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Abstract

Principal curves are defined as self-consistent smooth curves passing through the middle of
the data, and they have been used in many applications of machine learning as a generaliza-
tion, dimensionality reduction and a feature extraction tool. We redefine principal curves
and surfaces in terms of the gradient and the Hessian of the probability density estimate.
This provides a geometric understanding of the principal curves and surfaces, as well as
a unifying view for clustering, principal curve fitting and manifold learning by regarding
those as principal manifolds of different intrinsic dimensionalities. The theory does not
impose any particular density estimation method can be used with any density estimator
that gives continuous first and second derivatives. Therefore, we first present our principal
curve/surface definition without assuming any particular density estimation method. Af-
terwards, we develop practical algorithms for the commonly used kernel density estimation
(KDE) and Gaussian mixture models (GMM). Results of these algorithms are presented
in notional data sets as well as real applications with comparisons to other approaches
in the principal curve literature. All in all, we present a novel theoretical understanding
of principal curves and surfaces, practical algorithms as general purpose machine learning
tools, and applications of these algorithms to several practical problems.

Keywords: unsupervised learning, dimensionality reduction, principal curves, principal
surfaces, subspace constrained mean-shift

1. Introduction

Principal components analysis (PCA) -also known as Karhunen-Loeve Transform- is perhaps
the most commonly used dimensionality reduction method (Jolliffe, 1986; Jackson, 1991),
which is defined using the linear projection that maximizes the variance in the projected
space (Hotelling, 1933). For a data set, principal axes are the set of orthogonal vectors onto
which the variance of the projected data points remains maximal. Another closely related
property of PCA is that, for Gaussian distributions, the principal line is also self-consistent.
That is, any point on the principal line is the conditional expectation of the data on the
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orthogonal hyperplane. In fact, this forms the basic idea behind the original principal curve
definition by Hastie (1984); Hastie and Stuetzle (1989).

Due to the insufficiency of linear methods for dimensionality reduction, many nonlinear
projection approaches have been studied. A common approach is to use a mixture of
linear models (Bishop, 1997). Mixture models are attractive, since they arevsimple and
analyzable as linear methods; however, assuming a suitable model order, they are able to
provide much more powerful tools as compared to linear methods. Although model order
selection is a tough discrete optimization problem, and mixture methods suffer from the
problems introduced by improper selection of model order, there are principled ways to
approach this problem such as Dirichlet process mixtures (Ferguson, 1973). Techniques
based on local PCA include most well-known examples for mixture models (Fukunaga and
Olsen, 1971; Meinicke and Ritter, 1999; Kambhatla and Leen, 1994, 1997).

Another common way of developing nonlinear projections is to use generalized linear
models (McCullagh and Nelder, 1989; Fahrmeir and Tutz, 1994). This is based on the
idea of constructing the nonlinear projection as a linear combination of nonlinear basis
functions. All reproducing kernel Hilbert space techniques such as the well-known kernel
PCA (Schölkopf et al., 1998) and kernel LDA (Baudat and Anouar, 2000) belong to this
family. The main idea here is to map the data into a high dimensional space and perform
the original linear method in this space, where the dot products are computed via a kernel
function using the so-called kernel trick. More recent methods in this category replace the
widely used Gaussian kernel with similarity metrics stemming from a weighted neighborhood
graph. These methods are referred to as graph-based kernel methods (Shawe-Taylor and
Singer, 2004; Ham et al., 2004).

If the data dimensionality is very high, the most successful methods are manifold learning
algorithms, which are based on generating the locality information of data samples using
a data proximity graph. Most well known methods that fall into this category include
Isomap, local linear embedding, Laplacian eigenmaps, and maximum variance unfolding
(Tenenbaum et al., 2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003; Weinberger and
Saul, 2006). The idea of defining geodesic distances using the data neighborhood graphs
assumes that the graph does not have any gaps in the manifold, as well as the graph also
does not go outside the data manifold. This requires a careful tuning of the parameters of
graph construction (K or ǫ, as in the case of most commonly used K -nearest neighbor or
ǫ-ball graphs), since the efficiency of the dimensionality reduction methods depend on the
quality of the neighborhood graph.

At the time, Hastie and Stuetzle’s proposition of self consistent principal curves (Hastie,
1984; Hastie and Stuetzle, 1989) pointed out a different track for nonlinear dimensionality
reduction. They defined self-consistency over the local conditional data expectations, and
generalized the self-consistency property of the principal line into nonlinear structures to
introduce the concept of principal curves. Hastie and Stuetzle define the principal curve
as an infinitely differentiable finite length curve that passes through the middle of the data.
Self-consistency means that every point on the curve is the expected value of the data points
projecting onto this point.

Hastie and Stuetzle’s major theoretical contributions are the following: (i) they show
that if a straight line is self-consistent, it is a principal component (ii) based on the MSE
criterion, self-consistent principal curves are saddle points of the distance function. They
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use this second property to develop an algorithm that starts from the principal line and
iteratively finds the principal curve by minimizing the average squared distance of the data
points and the curve (Hastie, 1984; Hastie and Stuetzle, 1989). Although they cannot prove
the convergence of their algorithm, Hastie and Stuetzle claim that principal curves are by
definition a fixed point of their algorithm, and if the projection step of their algorithm
is replaced with least squares line fitting, the algorithm converges to the principal line.
Since there is no proof of convergence for Hastie-Stuetzle algorithm, existence of principal
curves could only be proven for special cases such as elliptical distributions or distributions
concentrated around a smooth curve, until Duchamp and Stuetzle’s studies on principal
curves on the plane (Duchamp and Stuetzle, 1996a,b).

Banfield and Raftery extend the Hastie-Stuetzle principal curve algorithm to closed
curves and and propose an algorithm that reduces the estimation bias (Banfield and Raftery,
1992). Tibshirani approaches the problem from a mixture model point-of-view, and provides
an algorithm that uses expectation maximization (Tibshirani, 1992). Delicado’s proposition
uses another property of the principal line rather than self-consistency (Delicado, 1998).
Delicado’s method is based on the total variance and conditional means and finds the
principal curve of oriented points of the data set. Stanford and Raftery propose another
approach that improves on the outlier robustness capabilities of principal curves (Stanford
and Raftery, 2000). Probabilistic principal curves approach, which uses a cubic spline over
a mixture of Gaussians to estimate the principal curves/surfaces (Chang and Grosh, 2002),
is known to be among the most successful methods to overcome the common problem of
bias introduced in the regions of high curvature. Verbeek and coworkers used local principal
lines to construct principal curves (Verbeek et al., 2002), and a soft version of the algorithm
is also available (Verbeek et al., 2001), known as K-segments and soft K-segments methods.

Algorithmically, Manifold Parzen Windows method (Vincent and Bengio, 2003; Bengio
et al., 2006) the most similar method in the literature to our approach. They use a kernel
density estimation (and in their later paper, a Gaussian mixture model with a regularized
covariance) based density estimate that takes the leading eigenvectors of the local covari-
ance matrices into account. Many principal curve approaches in the literature, including
the original Hastie-Stuetzle algorithm, are based on the idea of minimizing mean square
projection error. An obvious problem with such approaches is overfitting, and there are
different methods in the literature to provide regularization. Kegl and colleagues provide
a regularized version of Hastie’s definition by bounding the total length of the principal
curve to avoid overfitting (Kegl et al., 2000), and they also show that principal curves of
bounded length always exist, if the data distribution has finite second moments. Sandilya
and Kulkarni define the regularization in another way by constraining bounds on the turns
of the principal curve (Sandilya and Kulkarni, 2002). Similar to Kegl’s principal curve def-
inition of bounded length, they also show that principal curves with bounded turn always
exist if the data distribution has finite second moments. Later, Kegl later applies this al-
gorithm to skeletonization of handwritten digits by extending it into the Principal Graph
algorithm (Kegl and Kryzak, 2002). At this point, note that the original Hastie-Stuetzle
definition requires the principal curve not to intersect itself, which is quite restrictive, and
perhaps, Kegl’s Principal Graph algorithm is the only approach in the principal curves
literature that can handle self-intersecting data.
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Overall, the original principal curve definition by Hastie and Stuetzle forms a strong basis
for many, possibly all, principal curve algorithms. The idea of using least squares regression
or minimum squared projection error properties of linear principal component analysis to
build a nonlinear counterpart brings the problem of overfitting. Hence, algorithms based
on these definitions have to introduce a regularization term. Here we take a bold step by
defining the principal curves with no explicit smoothness constraint at all; we assume that
smoothness of principal curves/surfaces is inherent in the smoothness of the underlying
probability density (estimate). Providing the definition in terms of data probability density
allows us to link open ended problems of principal curve fitting literature -like optimal
regularization constraints and outlier robustness- to well established principles in density
estimation literature.

