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In this paper, we present a sum-of-rank-1 type decomposition and its differential model for symmetric

tensors and investigate the convergence properties of numerical gradient-based iterative optimization

algorithms to obtain this decomposition. The decomposition we propose reinterprets the orthogonality

property of the eigenvectors of symmetric matrices as a geometric constraint on the rank-1 matrix

requirement, we developed a set of structured-bases that can be utilized to decompose any symmetric

tensor into a similar constrained sum-of-rank-1 decomposition.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

This paper provides a sum-of-rank-1 decomposition method for
symmetric tensors and evaluates different iterative optimization
techniques to determine this decomposition for tensors of different
dimensionalities and orders. A preliminary version of this paper
where the decomposition model was proposed and solved for using
iterative random search appeared earlier [1]; in this we described a
generalized geometric constraint for the basis rank-one tensors in
the form of an inner product matrix, which also corresponded to a
geometric constraint on the vector frame that would generate these
basis tensors for any n-dimensional order-p symmetric tensor. We
refrain from calling these basis vectors (and corresponding rank-1
tensors) ‘eigen’ because at this time we have not proven any
invariance property that would warrant this nomenclature. The
proposition is a generalization of the orthogonal coordinate frame
interpretation of the eigenvectors of symmetric real-valued ma-
trices, which remain as order-2 special cases.

In addition to the proposed decomposition model, in this
paper, we present and compare iterative descent techniques for
the optimization of the vector frame rotation parameters and
corresponding linear combination coefficients (analogous to
eigenvalues). These techniques are Jacobi iteration, gradient
descent, Gauss–Newton, and Levenberg–Marquardt methods for
Givens rotation angles. This paper contributes to the field of
tensor analysis and decomposition that appears increasingly in
ll rights reserved.

ov).
many fields of applications such as signal [2] and image [3]
processing, factor analysis [4,5,6], speech, telecommunications
[8], and neuroscience [9]. As tensors could emerge from higher-
order statistics such as joint moments and cumulants (e.g.
consider the symmetric tensor formed by order-p joint moments
of an n-dimensional random vector), we believe, tensor decom-
positions will play an increasingly more important role in
statistical signal processing. A useful and intuitive tensor decom-
position definition accompanied by computationally efficient
algorithms will be the key to widespread utilization of these
multilinear objects in extending subspace techniques.
2. Decomposition of a symmetric tensor

The most widely recognized approaches for sum-of-rank-1
tensor decompositions are as follows: (1) canonical decomposition
(CANDECOMP) [12] or alternatively parallel factor analysis (PARAF-
AC) [4], and (2) the Tucker [5] model. With the CP model, a tensor
can be represented as a sum of rank-1 tensors with minimum
number of bases in a unique fashion and, by definition, the
dimensionality of this basis set is the rank. The CP model does not
constrain the geometry of the vectors that yield the rank-1 basis
tensors; this is in contrast with the assumption of orthogonal vectors
in singular value decomposition (SVD) of matrices. While a matrix
might be written as a sum of fewer unconstrained left–right vector
products than prescribed by SVD, the orthogonality constraint on
the geometry of the vectors has been found to be useful in many
applications of SVD. As opposed to the CP, Tucker’s proposed
decomposition factors tensors as a finite sum assuming orthogonal
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vectors to generate the rank-1 basis tensors similar to SVD,
but the result is not necessarily minimal (in fact most of the time
the Tucker decomposition will require many more rank-1 bases than
the CP). In this paper, we propose an alternative decomposition
model that utilizes a set of geometrically constrained vectors to
generate the rank-1 bases; the constraint relaxes the orthogonality
assumption in the Tucker model, which results in decompositions
which turn out to be a one-to-one reparameterization of the
symmetric tensor, thus using fewer rank-1 components; however,
we cannot also claim that the identified decomposition is minimum
rank in the CP-sense.

