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Abstract—Given the knowledge of class probability densities,
a priori probabilities, and relative risk levels, Bayes classifier
provides the optimal minimum-risk decision rule. Specifically,
focusing on the two-class (detection) scenario, under certain sym-
metry assumptions, matched filters provide optimal results for the
detection problem. Noticing that the Bayes classifier is in fact a
nonlinear projection of the feature vector to a single-dimensional
statistic, in this paper, we develop a smooth nonlinear projection
filter constrained to the estimated span of class conditional dis-
tributions as does the Bayes classifier. The nonlinear projection
filter is designed in a reproducing kernel Hilbert space leading to
an analytical solution both for the filter and the optimal threshold.
The proposed approach is tested on typical detection problems,
such as neural spike detection or automatic target detection in
synthetic aperture radar (SAR) imagery. Results are compared
with linear and kernel discriminant analysis, as well as classifica-
tion algorithms such as support vector machine, AdaBoost and
LogitBoost.

Index Terms—Classification, nonlinear detection filter, non-
linear dimensionality reduction, nonlinear matched filter.

I. INTRODUCTION

ETECTION of a target signal buried in noise is fun-

damental to a variety of signal processing applications
including communications and biomedical engineering. Under
additive white Gaussian noise and linear channel assumptions,
the second-order statistics are sufficient to perfectly describe
the signal characteristics, and the optimal solution under some
symmetry conditions is achieved by the traditional matched
filter, which is a widely used simple and efficient method.
However, these assumptions are quite restrictive to model real
life scenarios, and the limitations of the matched filter are
already defined by the assumptions under which its statistical
optimality can be proven. Specifically, since it relies on correla-
tion, the matched filter becomes suboptimal in signal detection
performance, if the noise distribution is skewed, non-Gaussian,
or the waveform suffers a nonlinear channel distortion. Besides,
using a template for the signal to be detected, the matched-filter
method, by definition, assumes that the exact form of signal
that is to be detected is known and time invariant. The matched
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filter has been the workhorse for the hypothesis testing prob-
lems due to its simplicity. On the other hand, if the optimality
constraints are relaxed, such as the presence of non-Gaussian
noise, it is a tedious task to derive the optimal detectors, and
suboptimal detectors enter the scene. These easy-to-compute
approximations typically consist of a nonlinear preprocessor
coupled with the usual linear matched filter [1], [2]. Adding
a whitening step to the preprocessing stage is a commonly
used method that helps to relax the white noise assumption.
As opposed to the traditional second-order-statistical methods,
contemporary techniques emphasize exploiting higher order
statistics; nonlinear kernel matched filters (nonlinear spectral
matched filters and kernel linear discriminant analysis) have
been studied, where the input data is first mapped into a poten-
tially infinite-dimensional space called kernel induced feature
space by a nonlinear function [3], [4].

The link between signal detection problem and the two-class
classification problem is clear if one considers the delayed
signal samples as the feature space of the classification
problem. In this scenario, the instances of the signal to be
detected and noise portions can be used for training the clas-
sifier. Furthermore, in some applications, the signal detection
algorithm operates over a set of features derived from the signal
rather than the raw signal itself [for example, the target detec-
tion application using synthetic aperture radar (SAR) images],
which makes classification algorithms directly applicable to
the signal detection problem. For this reason, we will present
comparisons to some commonly used classification techniques
in the experimental results section along with a brief discussion.

In this paper, we are motivated by the strength of the kernel
methods. The connections between kernel methods and kernel
density estimation as well as geometric insights on Bayes dis-
criminants are exploited to design an analytically solvable op-
timal kernel nonlinear detection filter in the corresponding re-
producing kernel Hilbert space (RKHS). Optimization involves
determining the eigenvectors of the typical kernel matrix, which
is of complexity O(N3) for N training samples and forward
testing, as usual, has complexity O(N). Training and testing
complexity could be reduced by using a few largest eigenvectors
and fast-Gauss transform-type approximations; however, these
computational simplification issues remain outside the scope of
this paper and will not be addressed.

II. SUBSPACE CONSTRAINED NONLINEAR DETECTOR
DESIGN IN THE RKHS

The RKHS formalism is briefly described before the design
procedure is explained. The RKHS theory states that the eigen-
functions {¢1(x), ¢2(x),...} of a kernel function K : R"” x
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R™ — R that preferably (but not necessarily for all applica-
tions) satisfies the Mercer conditions for positive definiteness
[5] form a basis for the Hilbert space of square integrable non-
linear functions under the norm induced by the kernel function
in accordance with Green’s equation! [6], [7]. Functions in this
space can be represented as linear combinations of kernels as in
the following form:

]\T
=> wK(,x) (1)
=1

where NN is the number of samples in the feature space Let g( )
be another function in this space with g(-) = S =1 BiK (- x'5).
The inner product of these functions is defined as