In this paper we emphasize the following messages: (i) principal curves and surfaces are
geometrically interesting structures of the theoretical probability distribution that underlies
the data as opposed to the particular data set realization, (ii) optimal density estimation
(in some sense) does not necessarily result in optimal principal surface estimation. The first
point illuminates the fact that one should not seek to solve a problem such as manifold
learning without precisely characterizing the sought solution; defining the sought manifold
as the solution to one’s optimality criterion of choice is incorrect, the solution should be
defined geometrically first, and then it should be approximated and its optimality proper-
ties should be discovered, leading to optimal approximation algorithms. The second point
highlights the fact that a maximum likelihood density estimate, for instance, might not
lead to a maximum likelihood estimate of the principal surfaces. Statistically optimal and
consistent estimation procedures for the latter must be sought by the community.

The following sections try to address the first issue mentioned above but the second issue
will be left as future work; we are confident that the community will eventually propose
much better algorithms for identifying principal surfaces than the ones we provide, given the
framework presented here. Consequently, the subspace constrained mean shift algorithm
presented later is not implied to be optimal in any statistical sense - its choice in this
paper is merely due to (i) the familiarity of our audience with the mean shift clustering
algorithm (which suffers from all the drawbacks we suffer, such as curse of dimensionality
for kernel density estimation), (ii) the fact that it includes parametric mixture distributions
as a special case of the formulation (i.e., the same formulas apply to both kernel density and
mixture model estimates with minor modifications), (iii) the convergence of the algorithm
to a point on the principal surface with appropriate dimensionality is guaranteed for any
initial point, since mean-shift is a convergent procedure.

2. Principal Curves/Surfaces

We start with an illustration to give some intuition to our approach, and then we provide a
formal definition of the principal curves and surfaces, study special cases and connections to
PCA, existence conditions, limitations and ambiguities. All this will be conducted in terms
of the gradient and the Hessian of the data pdf, and throughout this section, the data pdf
is assumed to be known or can be estimated either parametrically or non-parametrically
from the data samples. In the next section we will go back to the data samples themselves
while we develop a practical algorithm.
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Figure 1: An illustration of the principal curve on a two Gaussian mixtures.
.

2.1 An Illustration

Before we go into the details of the formal definition, we will present a simple illustration.
Our principal curve definition essentially corresponds to the ridge of the probability density
function. Principal curve definitions in the literature are based on local expectations and
self-consistency. Hastie’s self-consistency principle states that every point on the principal
curve is the expected value of the points in the orthogonal subspace of the principal curve at
that point - and this orthogonal space rotates along the curve. In our view, every point on
the principal surface is the local maximum, not the expected value, of the probability density
in the local orthogonal subspace.

Consider the modes (local maxima) of the pdf. On the modes, the gradient of the pdf
is equal to zero and the eigenvectors of the Hessian matrix are all negative, so that the
pdf is decreasing in all directions. The definition of the ridge of the pdf can be given very
similarly in terms of the gradient and the Hessian of the pdf. On the ridge of the pdf, one of
the eigenvectors of the Hessian is parallel with the gradient. Furthermore, the eigenvalues
of the all remaining eigenvectors (which in fact span the orthogonal space of the principal
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curve) are all negative, so that the pdf is decreasing in all these directions; hence the point
is on a ridge, not in a valley.

Figure 1 presents two illustrations on two Gaussian mixtures. On the left, a comparison
of the proposed principal curve projection, and the trajectories of the gradient of the pdf
is presented. Consider a Gaussian mixture with 3 components with the pdf contour plot
shown. Following the local gradient (top left) essentially coincides with well-known mean
shift algorithm (Cheng, 1995; Comaniciu and Meer, 2002), and maps the points to the
modes of the pdf, whereas following the eigenvectors of the local covariance (bottom left)
gives an orthogonal projection onto the principal curve. The principal curve -the ridge- of
this 3-component Gaussian mixture is also shown with the dashed line. On the right, we
present the principal curve of a 7-component Gaussian mixture from two different points of
view.

2.2 Formal Definition of Principal Curves and Surfaces

We assert that principal surfaces are geometrically well defined structures that underly the
theoretical, albeit usually unknown, probability distribution function of the data; conse-
quently, one should define principal surfaces with the assumption that the density is known
- finite sample estimators of these surfaces is a question to be answered based on this
characterization. Inspired by differential geometry where principal lines of curvature are
well-defined and understood, we define the principal curves and surfaces in terms of the first
and second order derivatives of the assumed probability density function. Next, we define
critical, principal, and minor surfaces of all dimensions and point out facts relating to these
structures - proofs are generally trivial and are omitted for most statements.

Given a random vector x ∈ R
n, let p(x) be its pdf, g(x) be the transpose of the local

gradient, and H(x) be the local Hessian of the probability density function. To avoid
mathematical complications, we assume that the data distribution p(x) > 0 for all x, and is
at least twice differentiable. Also let {(λ1(x), q1(x)), . . . , (λn(x), qn(x))} be the eigenvalue-
eigenvector pairs of H(x), where the eigenvalues are sorted such that λ1(x) > λ2(x) > . . . >
λn(x) and λi 6= 0.1

Definition 1. A point x is an element of the d-dimensional critical set, denoted by Cd iff
the inner product of g(x) with at least (n-d) eigenvectors of H(x) is zero.

The definition above is an intentional extension of the familiar notion of critical points
in calculus; thus local maxima, minima, and saddle points of the pdf become the simplest
special case.
Fact 1. C0 consists of and only of the critical points (where gradient is zero) of p(x).
Furthermore, Cd ⊂ Cd+1.

In practice, this fact points to the possibility of designing dimension reduction algorithms
where each data is projected to a critical manifold of one lower dimension sequentially
(deflation). Alternatively, one could trace out critical curves starting off from critical points
(inflation). This property of linear PCA has been extensively used in the design of on-line
algorithms in the 90’s (Kung et al., May 1994; Wong et al., 2000; Hegde et al., 2006).

1. Strict inequalities are assumed here for the theoretical analysis, because in the case of repeated eigenvalues
local uncertainties similar to those in PCA will occur. We also assume non-zero eigenvalues for the
Hessian of the pdf. These assumptions are not critical to the general theme of the paper and generalized
conclusions can be relatively easily obtained. These ambiguities will later be discussed in Section 2.6.
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Definition 2. A point x ∈ Cd − Cd−1 is called a regular point of Cd. Otherwise, it is an
irregular point.
Fact 2. If x is a regular point of Cd, then there exists an index set I⊥ ⊂ {1, . . . , n} with
cardinality |I⊥| = (n− d) such that 〈g(x),qi(x)〉 = 0 iff i ∈ I⊥. If x is an irregular point of
Cd, then |I⊥| > (n− d).

Regular points of a critical set are the set of points that are not also in the lower
dimensional critical sets. At regular points, the gradient is orthogonal to exactly (n − d)
eigenvectors of the Hessian, thus these points locally lie on a surface with an intrinsic
dimensionality of d. Naturally, these surfaces have their tangent and orthogonal spaces
locally.
Definition 3. Let x be a regular point of Cd with I⊥. Let I‖ = {1, . . . , n} − I⊥. The

tangent subspace is Cd‖ (x) = span{qi(x)|i ∈ I‖} and the normal/orthogonal subspace is

Cd⊥(x) = span{qi(x)|i ∈ I⊥}.
Definition 4. A regular point x of Cd with I⊥ is (assuming no zero-eigenvalues exist for
simplicity):

1. a regular point in the principal set Pd iff λi(x) < 0 ∀i ∈ I⊥; that is, x is a local
maximum in Cd⊥(x).

