with using incremental learning methods is the
sensitivity of choosing training parameters.

The essential property of the SVM algorithm is that only the
SVs contribute to the decision boundary so that the remaining
training examples may be regarded as redundant. Based on this
property, Syed et al. proposed an incremental learning for the
SVM to deal with large datasets [30]. They segmented a huge
dataset into small partitions to avoid problems associated with
limited available memory, and incrementally trained the SVM
with the small partitions. Their results demonstrated that the SVs
selected by the SVM algorithm was a minimal set. Any further
removal of data samples significantly deteriorated the perfor-
mance because the loss of SVs led to loss of vital information
about the class distribution.

Motivated by Syed’s method, we developed an incremental
learning scheme for cross-session ERP detection. The basic idea of
the incremental learning ERP detection is to train an SVM on the

previous session of EEG data. The SVs found during training are
preserved and combined with the training samples from the
current session. For the cross-session EEG data in Section 2.3,
there were 10 datasets, S1–S10. Instead of training on all previous
data as S1, S1 [ S2, . . . ,S1 [ � � � [ S9 as in the batch learning, we
preserve the SVs from the previous training sets and discarded
the redundant data. Let Vi represent the SVs in session Si. For the
proposed incremental learning scheme, we train S1 preserve V1,
and test on S2; train S2, preserve V1 [ V2, and test on S3; . . .; train
S8, preserve V1 [ V2 . . . [ V8 and test S9 respectively.

3.4. Evaluation methods

We adopted the area under the receiver operating characteristic
(ROC) curve (AUC) as the performance evaluation criterion for ERP
detection. The ROC curve [24] describes the relationship between
the false positive fraction (FPF) and the true positive fraction (TPF)
as the threshold for discrimination between two classes is varied.
We used Delong’s non-parametric approach [9] to compare corre-
lated AUCs by generating an estimated covariance matrix.

4. Comparison of ERP detection techniques: SVM vs. LLC

We conducted an experiment to select a classifier on single-
trial ERP detection for incremental adaption process. The LLC was
compared to a linear and a nonlinear SVMs. We evaluated the
classification performance on both professional image analysts
and naive subjects.

We compared three classifiers – the RBF SVM, linear SVM, and
LLC – on both IA Dataset #1 and the naive dataset. Our null
hypothesis, H0, is that there is no statistically significant differ-
ence between the two correlated AUCs (the AUC of the SVM and
the AUC of the LLC). The optimal parameters for the three IA
subjects are s2 ¼ 0:05 and C¼100; s2 ¼ 0:1 and C¼100; s2 ¼ 10
and C¼10,000, respectively. The optimal parameters for the four
naive subjects are s2 ¼ 1 and C¼10; s2 ¼ 1 and C¼10; s2 ¼ 1 and
C¼100; s2 ¼ 1 and C¼1000, respectively. We used C¼1 for the
linear SVM (in our experience the performance of the linear SVM
is not sensitive to the C value). Based on our 10-fold cross-
validation results, the parameter C and s2 could be sensitive,
especially when the value C is small. Therefore we suggested wide
range of parameters. We also noticed that they were sensitive
across subjects, so we performed cross-validation parameter
search accordingly for each subject.

For the IA subjects the AUC of the RBF SVM is higher than the
LLC by 0.107, 0.103 and 0.095, respectively, as shown in Fig. 6.
The two-tailed p values for the three IA subjects are oo0:0004

Fig. 6. The ROC curves of the RBF SVM (solid), linear SVM (dotted), and LLC (dash-dotted) for the three IA subjects from IA Dataset #1. ROC curve depicts the relationship

between the false positive fraction (FPF) and the true positive fraction (TPF). The performance in term of the area under the ROC curves (AUC) for each classifier is shown.

Y. Huang et al. / Neurocomputing 74 (2011) 2041–20512046
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(z ¼ 5.145, 5.718 and 4.550, respectively). For the four naive
subjects the AUC of the RBF SVM is higher than the LLC by 0.050,
0.106, 0.043 and 0.336, respectively, as shown in Fig. 7. The two-
tailed p values for four naive subjects are oo0:0004 (z ¼ 14.529,
21.063, 12.008 and 47.420, respectively). From the results of both
the IA dataset and the naive dataset, one can conclude that the
difference between the AUCs from the RBF SVM and the LLC is
highly statistically significant and thus we can reject H0.

Similarly, in the comparison of the linear SVM and the LLC, the
two-tailed p values for the three IA subjects and the four naive
subjects are oo0:0004 (z ¼ 5.259, 4.773, 4.383, 8.708, 17.560,
7.413, and 14.271, respectively). One can conclude that the
difference between the AUCs from the linear SVM and the LLC is
also highly statistically significant and thus reject H0.