The decomposition of a real-valued symmetric tensor A into a
sum of rank-1 tensors utilizes basis tensors that are p-way outer
products of the same vector (referred to as rank-1 symmetric
tensors) [2,8]:

A¼
Xr

l ¼ 1
llu

3p
l ð1Þ

where uop denotes the p-way outer-product of the vector u.
Tensor decomposition problem is fundamental to the extension of
subspace analysis techniques in signal processing that arise from the
study of second order statistics of vector-valued measurements to
higher order statistics. Existing examples of such applications
include blind source separation. For instance, an exponential
multivariate family as a signal model can be factorized using a
sum-of-rank-1 tensor decomposition; consider an n-variate order-p

polynomial

qðxÞ ¼AUx3p ¼
Xn

l1 ¼ 0
. . .
Xn

lp ¼ 0
Al1 ,...,lpUxl1U. . .Uxlp

where x0¼1. If the (symmetric) tensor A containing these
polynomial coefficients is decomposed into the desired form, then
the polynomial can be written as AUx3p ¼

Pr
l ¼ 1 llðu

T
l xÞ3p, and an

exponential density eq(x) can be factorized into a product of
univariate exponentials. Other applications are reviewed by
Kolda and Bader [8] and include finding polynomial factorizations
[10,11].

2.1. Order-2 n-dimensional symmetric tensors

A symmetric n-dimensional order-2 tensor is a symmetric
matrix. Eigenvector bases for real symmetric matrices are orthogo-
nal, and can always be made into an orthonormal basis. Thus, a real
n-dimensional symmetric matrix can be decomposed as

A¼
Xn

l ¼ 1
llu

32
l ð2Þ

where U¼[u1,y,un] is the matrix where columns form an
orthogonal frame in n-dimensional space.

For numerical determination of (2) we can use, for instance,

the Jacobi algorithm [7] that tries to find q¼
n

2

� �
¼ nðn�1Þ=2

rotation angles {yk, k¼1, y, q}, such that we can construct a

rotation matrix R(yk) in plane (i,j) {i¼1, y, n�1, j¼ i+1, y, n}

with angle yk (with a one-to-one correspondence between the
indices k and (i,j) in this Givens angle parameterization). This
eigendecomposition solution consists of q rotation angles and
n eigenvalues. The number of free elements of a symmetric
n-dimensional matrix A, m(n,2)¼n(n+1)/2, equals the sum n+q.
Consequently, eigendecomposition is simply a reparameterization

procedure. Solving for the rotation matrices R(yk), we can get the
orthonormal eigenvectors given by

U¼
Yq

k ¼ 1

RðykÞ, UUT
¼UT U¼ I ð3Þ

Due to the orthonormality of U, the eigenvalues are uniquely
identified by the Frobenius inner-product vector between the
target matrix and the basis matrices (r¼n) [8]:

/u32
l ,ASF ¼

Xr

i ¼ 1
li/u32

l ,u32
i SF ¼

Xr

i ¼ 1
liðu

T
l uiÞ

2
¼ ll ð4Þ

2.2. Order-p 2-dimensional symmetric tensors

Let A be a 2-dimensional order-p real symmetric tensor.
The number of free elements (i.e., dimensionality) in such tensors
is m(2,p)¼(p+1). Rotation of the whole family of 2-dimensional
unit vectors is defined just by a single angle y. For a 1–1
reparameterization, the number of linear combination coeffi-
cients, r, plus the number of parameters that characterize rotation
of the family of r corresponding vectors, s, should be equal to the
number of free elements in the tensor, i.e., (r+s)¼(p+1).
Alternative approach without restrictions on the vector frame is
described in [13].

Incorporating these conditions into the design of the rank-1
sum decomposition on the right-hand side of (1), we obtain that
real-symmetric, 2-dimensional order-p tensor A has the following
decomposition (r¼p):

A¼
Xr

l ¼ 1

llðyÞUu3p
l ðyÞ ul ¼

cosðyþðl�1Þp=pÞ

sinðyþðl�1Þp=pÞ

" #
ð5Þ

In this case, a simple line search for y in the interval [0,p/p) is
sufficient to optimally fit the decomposition to the tensor with
zero error. Employing Gram–Schmidt orthogonalization, the
linear combination coefficient vector k is uniquely identified by
the inner-product matrix between the basis rank-1 symmetric
tensor pairs and the inner-product vector between the target
tensor and the basis tensors, i.e., at the optimal decomposition,
kðyÞ ¼ B�1cðyÞ. Here the matrix B (invariant with respect to y,
since the pairwise angles between the basis vectors leading to the
basis rank-1 symmetric tensors are fixed by the frame) and the
vector c are defined elementwise as follows, assuming Frobenius
tensor inner product as in (4):

Bij ¼ ouiðyÞ, ujðyÞ4p, ciðyÞ ¼ ou3p
i ðyÞ, A4F ð6Þ

where i,j¼1, y, p. Specifically note that each entry of B reduces to
the following: Bij¼cosp((i� j)p/p). For symmetric matrices, this
matrix is simply identity.