2. a regular point in the minor setMd iff λi(x) > 0 ∀i ∈ I⊥; that is, x is a local minimum
in Cd⊥(x).

3. a regular point in the saddle set Sd otherwise; that is, x is a saddle in Cd⊥(x).

Regular and irregular points in these special cases are defined similarly. Also, tangent and
orthogonal subspaces are defined identically.

Clearly, (Pd,Md,Sd) is a partition of Cd. In practice, while principal surfaces might
be useful in dimension reduction as in manifold learning, minor surfaces, valleys in the
probability density function, can be useful in semi-supervised learning. A common theme
in semi-supervised learning employs the so-called cluster hypothesis, where the valleys in the
data probability density function have to be identified (Chapelle et al., 2006), like in the well-
known Low Density Separation algorithm (Chapelle and Zien, 2005). Note that allowing
zero-eigenvalues would result in local plateaus in pdf, and allowing repeated eigenvalues
would result in ill-defined regular points. While conceptually the consequences are clear,
we avoid discussing all possible such circumstance for now for the sake of simplicity. We
give a detailed discussion on these limitations in Section 2.6.

By construction, we have x ∈ P0 iff x is a local maximum of p(x); x ∈ M0 iff x is a
local minimum of p(x); x ∈ S0 iff x is a saddle point of p(x). Furthermore, Pd ⊂ Pd+1

and Md ⊂ Md+1.2 In mean shift clustering, projections of data points to P0 are used to
find the solution (Cheng, 1995; Comaniciu and Meer, 2002). In fact, the attraction basin3

of each mode of the pdf can be taken as a local chart that has a curvilinear orthogonal

2. Observe this inclusion property by revisiting Figure 1, as the major principal curve (show in the figures
on the right) passes through all local maxima of the Gaussian mixture density.

3. The attraction basin is defined as the set of points in the feature space such that initial conditions chosen
in this set evolve to a particular attractor -modes of the pdf for this particular case. In the context of
mean-shift the underlying criterion is the KDE of the data. In this case, attraction basins are regions
bounded by minor curves, and the attractors are the modes of the pdf.
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coordinate system determined by the eigenvectors of the Hessian of the pdf (or a nonlinear
function of it - consequences of the choice of the nonlinear function will be discussed soon).

Note that the definitions and properties above allow for piecewise smooth principal
surfaces and opportunities are much broader than techniques that seek a globally smooth
optimal manifold, which does not generally exist according to our interpretation of the
geometry. Figure 2 illustrates a simple density where a globally smooth curve (for instance
a principle line) can not provide a satisfactory underlying manifold; in fact such a case
would likely be handled using local PCA - a solution which essentially approximates the
principal curve definition we advocate above.

At this point we note that due to the assumption of a second-order continuously differ-
entiable pdf model, the Hessian matrix and its eigenvectors and eigenvalues are continuous
everywhere. Consequently, at any point on the d-dimensional principal set (or critical or
minor sets) in a small open ball around this point, the points in the principal set form a con-
tinuous surface. Considering the union of open balls around points in the d−1-dimensional
principal surface, we can note that the continuouty of the d-dimensional surface implies
continuity of the d− 1-dimensional subsurface as well as the 1-dimensional projection tra-
jectories in the vicinity. Furthermore, if we assume that the pdf models are three-times
continuously differentiable, the projection trajectories (following local Hessian eigenvectors)
are not only locally continuous, but also locally continuously differentiable). In general, the
order of continuous differentiability of the underlying pdf model is reflected to the emerging
principal surfaces and projection trajectories accordingly.

2.3 Principal Surfaces of a Nonlinear Function of the PDF

In this section we show that for a pdf the set of points that constitute Pd is identical to
the set of points that constitute Pd

f of the function f(p(x)) where f(ξ) is monotonically
increasing. The same conclusion can be drawn and shown similarly for the minor and
critical surfaces; details of this will not be provided here.

Consider x, a regular point of Pd with pdf p(x) and its gradient-transpose g(x) and
Hessian H(x). Then, the eigenvectors and eigenvalues of the Hessian at this point can be
partitioned into the parallel and orthogonal subspace contributions: H(x) = Q‖Λ‖Q

T
‖ +

Q⊥Λ⊥Q
T
⊥, where the parallel subspace is spanned by d eigenvectors in the columns of Q‖

and the orthogonal subspace is spanned by (n− d) eigenvectors in Q⊥. At a regular point
the gradient is in the tangent space, therefore, g(x) = Q‖β for some suitable vector β of
linear combination coefficients. The gradient-transpose and Hessian of the function f(p(x))
are:

gf (x) = f ′(p(x))g(x)

= f ′(p(x))Q‖β ,

Hf (x) = f ′(p(x))Hf(x) + f ′′(p(x))g(x)gT (x)

=
(
f ′(p(x))Q‖Λ‖Q

T
‖ + f ′′(p(x))Q‖ββ

TQT
‖

)
+ f ′(p(x))Q⊥Λ⊥Q

T
⊥ .

We observe that at x the gradient gf (x) is also in the original d-dimensional tangent space.
Further, the orthogonal subspace and the sign of its eigenvalues remain unchanged (since
f ′(ξ) > 0). This shows that if x is a regular point of Pd, then it is also a regular point of
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Pd
f . The converse statement can also be shown by switching the roles of the two functions

and considering the inverse of f as the nonlinear mapping.

Note that we simply proved that the principal surface (as a set of points) of a given
dimension remains unchanged under monotonic transformations of the pdf. If one projects
points in higher dimensional surfaces to lower dimensional principal surfaces following tra-
jectories traced by the Hessian of f(p((x))), these projection trajectories will depend on f .
This brings us to the connection with PCA.

2.4 Special Case of Gaussian Distributions, Connections to PCA

For a jointly Gaussian pdf, choosing f(ξ) = log(ξ) yields a quadratic function of x, thus the
local Hessian Hlog(x) = −(1/2)Σ−1 becomes independent of position. Consequently, the
local Hessian eigendirections form linear trajectories and principal surfaces become hyper-
planes spanned by the eigenvectors of the Gaussian’s covariance matrix. If this connection
to PCA is desired, that is, if the density becomes Gaussian, principal surface projections
of points coincide with those one would obtain via linear PCA, then the choice log p(x)
becomes attractive. Otherwise, one can seek choices of f that brings other benefits or de-
sirable properties. For this reason, using log as the nonlinearity, we introduce the concept
of local covariance matrix.

Definition 5. The local covariance-inverse of a pdf at any point x is given by −2 times
the Hessian of the logarithm of the pdf. Specifically, in terms of the gradient-transpose and
the Hessian of the pdf, this corresponds to Σ−1(x) = −p−1(x)H(x) + p−2g(x)gT (x). If
we assume that its eigenvalue-vector pairs are {γi(x),vi(x)} for i ∈ {1, . . . , n} and if the
eigenvalues (some of which might be negative) are sorted as follows: γ1 < . . . < γn, the
local ordering of critical directions from most principal to least follows the same indexing
scheme (i.e., γn is the first to go when projecting to lower dimensions).

2.5 Existence of Principal Curves and Surfaces

Considering Hastie’s principal curve definition, the existence proof of principal curves is lim-
ited to some special cases, such as elliptical or spherical distributions concentrated around
a smooth curve. It should also be noted that this definition of the principal curve requires
the principal curve not to intersect itself. The principal curve definition of Kegl et al. (2000)
and Sandilya and Kulkarni (2002) are theoretically more appealing in this context, since
by their definition, the principal curve always exists if the distribution has finite second
moments.

According to our definition, the principal curve exists as long as the data probability
density is twice differentiable, such that the Hessian is nonzero. There is no restriction
of finite moments, which is an improvement on existing methods. However, also note
that by our definition the principal curve does not exist for uniform distributions.4 In
practice, however, since we will build our algorithms based on KDE with Gaussian kernels
or GMM, even if the true underlying distribution is uniform, KDE or GMM guarantee that
the gradient and Hessian are continuous.

4. Note that one can always convolve a distribution with a spherical Gaussian or other circularly symmetric
unimodal kernel to introduce continuous first and second derivatives without distorting the geometry of
the principal surfaces.
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Figure 2: A T-shaped Gaussian mixture
.