N N’

(fra)k =D ) aibiK(xi,x). )

=1 j=1

Note that the inner product of the kernel function with an ar-
bitrary function in RKHS gives that function itself, which is
known as the reproducing property (note that the reproducing
property replaces the sifting property of the Dirac delta function
in the Euclidean space of square integrable functions according
to the Euclidean norm). This can be written as

))K = ZaiK<Xi7X)

A kernel is positive definite iff for any sample set {x1, ..., Xy}
the kernel matrix K;; = K (x;, x;) is positive definite; then one
can write its eigendecomposition with all positive eigenvalues as

=) Aer(x)px

where ¢, (x) are the eigenfunctions and )\, are the eigenvalues
(ordered from largest to smallest by convention) of the kernel
function. Hence, RKHS is potentially an infinite-dimensional
space. In practice, it is approximated by its subspace with di-
mensionality equal to or less than the number of training sam-
ples, but this approximation is accurate because the eigenvalues
of most kernels decay to zero fast, diminishing the significance
of smaller eigenfunctions. This is due to the equivalent formula-
tion of the RKHS that arises from (4). Functions such as those in
(1) can also be represented by linear combinations of the eigen-
functions of the kernel as follows (letting fr = (f(.), ¢x(.))K):

(K (%), f( =fx. G

x') “4)

)= N fron() )

with the smoothness condition that }, f7 < oc. The inner
product of two functions, with g expanded similar to (5), be-
comes

(f,9)x = frgn- (6)
k=1

IFor a translation invariant kernel, find a differential operator that satisfies
DrK(x —y) =é(x —y)ithen ||f||% = [IDxf(x)|[?dx < co.
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Note that in the RKHS with reproducing kernel function K (., .),
an arbitrary function f(.) can be expressed both as a linear com-
bination of eigenfunctions of this kernel as in (5) or as a linear
combination of shifted versions of the kernel as in (1). In the rep-
resentation presented in (5), we prefer to explicitly represent the
eigenvalues of the kernel \;, and the inner product coefficients
fr. For low-pass kernels (such as the typical Gaussian), higher
indexed eigenfunctions have higher frequency content, thus ex-
ponentially decaying eigenvalues impose the desired smooth-
ness and approximation conditions on the solutions obtained.

A. Bayesian Minimum Risk Detector in RKHS

In the two-class (detection) problem, given relative positive-
valued risks r;, a priori probabilities p;, and class conditional
probability densities g;(x), the total data probability distribution
(mixture of two classes) is ¢(x) = p1¢1(X) + p2g2(x) and the
optimal Bayes discriminant is

Yr = T1P1q1(X) — T2p2q2(X) (N

with a decision threshold of zero. We can also define a risk-
weighted data distribution (does not integrate to one anymore
unless risks are selected such that r1p; + r9ps = 1) as fol-
lows: gr(x) = r1p1¢1(X) 4+ T2p2g2(x); with this notation, we
now have ¢(x) denoted also by ¢1(x), where 1 denotes a vector
of ones with appropriate dimensionality throughout the paper.
Note that the Bayes discriminant function is a nonlinear pro-
jection of the original feature vector x to a single-dimensional
statistic.2 With this projection, the output dimensionality may
increase as the number of classes increases, however, specif-
ically for the detection problem, the output dimensionality is
one. A more important observation here is that the Bayes dis-
criminant function as well as the total data probability distribu-
tion and the risk-weighted data distribution are all linear com-
binations of class conditional probability densities, where the
coefficients are given in terms of relative risks and class priors.
Hence, rather than the whole space, one can seek the Bayes dis-
criminant function in the span of class conditional probability
densities (in other words, one’s discriminant function should be
regularized or constructed to satisfy this geometric property for
the respective class conditional distribution assumptions implic-
itly or explicitly assumed by the method).

In the RKHS, similar to (5) which is for an arbitrary function,
the true class conditional densities are written explicitly in terms
of the eigenvalues and eigenfunctions as

ZAk 5.1 (x) ®)

where p° is the expansion coefficient vector. Here we as-
sume that the class conditional distributions are in the RKHS
of the selected kernel function K(.,.), hence they satisfy
11D s (30) =g |12 = [ g (%) K (x, % )g. (') <ox.
Note that these coefficients are the expectations of the
eigenfunctions according to the class distribution, i.e.,

20ne can show that optimal Bayes discriminant for a C-class problem
projects the features to exactly C' — 1 dimensions.
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= A7 Ja@erdx = 3B, [pr(x)). From
this expansion, one easily obtains
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where v, is the expansion coefficient vector for Bayes minimum
risk discriminant for the risk vector r = [rq,75]”. In matrix
vector form, this is

v, = MPr/ (10)

where M is the matrix of class coefficients, P is the matrix of
class a priori probabilities, and r’ is the discriminant risk vector

0 T
ot v-[i 1] o[

Similarly, one can show that the risk-weighted data distribution
¢r(x) has the coefficient vector g, = MPr. The Bayes detector
always has an optimal threshold of zero, however, since there is
a one-to-one relationship between every threshold and risk ratio
of the classes, in practice, one can select a projection assuming
r = 1 (minimum probability of error) and selecting nonzero
thresholds to account for various risk levels. In general, (10)
and the last argument show that one needs to search for optimal
nonlinear projections for detection only in the linear span of the
columns of M and orthogonal to p,, possibly forr = 1.