2.3. Order-p n-dimensional symmetric tensors

The number of free elements of a symmetric n-dimensional

order-p tensor is given by mðn,pÞ ¼
nþp�1

p

 !
. Based on the two

special cases examined above we conclude that the decomposi-
tion of any symmetric tensor should consist of some fixed
frame of vectors rotated in n-dimensional space and any angle
between pairwise vectors should be constant and depends
on order p. As in matrices, we need q rotation angles so we
attempt to decompose symmetric n-dimensional order-p

tensor as a finite sum of rank-1 tensors as in (1). The number of

vectors in this decomposition is r¼
nþp�1

p

 !
�

n

2

� �
. defined

value of r is higher or equal to the upper bound of tensor rank
in [13].

To obtain the decomposition numerically, we construct a
frame of r initial vectors F and optimize the rotation angles y such
that the Frobenius norm of the error tensor is minimized (to zero).
In the spirit of block coordinate descent and fixed point
algorithms, for a given candidate frame orientation, the linear
combination coefficients are always obtained using (6) and
kðyÞ ¼ B�1cðyÞ. The frame consists of vectors that are recursive



O. Kyrgyzov, D. Erdogmus / Neurocomputing 73 (2010) 3323–3327 3325
rotations of, for instance, the first column of the n-dimensional
identity matrix multiplied by a rotation matrix with an angle of p/

p in consecutive dimension index pairs. Specifically, this leads to a
system of r vectors, defined as columns of F, denoted by fi, using
the following recursion:

for i¼ 2 : r; for l¼modðiþn�3,n�1Þþ1; f i ¼Rl,lþ1ðp=pÞf i�1

ð7Þ

where f1 ¼ 1 0 � � � 0
� �T

and Rl,lþ1ðp=pÞ is a rotation matrix in
the plane (l,l+1), {l¼1, y, n} with angle p/p. Note that the
number of vectors in this frame is the same as the number of
vectors needed: r, which yields a full-rank B in (6). This iterative
procedure for frame construction gives us a result just for r steps
and does not engage an elimination procedure as in our previous
work that used an overcomplete frame [1]. The optimization is
done iteratively and in a fixed point manner, updating the linear
combination coefficients and updating the rotation matrix for the
frame of vectors in order to minimize the error tensor Frobenius
norm. At each iteration, basis vectors are expressed as (all
rotations multiply from left) follows:

U¼
Yq

k ¼ 1

RðykÞ

 !
F ð8Þ

3. Squared Frobenius norm of decomposition error

In this section we focus on the Frobenius norm of the error
(simply referred to as the error from now on) between the actual
tensor A and its current decomposition estimate T: e¼99A–T99.
The decomposition of the tensor is achieved by iteratively
minimizing the squared error (SE):

e2 ¼
Xn

l1 ¼ 1
UUU

Xn

lp ¼ 1
ðAl1 ...lp�Tl1 ...lp Þ

2
ð9Þ

Due to the higher order polynomials involved, we do not have
a closed form solution for the rotation angles that yield e(y)¼0;
therefore we will employ iterative numerical optimization
methods. For simpler notation SE in (9) can be reformulated in
matrix form using the usual vectorization operator vec( � ) that
returns a vector whose elements are taken column-wise starting
from the right-side operand. So a target tensor T in vector form is
t¼vec(T) and the vectorized ith rank-1 symmetric basis tensor
obtained from the corresponding basis vector is xi ¼ vecðu3p

i Þ.
Collecting xi in the columns of X and defining e¼ t�Xk and
k¼ B�1XTt, SE takes the form e2