2.6 Local Ranking of the Principal Curves and Ambiguities

In PCA, the ordering of the principal component directions are naturally given by sorting
the corresponding eigenvalues of the covariance matrix in a descending order. Note that,
since it coincides with PCA for Gaussian distributions, our principal curve definition also
has the ambiguity that occurs in PCA; the principal surface of a spherically symmetric
distribution is not well-defined.

Conditional expectation or mean squared projection error based definitions have driven
the principal curves research, but in general, the definition is limited to the nonlinear
counterpart of the first principal component. In fact, there is no definition of second, third,
etc. principal curve in the literature that we are aware of. Considering the connection
to PCA, one can see that our principal curve definition is not limited to the nonlinear
counterpart of the first principal component, under the assumption that the Hessian matrix
has distinct eigenvalues, one can obtain the local ordering for any d-dimensional principal
manifold.

In general, data densities may take complex forms and counterintuitive scenarios may
arise. Hence, generally, local information may not always indicate the global rank, and a
global ordering in a principal set of given dimensionality may not be possible. To illustrate
this fact, consider again the T-shaped Gaussian mixture consisting of two components. Note
that both branches of this principal graph correspond to the leading eigenvector of the local
covariance at different portions of the feature space and a global ranking is not possible.

3. Subspace Constrained Mean Shift (SCMS)

Consider the fact that P0, principal surface of dimensionality zero, is by construction the
local maxima points of the p(x). This presents a strong connection to clustering, since
mapping to the local maxima points of the data pdf is a widely accepted clustering solu-
tion, achieved by the well-known mean shift algorithm (Cheng, 1995; Comaniciu and Meer,
2002). In this section we present a subspace constrained likelihood maximization idea that
stems from Definition 4; a point on Pd is a local maximum in the orthogonal space. We
provide an algorithm which is very similar to mean-shift in spirit. This lays an algorith-
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mic connection between clustering and principal curve/surface fitting that accompanies the
theoretical connection.

Mean-shift assumes an underlying KDE probability density of the data and implements
a fixed-point iteration that maps the data points to the closest mode (local maximum) of
the pdf, and the mean-shift update at any point on the feature space is parallel with the
gradient of the KDE (Cheng, 1995; Comaniciu and Meer, 2002). A point is on the one di-
mensional principal surface iff the local gradient is an eigenvector of the local Hessian -since
the gradient has to be orthogonal to the other (n− 1) eigenvectors- and the corresponding
(n− 1) eigenvalues are negative. Again via the same underlying KDE assumption, a simple
modification of the mean-shift algorithm by constraining the fixed-point iterations in the
orthogonal space of corresponding (n− 1) eigenvector directions at the current point in the
trajectory leads to an update that converges to the principal curves and not to the local
maxima. For this case, the orthogonal space of corresponding (n−1) eigenvector directions
of the local covariance is the parallel space of the leading eigenvector of the local covariance.
The algorithm could be modified to converge to the d-dimensional principal manifold P d

trivially, by selecting the constrained subspace as the subspace spanned by corresponding
(n − d) eigenvectors of the local covariance to constrain the mean-shift iterations into the
subspace spanned by d leading eigenvectors of the local covariance. To provide both para-
metric and nonparametric variations, we will present an algorithm that can be used for
well-known KDE and GMM density estimators.

Consider the data samples {xi}
N
i=1, where xi ∈ ℜ

n. The KDE of this data set (using
Gaussian kernels) is given as

p(x) = (1/N)

N∑

i=1

GΣi
(x− xi) , (1)

where Σi is the kernel covariance for xi; GΣi
(y) = CΣi

e−y
TΣ−1

i
y/2. Note that for in (1) we

use the general case of anisotropic variable (data-dependent) kernel functions. For isotropic
kernels one can use a scalar value instead of a full covariance, or for fixed kernel functions
one can constrain the data dependency and drop the sample index i. Again for the general
case, the gradient and the Hessian of the KDE are

g(x) = −N−1
N∑

i=1

ciui ,

H(x) = N−1
N∑

i=1

ci(uiu
T
i −Σ−1

i ) ,

Σ−1(x) = −p−1(x)H(x) + p−2g(x)gT (x) (2)

where ui = Σ−1
i (x− xi) and ci = GΣi

(x− xi) .

Let {(γ1(x),v1(x)), . . . , (γn(x),vn(x))} be the eigenvalue-eigenvector pairs of Σ−1(x)
as defined in (2) ordered from smallest to largest and the mean-shift update emerging from
(2) is

x←m(x) = (
∑N

i=1 ciΣ
−1
i )−1

∑N
i=1 ciΣ

−1
i xi (3)
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1. Initialize the trajectories to a mesh or data points and set t = 0. Input the Gaussian
kernel bandwidth σ (or kernel covariance matrix for anisotropic Gaussian kernels) to
the algorithm.

2. For every trajectory evaluate m(x(t)) using (2) and (3).

3. Evaluate the gradient, the Hessian, and perform the eigendecomposition of
Σ−1(x(t)) = VΓV (in specific cases, the full eigendecomposition could be avoided).

4. Let V⊥ = [v1 . . . vn−d] be the (n− d) largest eigenvectors of Σ−1

5. x̃(k) = V⊥V
T
⊥m(x)

6. If | gT (x)VT
⊥g(x) | /(‖g(x)‖ · ‖V

T
⊥g(x)‖) < ǫ then stop, else x(t+ 1)← x̃, increment

t and go to step 2.

Table 1: KDE-based SCMS Algorithm

At x, the subspace mean-shift update is performed by projecting x into the constrained
space x̃k = (V⊥V

T
⊥m(x)). The stopping criterion can be constructed from definition

directly to check if the gradient is orthogonal to the subspace spanned by the selected
n − d eigenvectors when projecting the data from n to d dimensions: | gT (x)VT

⊥g(x) |
/(‖g(x)‖ · ‖VT

⊥g(x)‖) < ǫ. For the special case of d = 1, an equivalent stopping cri-
terion is that the gradient becomes an eigenvector of the Hessian, so one can employ:
| gT (x)Hg(x) | /(‖g(x)‖ · ‖Hg(x)‖) > 1− ǫ. Alternatively, the more traditional (but rather
more risky) stopping criterion of ‖x̃k − xk‖ < ǫ can be used.

The iterations can be used to find the principal curve projection of any arbitrary point
of interest in the feature space.5 To find the principal curve projections of the data samples,
a suitable way is to initialize the projection trajectories to the data samples themselves, as
in mean-shift clustering. The general version of SCMS algorithm that converges to the d-
dimensional principal manifold is presented in Table 1, and SCMS principal curve algorithm
can simply be obtained by setting d = 1.

Following the derivation of the KDE with Gaussian kernel functions, using SCMS for
GMM density estimates is trivial, by replacing the data samples with Gaussian mixture cen-
ters and the kernel bandwidth/covariance with the Gaussian mixture bandwidth/covariances.
From now on, we will refer these as KDE-SCMS and GMM-SCMS, and we will present re-
sults based on both KDE and GMM density estimates in the next section.

3.1 Properties of KDE-SCMS

Before proceeding to experiments we would like to briefly discuss some properties of SCMS.
We believe these properties are important since they connect many open-ended questions in
principal curves literature to well-studied results in density estimation. Outlier robustness

5. Note that these fixed-point-update-based projections are relatively coarse approximations and more
accurate projections can be obtained via numerical integration of the corresponding differential equations,
for instance using Runge-Kutta order-4 method.
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Figure 3: Curves buried in noise (left) and finite bandwidth (middle) and variable band-
width (right) KDE

and regularization properties are just some examples of the properties that are adopted
from the particular density estimation method -KDE in our case. Similar algorithms that
stem from the definitions in Section 2 can be designed for other density estimation methods
as well. The properties presented here are a few of many possibilities to illustrate the
connections.