Comparing the RBF SVM with the linear SVM, the two-tailed p

values for the IA dataset are 0.230, 0.023, 0.021 (z ¼ 1.202, 2.280,
2.308, respectively) and the two-tailed p values for the naive
dataset are oo0:0004 (z ¼ 9.420, 10.237, 9.848, and 44.137,
respectively). The difference between the AUCs from the RBF SVM
and the linear SVM is statistically significant for all subjects
except one IA subject.

For our data, the non-parametric test for correlated AUC
measurements indicates that the linear and nonlinear SVMs
achieve significantly better performance, in a statistical sense,
than the LLC for ERP detection. Likewise, the RBF SVM, at the cost
of additional computational complexity, performs better than the
linear SVM for ERP detection. The result indicates that the data
may not be linearly separable in the original feature space so that
the nonlinear projection to the high-dimensional feature space
helps the discrimination of the two classes. However the tradeoff
is the computation efficiency.

For high-dimensional EEG data (32�129 dimension1) and
sparse training samples (for IA dataset, roughly 50 positive
samples and 500 negative samples; for naive dataset, roughly
140 positive samples and 950 negative samples), the SVMs are
capable to capture nonlinear class separation boundary. The SVMs
map input data to a high-dimensional feature space via kernel
tricks and optimize the linear separating hyper-plane in feature
space. However, the LLC is simply a linear hyper-plane boundary.
This could be the main reason for performance discrepancy. Some
regularization could be made to the LLC to approximate the SVMs,
for instance, by modified iteratively re-weighted least squares
estimation procedure or a modified penalized log likelihood
function. Consequently, based on these comparison results, we
chose the RBF SVM as the classifier for the incremental adaptation
process. This cross-model performance comparison should not be
taken as universal conclusion.

5. Efficiency: comparison of the ERP approach and the
tradition approach

We conducted a second experiment to explore the efficiency of
neurophysiologically driven image search. More specifically, we
compared the ERP approach with the tradition image viewing
approach on the detection rate (the ratio of the number of
detected targets and the number of total targets) and detection
speed (the ratio of the total search time and the total image area,
which is measured in units of s/km2). The study was carried on a
group of professional image analysts.

The ERP-based target detection system collects EEG signals as
a subject observes a high-speed scan of the thousands of chips
extracted from several broad-area images and then analyzes the
data to identify ERPs. We used IA Dataset #2 in this experiment.
We employed the RBF SVM as the ERP detector in this study.
Based on the estimated likelihood values from the SVM, we
constructed a contour plot of the target likelihood and overlay it
on the associated broad-area image. The human experts used this
plot to do a final confirmation. In the tradition image viewing
approach, participants used a geo-spatial analysis tool called
GlobalMapper (Global Mapper Software). It provides zoom and
pan controls and allows high resolution satellite imagery to be
efficiently searched and annotated. Participants were allowed as
much time as they wished to search the targets in a broad-area
image. A set of prototype images depicting the targets were
shown to each participant.

Fig. 8 shows the target likelihood contour maps (for all
contours above a fixed threshold) for one of the broad-area
images used in the test. One can see that, in this case, the ERP-
based approach accurately detects one target and has a few false
alarms. This visualization technique allows efficient post-proces-
sing of the triage outputs.

Fig. 9 shows the detection rate and the detection speed
averaged across test sessions for each subject. We can see that
the averaged detection rates of the ERP system are equal to or
higher than those of the manual method. The detection speeds of
the ERP system are much faster than those of the manual method
for all subjects. The overall detection rate across subjects for the
ERP system is 93% compared to 67% for the manual approach. The
averaged AUC across seven test sessions for the three subjects is
0.82. The overall false alarm rate for the ERP system is higher than
the manual method, which had zero false alarms. The precision
for the ERP system is 78% and the precision for the manual
method is 100%. The overall detection speed for the ERP system is
5.3 times faster than the manual method.

6. Cross-session ERP detection

We conducted a third experiment to extend the results from
the first experiment and to explore the robustness of the ERP-
detection approach to changes of the EEG signals over time on all

Fig. 7. The ROC curves of the RBF SVM (solid), linear SVM (dotted), and LLC (dash-dotted) for four naive subjects. ROC curve depicts the relationship between the false

positive fraction (FPF) and the true positive fraction (TPF). The performance in term of the area under the ROC curves (AUC) for each classifier is shown.

1 The previous work on feature dimension reduction and extraction using

time–frequency and wavelet transforms did not increase classification perfor-

mance on our data. In the later studies, we did dimensionality reduction especially

in the channel direction, which described in a separate paper. In this paper our

focus is incremental learning. Here we use the original data as features.
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four naive subjects. Here we evaluate (1) the viability of cross-
session batch learning on ERP detection by comparing it with
naive learning and (2) the efficiency of incremental learning on
ERP detection by comparing it with batch learning. We evaluated
the method on cross-day data from a naive subject group.