¼eTe. The vectorized error tensor
is equivalently

e¼ ðI�XB�1XT
Þt ð10Þ

or with B¼XTX and XB�1XT
¼I (after some algebra):

e2 ¼ tT ðI�XB�1XT
Þt ð11Þ

The gradient of SE with respect to the rotation angles is

re2
k ðhÞ ¼�tT ð½@X=@yk�B

�1XT
þXB�1

½@XT=@yk�Þt ð12Þ

The kth column of the Jacobian matrix J is

jkðhÞ ¼
@e

@yk
¼�ð @X=@yk

� �
B�1XT

þXB�1 @XT=@yk

h i
Þt ð13Þ

The Hessian matrix for SE consists of the following entries:

HklðyÞ ¼�tT

@2X

@yk@yl
B�1XT

þ
@X

@yk
B�1 @XT

@yl

þ
@X

@yl
B�1 @XT

@yk
þXB�1 @2XT

@yk@yl

8>>>><
>>>>:

9>>>>=
>>>>;

t ð14Þ

The ith column of X is obtained by vectorizing the rotated ith
frame vector fi according to u3p

i ¼ ðRðyÞfiÞ
3p. Consequently, we
need to evaluate @xk=@yl ¼ vecð@ðu3p
k Þ=@ylÞ using @RðyÞ=@yi ¼

Rðy1ÞRðy2ÞUUU½@RðyiÞ=@yi�UUURðyqÞ to obtain @ðRðyÞfkÞ=@yi ¼ ½@RðyÞ=
@yi�fk and then the chain rule to get

@u3p
k =@yi ¼ @ððRðyÞfkÞ

3p=@yi

¼ ½@ðRðyÞfkÞ=@yi�UðRðhÞfkÞ � � � ðRðyÞfkÞþ

. . .þðRðyÞfkÞUðRðyÞfkÞ � � � ½@ðRðyÞfkÞ=@yi� ð15Þ

Similarly, using the chain rule appropriately, second partial
derivatives can be obtained to construct the Hessian matrix.

Let R(yk) be the rotation matrix in plane {i,j}. Then the sth
partial derivative of R(yk) with respect to angle yk is @sRðyÞ=@syk ¼

MsRðyÞ, where Mmn ¼ dmjdni�dmidnj. In this case we see that all
odd and even partial derivatives of rotation matrix R(y) are equal
to first and second derivatives, respectively, and are alternating
sequences.
4. Optimization algorithms

In this part we briefly describe the algorithms that we use to
minimize SE in (11). Optimization algorithms for the widely
known Tucker and CP tensor decomposition models are described
in [6,8]. The most widely used method for CP and Tucker
decompositions is the iterative alternative least square algorithm.
This algorithm allows CP and Tucker models to evaluate their
decomposition components (each basis vector) in alternating/
random order. We cannot use this algorithm because our
proposed frame of basis vectors is geometrically constrained
and one needs to iterate all vectors simultaneously as they are not
independent of each other. We evaluated the performance of four
standard iterative-descent algorithms.

Jacobi rotation: Jacobi rotation updates one Givens angle at
each iteration using line search or other optimization technique.
On the kth iteration, we update angle yi using gradient descent
where the stepsize a satisfies Wolfe’s conditions.

Steepest descent: At each iteration, all Givens angles are
updated along the direction of negative gradient.

Gauss–Newton algorithm: Inverse-Hessian provides directional
correction in quadratic cost surface regions at the cost of
significant increase in computational complexity.

Levenberg–Marquardt algorithm: The Jacobian of the error
vector is used to approximate the Hessian to yield convergence
rate similar to Gauss–Newton, but at a computational cost
comparable to the steepest descent, where [J(yk)]�1 is pseudo-
inverse of J(yk):.
5. Numerical results

Evaluation of optimization algorithms was performed on rank-
1 and full-rank tensors with specific structure as well as in a
Monte Carlo fashion using tensors generated randomly. Decom-
positions were approximated to a prespecified accuracy and the
numbers of iterations are compared. First, we demonstrate the
nonlinear nature of the optimization problem at hand using two
simple symmetric tensors: (i) a tensor of ones, which is a rank-1
tensor since it is the p-way outer product of a vector of ones; (ii) a
symmetric full-rank n-dimensional order-p tensor.