3.1.1 Computational Load

The computational complexity of KDE-SCMS is O(N2 × n3), where N is the number of
samples, and n is the data dimensionality. The n3 dependency comes from the eigendecom-
position of the Hessian matrix. For GMM-SCMS, the complexity becomes O(N ×m× n3),
where m is the number of Gaussians in the mixture density estimate.6 Note that the com-
putational load required by SCMS is only slightly higher than the mean-shift algorithm that
has been practically implemented in many application domains. The literature is rich in
approaches to accelerate mean shift, all of which are directly applicable for our algorithm as
well. These methods vary from simple heuristics to more principled methods like Fast Gaus-
sian Transform (Yang et al., 2003b), quasi-Newton methods (Yang et al., 2003a) or Gaussian
Blurring Mean Shift (Carreira-Perpinan, 2006). The cubic computational dependency may
become the bottleneck for very high dimensional data. One solution to this problem might
be to look for the d leading eigenvalues of the Hessian matrix sequentially, instead of the
full eigendecomposition (as in Hegde et al., 2006), which will drop the complexity down to
O(N2 × d3) where d is the target dimensionality (d = 1 for principal curves). However
note that if this is the case, the computational bottleneck is not the only problem. If we
have d3 ≫ N2, density estimation will also suffer from the curse of dimensionality and
our approach -that is based on the density estimation- will fail. In the experimental result
section we will show results with such high dimensional data.

3.1.2 Statistical Consistency

Our algorithmic approach has used the powerful kernel density estimation (KDE) technique
to estimate principal surface structures that underly data densities. The convergence prop-

6. Note that this excludes the computational load required for the expectation-maximization training to fit
the GMM.
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erties of KDE have been well understood and bandwidth selection, especially in the case of
fixed-bandwidth models, have been rigorously investigated leading to a variety of criteria
for KDE construction with optimal density estimate convergence properties. In principal
surfaces, however, we rely on the accurate estimation of the first and second derivatives
of the multivariate data density along with the density itself. Consequently, an important
question that one needs to ask (the authors thank the reviewer who posed this question) is
whether the first and second order derivatives of the KDE will converge to the true corre-
sponding derivatives, thus leading to the convergence of the principal surface structures of
the KDE to those of the actual data density. Literature on the convergence properties of
KDE in estimating derivatives of densities is relatively less developed - however, some work
exists on the convergence of KDE derivatives in probability using isotropic kernels with
dependent data and general bandwidth sequences (Hansen, 2008). In particular, a timely
result on general kernel bandwidth matrices for fixed-bandwidth KDE derivatives, albeit
slightly more restrictive since it uses convergence in the mean squared error sense, partly
answers this question for us under relatively reasonable assumptions considering typical
machine learning applications involving manifold learning (Chacon et al., 2011).

Specifically and without going into too much detail, Chacon et al. (2011) demonstrate
that under the assumptions that the (unstructured but fixed) kernel bandwidth matrix
converges to zero fast enough, and the underlying density and the kernel have continuous
square integrable derivatives up to the necessary order or more (density must have square
integrable derivatives 2 orders more than the kernel), and that the kernel has a finite
covariance, the integrated mean squared error between the vector of order-r derivatives of
the KDE converge to those of the true density of the data (from Theorems 1-3). The order
of convergence for the integrated mean squared error has been given, from Theorems 2 &
3, as: o(n−4/(d+2r+4)) + o(n−1|H|−1/2trr(H−1) + tr2H)

This demonstrates that as the number of samples N goes to infinity, given a sufficiently
smooth density and kernel, the derivatives will also converge. Consequently, principal sur-
faces characterized by first and second derivatives as in our definition will also converge.

3.1.3 Outlier Robustness

Outlier robustness is another key issue in principal curve literature. Principal curve def-
initions that involve conditional sample expectations and mean squared projection error
do not incorporate any data likelihood prior; hence, they treat each data sample equally.
Such approaches are known to be sensitive to noise, and presence of outlier data samples,
of course, will bias the principal curve towards outliers. Stanford and Raftery present an
algorithm that improves upon the outlier robustness of the earlier approaches (Stanford and
Raftery, 2000).

Outlier robustness is a well-known property of variable bandwidth KDE. In this ap-
proach, a data dependent kernel function is evaluated for each sample such that the width
of the kernel is directly proportional with the likelihood that sample is an outlier. This can
be implemented in various ways, and the most commonly used methods are the K-nearest
neighbor based approaches, namely: (i) the mean/median distance to the K -nearest neigh-
bor data points, (ii) sum of the weights of K -nearest neighbor data points in a weighted
KDE. Hence, the kernel bandwidth increases for the samples that are in a sparse neigh-
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Figure 4: Mean projection error vs. overfitting tradeoff as a kernel bandwidth selection
problem. Three density estimates are presented - a narrow bandwidth (left)
Maximum Likelihood kernel bandwidth (middle) and a wide kernel bandwidth
(right)

borhood of data samples. Figure 3 (left) presents a data set consisting of two crescent-like
clusters buried in noise. In fact, this data set is similar to the illustration that Stanford
and Raftery use as they propose their noise robust principal curve approach (Stanford and
Raftery, 2000). We present the fixed and variable bandwidth -using K -nearest neighbor
method (i) mentioned above and selecting K = N1/4- KDE of the data set in Figure 3
in middle and right, respectively. Note that in the resulting density estimate the variable
size KDE eliminates the effects of the outliers without oversmoothing or distorting the pdf
significantly in the support of the data. Selecting the kernel functions in a data dependent
manner, can make KDE-based SCMS robust to outliers in the data. However, additional
computational load of variable kernel bandwidth evaluations may increase the overall com-
putational complexity.

3.1.4 Regularization and Overfitting

If a problem is formulated over sample expectations or minimization of the average projec-
tion error, the issue of overfitting arises. In the context of principal curves and surfaces,
most explicitly, Kegl brings up this question in his PhD dissertation (Kegl, 1999). Consid-
ering the data set and principal curves in Figure 4 (left), Kegl asks, which of the curves
is the right one. ”Is the solid curve following the data too closely, or is the dashed curve
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generalizing too much?” In general, of course, this is an open ended question and the answer
depends on the particular application.

Still, density estimation methods can provide many approaches to define the regulariza-
tion, varying from heuristics to theoretically well-founded approaches like maximum likeli-
hood. In other words, instead of trying for different length (Kegl et al., 2000) or curvature
(Sandilya and Kulkarni, 2002) parameters, density estimation can provide purely data-
driven approaches, where the regularization parameters are learned from the data directly
using cross-validation.

Figure 4 shows density estimates obtained using KDE for different kernel bandwidth
selections for the data set presented. In SCMS, the trade-off between projection error and
overfitting can be adjusted by setting the kernel width. One can select the kernel bandwidth
manually by observing the data or exploiting domain specific knowledge. This is, of course,
not much different than observing the data and selecting a suitable length or curvature
constraint. However, the real advantage here is the rich literature on how to select the
kernel function from the data samples directly. There are many theoretically well-founded
ways of optimizing the kernel width according to maximum likelihood or similar criteria
(Silverman, 1986; Parzen, 1962; Comaniciu, 2003; Sheather and Jones, 1991; Jones et al.,
1996; Raykar and Duraiswami, 2006).

Furthermore, anisotropic and/or variable size kernel functions naturally implement
many types of constraints that cannot be defined by any length or bound of turn. By se-
lecting anisotropic kernel functions, one can define the regularization constraint at different
scales along different directions. This can also be achieved by lenghth/curvature constraints
by scaling the data differently among different dimensions. However, data-dependent vari-
able bandwidth kernels can define varying constraints throughout the space. This is not
possible to achieve by a constant curvature or length penalty of any sort.

In summary, our KDE based principal curve projection algorithm not only connects
the trade off between the projection error and generalization into well studied results of
density estimation field, it also allows one to derive data-dependent constraints that vary
throughout the space, which cannot be given by any length or curvature constraint whatso-
ever. Although this still cannot ultimately answer the open-ended question on the trade-off
between the regularization and projection error, it provides a principled way to approach
the problem and proves to be effective in many real applications as we will show next.