6.1. Batch learning vs. naive learning

Fig. 10 shows the ERP detection performance in term of AUC
using the batch learning on cross-session data and the naive
learning using single-session data. To simulate a realistic scenario,
we use only the current session as the test set and the previous
sessions as the training set to create Monte Carlo pseudorandom
sessions. The averaged performance is computed across Monte
Carlo trials. The GKSVM achieves high cross-session generaliza-
tion performance for all subjects. The averaged AUC exhibits a
generally increasing trend with the inclusion of additional train-
ing data from subsequent sessions for four subjects. The averaged
performance across subjects increases around 5%. Our results
demonstrate the viability of cross-session single-trial ERP detec-
tion. Given a reasonable amount of cross-session training data,
the SVM achieves excellent generalization performance, as indi-
cated by the high AUC values. The results suggest that the

classifier is able to capture much of the range of variation in our
EEG data and approaches the problem of characterizing between
session variation in signal statistics. The results demonstrate that
inter-session variances do not significantly deteriorate detection
performance.

6.2. Incremental learning vs. batch learning

We compared the single-trial ERP detection performance on
the batch learning method, and the incremental learning method.
Based on our 10-fold cross-validation results on the RBF SVM, the
parameters showed consistent performance across sessions for
each subject in our data. Therefore we selected the same para-
meters across sessions in the batch learning and the incremental
learning. Fig. 11 shows the cross-session ERP detection perfor-
mance in terms of the AUCs. The batch learning SVM, which uses
all previous cross-session data, achieves higher AUCs than the
naive learning SVM for all sessions of three of the subjects. The
incremental learning SVM achieves similar AUCs as the batch
approach for all subjects. The AUCs of both incremental learning
and batch learning exhibit a generally increasing trend with the
inclusion of additional training data from subsequent sessions for
all four subjects.

Fig. 9. The detection speed (left) and detection rate (right) averaged across test sessions for the three IA subjects.

Fig. 10. The cross-session performance in term of the area under ROC (AUC) on different number of training sessions using the RBF SVM. The AUC as a function of the

number of training sessions for four subjects in naive learning using single-session data (red dashed line) and batch learning using cross-session data (blue solid curve).

(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 8. Broad-area image with overlaid contour maps (left). The crosses indicate true target locations. Users can zoom into the contour hotspot to confirm the presence of a

target (right).
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Next we compare the memory storage and the computational
elapsed time of the methods. Fig. 12 shows the memory storage in
terms of the number of training samples and the computational
elapsed time for subject 1 for both incremental learning and batch
learning. The other three subjects have similar results. As one can
be seen in these plots the incremental learning costs much lower
storage space and computational load. The memory storage of the
incremental learning is only 1/3 that of the batch learning
(measured in terms of number of training samples) and the
computational complexity of the incremental learning is liner
growth compared to the exponential growth of the batch learning.

Our results on the cross-session dataset for the previously
described realistic scenario demonstrate the viability of cross-
session single-trial ERP detection. Given a reasonable amount of
cross-session training data, the SVM achieves excellent general-
ization performance, as indicated by the high AUC values. The
results suggest that the classifier is able to capture much of the
range of variation in our EEG data. The results demonstrate that
inter-session variances do not significantly deteriorate detection
performance. The incremental learning method performs as well
as the batch mode due to the fact that only the SVs contribute to
the decision boundary. Since the incremental learning compacts
the previous training data to the SVs and then incorporates only
the SVs with the new dataset, it is more computationally efficient
than the batch learning method.

7. Conclusion

We extend the Sajda et al.’s work [27] and demonstrate the
ERP-based target detection system for speeding up visual target

search by tapping into the split-second perceptual judgments of
humans. We propose cross-session training for single-trial ERP
detection and demonstrate the efficacy of incremental learning on
cross-session data. The incremental learning method using only
SVs performs better than the naive method and it achieves, with a
substantially lower memory storage and computational cost, a
performance similar to the batch method for cross-session ERP
detection. The linear and nonlinear SVM classifiers significantly
outperforms the LLC for single-trial ERP detection due to good
generalization capabilities of SVM. The ERP-based approach
provides a higher detection rate and speed, albeit with more false
alarms, than the tradition image viewing approach. It should be
noted that many of the false positives can be removed with
limited effort by manual confirmation of the prospective targets.

This work represents only a first step towards our vision of
neurophysiologically driven image triage system, and much work
remains. Next we will investigate the characteristics of ERP
patterns and explore some statistical models, such as the mixed-
effects models [17].
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