A visual illustration of the error surface along vector frame
in the cross-section of rotation angles y1 and y2 for the
3-dimensional order-2 (matrix) and order-3 symmetric tensors
of integer entries (type-ii) is provided in Fig. 1. The surface
complexity compared to the matrix case is evident. We need to
note that an error of decomposition of order-2 any-dimensional or
any-order 2-dimensional tensor along any rotation angle yi is



Fig. 1. Error surfaces along angles y1 and y2 for 3-dimensional (left) order-2 and (right) order-3 tensors.

Table 1
Number of iterations to decompose rank-1 tensors.

Jacobi rotation Stp. Desc. Gauss–Newton Lev. Marq.

n\p 2 3 4 2 3 4 2 3 4 2 3 4

2 1 1 1 1 1 1 1 1 1 1 1 1

3 8 51 11 9 11 3 11 3 3 7 3 3

4 21 65 63 18 52 28 10 5 5 12 3 4

Table 2
Number of iterations to decompose full rank tensors.

Jacobi rot. Stp. Desc. Gauss–Newton Lev. Marq.

n\p 2 3 4 2 3 4 2 3 4 2 3 4

2 1 1 1 1 1 1 1 1 1 1 1 1

3 9 T T T T T 8 15 13 6 7 10

4 T T T T T T 24 33 29 11 13 12

2 2.5 3 3.5 4 4.5 5
-34

-32

-30

-28

-26

-24

-22

-20

-18

-16

Fig. 2. Monte Carlo average log10 of normalized SE for the proposed eigende-

composition technique for random tensors of orders 2–5 for dimensions 2

(square), 3 (diamond), 4 (circle), 5 (triangle).

Table 3
Median number of iterations when decomposing 1000 random full rank tensors.

n\p Jacobi rot. Stp. Desc. Gauss–Newton Lev. Marq.

3\2 75 53 5 4

3\3 50 71 6 5

3\4 155 118 10 5

4\2 T 295 19 7

4\3 T T 34 13

4\4 T T 36 15
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periodic (due to the nature of trigonometric function). Tables 1
and 2 contain the number of iterations that the considered
algorithms need to achieve an SE less than 10�12 (in Matlab, the
minimum SE is on the order of 10�30, but optimization to that
level of numerical accuracy takes very long). Table 1 shows the
results of decomposition of the tensor-of-ones (type-i) and
Table 2 shows the results of decomposition for the symmetric
tensor of integers (type-ii) with all algorithms starting from the
same initial estimates. In these tables, ‘‘T’’ indicates that
optimization was terminated at iteration 300, the preset
maximum number of iterations and convergence to the desired
level had not been achieved. The number of iterations for Jacobi
rotations and gradient descent grows exponentially due to the
ratio of max(k)/min(k).

Next, we present results from a Monte Carlo experiment in
which the decompositions were optimized using iterative random
search (similar to stochastic annealing) in order to demonstrate
that error levels comparable to the minimum possible numerical
accuracy are attainable. In Fig. 2, we show the average normalized
SE (per tensor entry) for randomly generated tensors of orders 2–
5 for dimensions 2–5. Errors of decomposition grow exponentially
due to the number of elements in high order high dimensional
tensors growing in a combinatorial fashion combined with fast
numerical degradation due to ill-conditioning.

Table 3 summarizes the results of decompositions for 1000
symmetric full rank real-valued tensors with all algorithms starting
from random initial estimates for parameters. Experiments reveal
that for the given optimality criterion, the Levenberg–Marquardt
algorithm is preferable in convergence speed and computational
complexity considerations.
6. Conclusion

In this paper, we propose a geometrically constrained basis
vector frame that yields a set of rank-1 symmetric tensor bases
that, when rotated appropriately, is able to attain a sum-of-
rank-1 decomposition of any order, any dimensional symmetric
tensor. The number of variables that parameterize the proposed
decomposition is equal to the number of free elements (dimen-
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sions) in the symmetric tensor. The proposed approach gives us
upper bound of CP-rank for symmetric tensors. We also evaluated
standard iterative descent techniques to determine the proposed
tensor decomposition solution by optimizing the Givens angles
representation of the rotation matrix of the frame of vectors. Due
to the relatively complex optimization criterion (pth order
polynomials squared), the Levenberg–Marquardt approach has
been identified to be preferable considering computational load
and convergence speed. Future work will extend the decomposi-
tion idea presented here to nonsymmetric arbitrary non-cube
tensors. Initial efforts in that direction are promising.
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