4. Experimental Results

This section consists of three parts. In the first part, we provide comparisons with some
earlier principal curve algorithms in the literature. We perform simulations on notional
data sets and give performance and computation times. In the second part, we focus on
real applications, where we briefly mention some applications with pointers to our recent
publications and also provide results in some areas that principal curves has (feature ex-
traction for OCR) or has not been (time-frequency distribution sharpening, MIMO channel
equalization) used before. In these applications we use SCMS directly. Surely, pre- and
post-processing steps can be added to improve performance of these applications, however
our aim is to show the versatility of the approach not to optimize every implementation
detail. In the third and final part, we focus on the limitations of the method.
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Figure 5: Zig-zag data set, and Hastie-Stuetzle principal curve

Same as the principal line, principal curves -in our definition- extend to infinity. In
general though, what one is really interested in is not the whole structure, but the projec-
tions of samples onto the underlying structure. Therefore, throughout this section, rather
than populating samples on the curve that extend to infinity, we prefer representing the
principal curve with the data samples projected onto the principal curve, so that the curves
in the plots remain in the support of the data. For the same reason, although the underly-
ing structure is continuous (and can be populated into any desired density), the presented
principal curves sometimes do not look continuous where the data is sparse.

4.1 Comparisons with Other Principal Curve Methods

In this section we present comparisons with original Hastie-Stuezle principal curve method
(Hastie, 1984; Hastie and Stuetzle, 1989) and the Polygonal Line Algorithm by Kegl et al.
(Kegl et al., 2000), and we provide both computation time and performance comparisons.

4.1.1 Zig-Zag Data Set

Zig-Zag data set has been used in an earlier principal curve paper by Kegl et al. (2000) (This
data set is provided by Kegl). Figure 5 shows the data samples and result of Hastie’s algo-
rithm. Figure 6 presents the results of Kegl’s polygonal line algorithm for different penalty
coefficients. The length penalty coefficient is equal to 0.1, 0.3, 0.5, and 0.7, respectively.
Polygonal Line algorithm with the right length penalty seems to be working the best for
this dataset with high curvature on the corners.

In Figure 7 we compare results of the SCMS algorithm based on three different density
estimates: (i) KDE with constant bandwidth, (ii) KDE with variable (data-dependent)
covariance (iii) Gaussian mixture with 4 components. For (i) and (ii), the bandwidth and
covariance of the Gaussian kernel are selected according to the leave-one-out maximum
likelihood criterion (Duda et al., 2000). For the Gaussian mixture model, the correct model
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Figure 6: Zig-zag data set, and result of the Polygonal Line Algorithm

order is assumed to be known and a standard expectation-maximization algorithm is used
to estimate the parameters (Duda et al., 2000).

Here all density estimates lead to very similar results. Since it allows one to learn the
kernel covariances elongated with the data, (ii) gives a sharper KDE estimate as compared to
(i). However, since there is no significant difference between the principal curve projections
of these two, (ii) might be regarded as somewhat overfitting, since too many parameters (d2

additional parameters per sample, as the constant kernel bandwidth is replaced by a full
data-dependent covariance) are learned, leading to no significant changes. The result shown
in (iii) is a good example which shows that good results can be obtained if the parametric
family fits the distribution very well. Of course, as you can imagine, the GMM based results
might have been much worse for an unsuitable selection of the number of components, or
if EM converges to a suboptimal result due to poor initialization, whereas KDE is much
more robust in this sense. Also note an analogy to Kegl’s approach, using GMM-SCMS
leads to a piecewise linear structure if the Gaussian components are sufficiently far (in
Mahalanobis distance sence) from each other. In the vicinity of the Gaussian component
centers, except when components significantly overlap or get close, the principal curves can
be approximated well linearly by piecewise local components.

Note that theoretically the principal curves in (i) and (ii) extend to infinity on both ends;
and for the GMM based example in (iii), each component crosses and extends to infinity.
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Here -and also for the rest of the paper- we present the data projected onto principal
curve only, that depicts the portion of the principal curve in the support of the input data.
The nature of the curves outside this region is obvious from the definition and the density
estimate plots.

4.1.2 Spiral Data Set

Since many principal curve algorithms are based on the idea of starting with the principal
line and adding complexity to the structure (for example adding a vertex to piecewise
linear curve) to minimize mean projected error, a data set that folds onto itself may lead to
counterintuitive results, and spiral data set is a benchmark data set that has been used in
manifold learning and principal curve algorithm literature (Kegl et al., 2000; Vincent and
Bengio, 2003) (again, this data set is provided by Kegl).

Similar to the previous example, we start with the results of Hastie-Stuetzle algorithm
and Kegl’s polygonal line algorithm. Figure 8 shows the data samples and the result of
Hastie’s algorithm. Figure 9 presents the results of Kegl’s polygonal line algorithm for
different penalty coefficients. The length penalty coefficient is equal to 0.1, 0.2, 0.4, and
0.5, respectively.

As in the previous example, in SCMS uses the leave-one-out ML kernel bandwidth for
this data set. Figure 10 shows the same spiral data set along with the results of KDE-
SCMS. Comparing Figure 9 and Figure 10, one can see that both Polygonal Line algorithm
-with suitable parameters- and our locally defined principal curve can achieve satisfactory
results. Therefore, we create a more challenging scenario, where the spiral this time has some
substantial noise around the underlying generating curve and has fewer samples. Figure 11
shows the result of KDE-SCMS, and Figure 12 shows results of Polygonal Line algorithm
for different penalty coefficients; 0.05, 0.1, 0.2, and 0.3.

On the noisy spiral data set, we also provide quantitative results for different noise levels
and compare the computation times. At each noise level, we find the principal curve using
both methods using the same noisy data set, and afterwards we take another 200 samples
from the same generating curve and add same amount of radial noise to use as the test set.
We present the MSE between the projection of the test samples and their original points on
the noiseless generating curve. Results for KDE-SCMS, and Polygonal Line algorithm are
presented in Table 2 along with corresponding running times for 50 Monte Carlo runs of
this experiment. Since results are presented for the leave-one-out ML kernel bandwidth, the
running times for SCMS include this ML training as well. For the Polygonal Line algorithm
we performed a manual parameter tuning for each noise level and best results are presented.

Overall, as the noise level increases, the computation time of SCMS increases, presum-
ably due to more iterations being required for convergence; still, the computation time is
much less than that of the Polygonal Line algorithm. In terms of MSE between the esti-
mated and the true curve, SCMS provides similar or better performance as compared to
the Polygonal Line algorithm. For some noise levels the difference in performance is very
small; however, note that the real advantage of SCMS is that it provides the similar/better
results nonparametrically -as compared to the best result of several runs of the Polygonal
Line algorithm with different parameters.
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Figure 7: Zig-zag data set, and its principal curve projections obtained for KDE with
isotropic constant bandwidth (top), KDE with anisotropic and data-dependent
covariance (middle), and Gaussian mixture with 4 components (bottom). The
underlying density estimates are shown on the right column.
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Figure 8: Spiral data set, and Hastie-Stuetzle principal curve

Computation time Mean squared projection error σnoise
SCMS 3.237 sec. 0.003184 0.005
PL 18.422 sec. 0.017677 0.005

SCMS 3.508 sec. 0.011551 0.01
PL 20.547 sec. 0.024497 0.01

SCMS 3.986 sec. 0.062832 0.02
PL 22.671 sec. 0.066665 0.02

SCMS 6.257 sec. 0.194560 0.04
PL 27.672 sec. 0.269184 0.04

SCMS 7.198 sec. 0.433269 0.06
PL 19.093 sec. 0.618819 0.06

SCMS 8.813 sec 0.912748 0.08
PL 19.719 sec 1.883287 0.08

Table 2: Computation Time and MSE Performance Comparisons

4.1.3 Loops, Self-intersections, and Bifurcations

Since they are specifically designed to fit smooth curves to the data, traditional principal
curve fitting approaches in the literature have difficulties if there are loops, bifurcations and
self intersections in the data. Perhaps the most efficient algorithm in this context is Kegl’s
principal graph algorithm (Kegl and Kryzak, 2002), where Kegl modifies his polygonal line
algorithm (Kegl et al., 2000) with a table of predefined rules to handle these irregularities.
On the other hand, in the presence of such irregularities, our definition yields a principal
graph -a collection of smooth curves. Since the ridges of the pdf can intersect each other,
KDE-SCMS can handle such data sets with no additional effort/parameter. Results of
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Figure 9: Spiral data set, and result of the Polygonal Line Algorithm

KDE-SCMS on a synthetically-created snow crystal data set that has a number of loops,
self intersections, and bifurcation points is presented in Figure 13.

4.1.4 Extending the Definition to Higher Dimensional Manifolds

The generalization of principal curves to principal surfaces and higher order manifolds is
naturally achieved with our definition. Here we present the results of KDE-SCMS for d = 1
and d = 2 for a three-dimensional helix data set in Figure 14. (For d = 2, we present
the surface built by the Delaunay triangulations Delaunay, 1934 of the principal surface
projections for better visualization.) Here, note that the covariance of the helix data around
the principal curve is not symmetric, and the horizontal dimension has a higher variance
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Figure 10: Spiral data set, and KDE-SCMS principal curve
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Figure 11: Noisy spiral data set, and KDE-SCMS principal curve

(and this is why the principal surface is spanned along this dimension). If the helix had been
symmetric around the principal curve, the principal surface would have been ill-defined.

263



Ozertem and Erdogmus

Figure 12: Noisy spiral data set, and result of the Polygonal Line Algorithm

4.2 Applications of Principal Curves

In the following, we will present a number of applications of our approach; on time series
denoising, independent components analysis, time-frequency reassignment, channel equal-
ization, and optical character skeletonization.

4.2.1 Time Series Signal Denoising

KDE-SCMS finds use in many applications of time series denoising. In general, the feature
space for such problems can be constructed using the time index as one of the features,
yielding an embedded structure of the -possibly multidimensional- time signal. In such
spaces, we show that KDE-SCMS can successfully be used for denoising (Ozertem and
Erdogmus, 2009; Ozertem et al., 2008). In the following, first we will briefly mention our
previous work on applying KDE-SCMS to signal denoising applications, and proceed with
preliminary results in two other application domains.
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Figure 13: Snow crystal data set, and KDE-based SCMS result

We proposed to use principal curve projections as a nonparametric denoising filter at
the preprocessing stage of time warping algorithms, which in general are prone to noise
(Ozertem and Erdogmus, 2009). In this setting, time embedding is used in the scatter
plot of the pair of signals that we want to find the time warping function in between.
We use a slightly different variant of KDE-based SCMS for this purpose that exploits the
application specific case that the time embedding dimension is not a random variable, and
shown improvement in time series classification and clustering.

A common problem in signal denoising is that if the signal has a blocky, in other words,
a piecewise-smooth structure, traditional frequency domain filtering techniques may lead
to oversmoothings in discontinuities. One idea to overcome this is to take discrete wavelet
transform (DWT), do the filtering (or thresholding) in this domain and recover the smoothed
signal by taking inverse DWT. The shortcoming of this is high frequency artifacts (similar
to Gibbs-effect) at both ends of the discontinuities. We show that KDE-SCMS can be used
for this purpose (Ozertem et al., 2008). Since at the discontinuities, KDE will not be much
affected by the signal samples of the other end of the discontinuity, the algorithms leads to
a piecewise-smooth denoising result without introducing oversmoothings or any artifacts at
the discontinuities.

4.2.2 Nonlinear Independent Component Analysis

The proposed principal surface definition can be viewed in a differential geometric framework
as follows: at each point x, the solutions to the differential equations that characterize curve
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Figure 14: Helix data set, and KDE-based SCMS result for d = 1 (top) and d = 2 (bottom)

whose tangents are the eigenvectors of the local covariance of the pdf form a local curvilinear
coordinate system that is isomorphic to an Euclidean space in some open ball around x.
The trajectories that take a point x to its projection on the d-dimensional principal surface
can be used to obtain these curvilinear coordinates that specify the point with respect
to some reference critical point that can be assumed to be the origin. Consequently, for
instance, for x, the lengths of curves during its projection from n-dimensional space to the
(n−1)-dimensional principal surface, and then subsequently to (n−2), . . . , 1, and eventually
to a local maximum (the one that has been recognized as the origin) could, in some cases
when a global manifold unfolding is possible, lead to a nonlinear coordinate vector. This
manifold unfolding strategy can be used in many applications including visualization and
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Figure 15: Wigner-Ville distribution in time-frequency domain, its smoothed version and
principal curve of the smoothed distribution

nonlinear blind source separation. As we do not aim to focus on the manifold unwrapping
aspects of the proposed framework in this paper (because that, in principle, requires solving
differential equations accurately and the proposed algorithm is not at a desired level of
accuracy for that purpose), we simply point out that the definition presented here allows
for a principled coordinate unfolding strategy as demonstrated in nonlinear blind source
separation (Erdogmus and Ozertem, 2007). Developing fast feedforward approximations
(via parametric or nonparametric mappings) to this manifold unwrapping strategy remains
as a critical future work.

4.2.3 Time-Frequency Distribution Reassignment

Time-frequency reassignment is a known problem in signal processing literature and yields
another example, where KDE-SCMS can be applied directly. As any other bilinear energy
distribution, the spectrogram is faced with an unavoidable trade-off between the reduc-
tion of misleading interference terms and a sharp localization of the signal components.
To reduce the smoothing effects introduced by the window function in short-term Fourier
transform, reassignment methods are used to sharpen the time-frequency representation by
using the rate of change of phase of the signal, which finds numerous applications in speech
signal processing and signal roughness analysis (Fulop and Fitz, 2007; K. Fitz and L. Haken
and P. Christensen, 2000). Parameter envelopes of spectral components are obtained by fol-
lowing ridges on the smooth time-frequency surface, using the reassignment method (Auger
and Flandrin, May 1995) to improve the time and frequency estimates for the envelope
breakpoints. Figure 15 shows our preliminary results for a synthetic time frequency sur-
face with multiple components in some time intervals that yield cross interference terms.
Wigner-Ville distribution of the signal, and the smoothed Wigner-Ville distribution, where
the cross-terms in the original spectogram are eliminated are shown in Figure 15(a). Figure
15(b) shows the principal curve of this time-frequency surface obtained by KDE-SCMS.
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Furthermore, in the presence of the auto-cross terms, a much more challenging scenario
appears (Ozdemir and Arikan, 2000; Ozdemir et al., 2001). In these cases a rotation invari-
ant reassignment method is required and traditional methods that are based on the rate
of change of the phase cannot answer this need. KDE-SCMS, on the other hand, is still
directly applicable to this problem because it is invariant to rotations in the input data.

4.2.4 Time-varying MIMO Channel Equalization

Recently, multiple-input multiple-output wireless communication systems have drawn con-
siderable attention, and there are reliable and computationally inexpensive symbol detection
algorithms in the literature (Foschini et al., Nov 1999). On the other hand, applications in
time-varying environments pose a harder problem to the changing channel state, and some
supervised algorithms have been proposed to tackle this issue, where an initialization phase
is used in the beginning for training purpose (Rontogiannis et al., May 2006; Karami and
Shiva, 2006; Choi et al., Nov. 2005).

Blind channel equalization approaches in the literature are based on clustering (Chen
et al., Jul 1993). However, these approaches mostly focus on time-invariant single-input
single-output channels. Recently, a spectral clustering technique is proposed that extends
the applications into time-varying multiple-input multiple-output channels as well (Van
Vaerenbergh et al., 2007; Vaerenbergh and Santamaria, 2008). Van Vaerenbergh and San-
tamaria introduce the time embedding into the feature space before employing the clustering
algorithm to untangle the clusters. The same idea proves to be effective in Post-Nonlinear
Blind Source Separation as well (Vaerenbergh and Santamaŕıa, 2006).

The original clustering problem in four dimensions presented in Figure 16(a). The fast
time-varying nature of the channel poses a very difficult clustering problem with overlapping
clusters. With the time embedding, the overlapping clusters become intertwined threads as
shown in Figure 16(b) with two three-dimensional subspace projections of the data. Van
Vaerenbergh and Santamaria employ a spectral clustering algorithm to solve the channel
equalization problem with no supervision. At this point, one can improve noise robustness
of the clustering by using the fact that the clusters are curves in the feature space by
using the spectral clustering of the principal curve projections instead of the data samples.
Figure 17 shows a result of KDE-SCMS for the same data set at signal to noise ratio of
5dB, along with the average normalized MSE (and ± one standard deviation) between the
actual noisefree signal and the principal curve projection over 20 Monte Carlo runs. The
principal curve projection result can give a good estimate of the noisefree signal even in
signal to noise ratio levels even lower than 0dB -where the noise power is greater than the
signal power itself.

4.2.5 Skeletonization of Optical Characters

Optical character skeletonization can be used for two purposes: feature extraction for optical
character recognition and compression. Principal curves have been used for this application
(Kegl and Kryzak, 2002). One significant problem with applying principal curve algorithms
to skeletonization of optical characters is that, by definition, algorithms are seeking for a
smooth curve. In general, data may have loops, self intersections, and bifurcation points,
which is obviously the case for optical characters. Kegl’s principal graph algorithm is
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Figure 16: Symbol clustering problem for a MIMO channel

perhaps the only method in the literature that can successfully handle such irregularities
(Kegl and Kryzak, 2002). In this approach, Kegl reshapes his polygonal line algorithm
(Kegl et al., 2000) to handle loops, and self intersections by modifying it with a table of
rules and adding preprocessing and postprocessing steps. Using the handwritten digits
data set provided by Kegl, we show the results of KDE-SCMS. Figure 18 shows the binary
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Figure 17: Signal samples and their principal curve projections, normalized MSE vs signal
to noise ratio (in dB).

images along with the principal curve projection of the pixels. SCMS gives satisfactory
results without any rule or model based special treatment for the self intersections.

4.3 Limitations, Finite Sample Effects, and the Curse of Dimensionality

Since our principal curve definition assumes the pdf to be given, it depends on the reliability
of the preceding density estimation step, which in general may not be an easy task. Stated
by Bellman as the curse of dimensionality (Bellman, 1961), it is a very well-known fact
that density estimation becomes a much harder problem as the dimensionality of the data
increases. Therefore, before we move on to applications on real data, in this section we will
present the performance of our principal curve fitting results for various density estimates
with different number of samples and dimensions.

The first comparison is with principal line estimation based on eigendecomposition of
the data covariance, where the true underlying probability distribution is Gaussian. The
second comparison examines the model order estimation using a Gaussian mixture model,
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Figure 18: SCMS results in optical characters

which in the limiting case, where the number of Gaussian mixtures is equal to the number of
samples, converges to KDE. In all comparisons presented below principal curve projections
are obtained by the KDE-SCMS algorithm using the leave-one-out ML kernel bandwidth.

4.4 Comparison with Eigenvector Estimation

As mentioned before, the reason why we prefer to use KDE is its ability to adapt to different
complex shapes that data may take. Indeed, results previously presented in this section show
that KDE based principal curve estimation proves to be efficient in adapting to many real-
life data distributions of a diverse set of applications. However, one well-known disadvantage
of KDE is the required number of samples as the dimensionality of the data increases. Here
we discuss the case where the true underlying probability density is Gaussian; hence, the
claim of the requirement to adapt to complex shapes in the data is an obvious overstatement.
In this scenario, we will compare the principal line estimator based on PCA to the principal
curve based on KDE, for different number of dimensions.

Consider the data set {xN
i=1} Gaussian distributed in d-dimensional space, where v

denotes the true principal line of this distribution, and v∗ denotes the principal line obtained
by sample PCA. What we are going to compare here is the following:

1. mean squared distance between the projection of the data samples onto the true first
eigenvector and the estimated first principal component, E{‖vTx− vT

∗ x‖}
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2. mean squared distance between the projection of the data samples onto the true
eigenvector and the principal curve projection x̃, E{‖vTx− x̃‖}.

Figure 19 presents the MSE of the principal line (dashed curve) and principal curve (solid
curve) projections for 2, 3, 4, 5, 10, 20, 30,and 40 dimensions, and average log MSE for 100
Monte Carlo simulations is shown. For all cases the MSE decreases for both methods as the
number of samples increase. Principal line projection always results in better accuracy and
the performance of principal curve projections drop exponentially for increasing dimensions.

4.5 Effects of the Model Order Estimation

An important problem in parametric density estimation is model order selection. In the
real applications presented above, we work with KDE-SCMS to provide a general purpose
nonparametric algorithm, and to avoid model order selection problems. However, using a
parametric model has two main advantages:

1. As opposed to O(N2) complexity of the KDE-SCMS, the computational complexity of
GMM-SCMS is O(MN), where M is the number of mixtures in the Gaussian mixture
and N is the number of samples, since typically M ≪ N .

2. As also implied in the previous section, with the comparison against PCA on a Gaus-
sian data set, a parametric approach with a suitable model order, the algorithm would
need less samples to achieve good principal curve estimates.

Here we will evaluate the stability of principal curve estimation with GMM-SCMS for
improper model order selections in the GMM density estimation step, and compare the
principal curve projection results for a Gaussian mixture with 3 components. Since the
true underlying density is known to have 3 components, we measure the performance as of
principal curve projection results for different number of components in the density estimate
as the distance to the principal curve projections obtained with three components

Jd = E{(x̃3(x)− x̃d(x))
2} ,

where d = 1, 2, 3, 4, 5, 6, 10, 15, 25, 50, 100, 200, 400 .

The data set x has 400 samples in 2-dimensional space. Figure 20 shows a realization of the
Gaussian mixture, and Figure 21 presents the performance of the principal curve projections
for different number of components in the Gaussian mixture estimation, and results of 50
Monte Carlo simulations is shown. Note that for increasing model orders, if the GMM
has more number of components than the true underlying distribution, the generalization
performance of the principal curve does not change significantly.

5. Discussions

We proposed a novel definition that characterizes the principal curves and surfaces in terms
of the gradient and the Hessian of the density estimate. Unlike traditional machine learn-
ing papers on manifold learning, which tend to focus on criteria such as reconstruction
error of available samples, we focus on the definition of the underlying manifold from a
more (differential—though not emphasized here) geometric point of view. There are strong
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Figure 19: Mean projection error in loge scale for principal line (dashed) and principal curve
(solid). Average of 100 Monte Carlo simulations is shown.
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Figure 20: One realization of the 3-component Gaussian mixture data used in performance
evaluations

connections between our definition and the literature. If the ridge cross-section is a uni-
modal and symmetric density, our definition coincides with the original Hastie & Stuetzle
definition. There is a strong connection to Kegl’s piecewise linear curve proposition, when
the underlying density is selected to be a Gaussian mixture. However, the connections are
less obvious when considering a principal curve or manifold definition that is not explicit
(e.g., the principal curve is the solution to some optimization problem without an analytical
expression or property).

Providing the definition in terms of the probability density estimate of the data allows us
to exclude any smoothness or regularization constraints from the definition, and adopt them
from the density estimation literature directly. Although this cannot ultimately answer the
question of the trade-off between generalization and overfitting, using the connection to
density estimation yields data-driven nonparametric solutions for handling regularization
and outlier robustness. In the definition, we also do not assume any parametric model and
since the ridges of the pdf can intersect each other, handling self-intersecting data structures
requires no additional effort.

An important property of the definition is that it yields a unified framework for clus-
tering, principal curve fitting and manifold learning. Similar to PCA, for an n-dimensional
data set, our definition contains all the d-dimensional principal manifolds, where d < n.
Theoretically, the principal set of d = 0 yields the modes of the probability density, which
coincides with a widely accepted clustering solution. We accompany this with an algorithmic
connection by showing that principal curves can be achieved using the SCMS idea, very sim-
ilar to the well-known mean-shift clustering algorithm. KDE-based SCMS implementation
is significantly faster than the most commonly used method in principal curves literature.
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Figure 21: Principal curve projections for different number of components in the density
estimate in loge scale. Specifically, d = 1, 2, 3, 4, 5, 6, 10, 15, 25, 50, 100, 200, 400.

Besides, it does not require significantly more time or memory storage as compared to mean
shift, which already has been used in many practical application domains.

In high dimensional spaces, density estimation becomes impractical due to the curse
of dimensionality. Therefore, similar to existing methods in principal curves literature, the
proposed method is not an alternative for proximity graph based manifold learning methods
like Isomap, Laplacian eigenmaps etc. Still, we show that there are many real applications
in lower dimensional spaces suitable for KDE-based SCMS. We show results on a family of
applications in time series signal processing, as well as an earlier proposed application of
principal curves (OCR).
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