Note that the expression in (10) is an exact representation of
the class conditional distribution for a given class label c. While
theoretically infinite terms could be linearly combined to eval-
uate this quantity, in practice, an approximation involving finite
number of terms must be employed. Next section describes a
commonly employed approximation approach to this end.

(11)

B. Nystrom Sample Estimator for Eigenfunctions
and Optimal Detector

In practice, analytical expressions of eigenfunctions for arbi-
trary kernel selections are not easily obtained (though not im-
possible for some). The Nystrom approximation [18] utilizes
the available training data {x1,...,xy} from both classes in
the detection problem in order to obtain a weighted approxi-
mation of the eigenfunctions in the RKHS in accordance with
(1). Specifically, if we let p(x) = [p1(x), p2(x), ..., on(x)],
then

o(x) ~ NY2A7'®k(x). (12)

In (10), k(x) = [K(x,%1),..., K(x,xy)]T and K = ®TAD
is the spectral decomposition of the Gram matrix with or-
thonormal eigenvector matrix (in its columns) @7 and diagonal
eigenvalue matrix A.3 The Gram matrix is composed of entries

K;; = K(x;,x;). Note that this approximation corresponds

3Note that A;; = NA,;.

to employing the following finite-rank approximation of the
kernel function: K(x,x’) ~ k(x)TK~'k(x'). Similarly,
one can approximate the class distribution coefficients using
M ~ NY2®&[m; my]diag(N;*, No') where m, is
a membership vector, whose values are defined such that
m., = 1if ¢z = ¢, 0 otherwise. Here, N, is the number of
samples in class ¢ (note that N, = 17m..). From this point on,
we use A for the eigenvalues of K. Substituting (12) in (8), we
obtain

qe(x) = Z

=1

N
NS uce s | K(x,xi). (13)

J=1

Collecting the terms in brackets in a vector and denoting it by €,
we can see that the coefficients for ¢; (x) in its approximation of
the form in (13) will be p;y* + poy?. Letting I' = [y} 4?], we
also see that the coefficients for the Bayes discriminant y,(x)
will have coefficients ,, = I'Pr’. Substituting the approxima-
tion for M, this becomes v, = K~1[m; my|r’.

Consider a projection of the form y(x) = N'/2@TA~'v.
In accordance with the last argument of Section II-A, we pro-
pose selecting this projection, which is in the linear span of M
and orthogonal to ¢.(x). This selection corresponds to v =

MP[\/p2/p1, —+/p1/p2]" . Substituting the approximation for

M, y(x) = BTk(x), where
Yz
b1

_ [P
D2

Hence, we conclude that the proposed projection in (14),
referred to as the RKHS Bayes discriminant (RKHS-BD), al-
though selected to be orthogonal to g1 (x), in fact, corresponds
to selecting the risk vector as r = [\/pa/p1,\/p1/p2]*. This
modification in the assumed risk is due to the approximation
of M interacting with the approximation of the eigenfunctions
in (12). In summary, given labeled training data {xy,...,Xx},
the proposed subspace constrained nonlinear detector (SCND)
has the form y(x) = BTk(x), where 8 = K~1[m; my]r’
for a desired risk vector r (which must be selected taking the
approximation into account).

B=K '[m; m,]

(14)

C. Selecting the Kernel Function

An important practical consideration is the selection of a
suitable kernel.# This is a common issue in all kernel-based
methods, since the quality of the results depends on a suitable
kernel size selection. Typically, the problem of finding the
optimal kernel is simplified by constraining the kernel function
into a parametric family, and trying to optimize the parameters
of the function by the quality of the solutions obtained. This
method adds a significant amount of unnecessary computa-
tional load, and the kernel functions optimized by this approach
also depend on the quality measure used here while evaluating
the results. Often the kernel size is varied and the one that
gives the best cross-validation solution is selected. This is a
computationally expensive procedure.

“Note that one could also explicitly design the kernel by selecting a desired
set of eigenvalue—function pairs.
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An alternative approach to select the suitable kernel func-
tion is to exploit the connection to kernel density estimation.
Nonparametric density estimation is a well-researched field and
there is a wide literature about the selection of suitable kernel
function, including a wide range of methods that range from
heuristics to principled approaches such as maximum likeli-
hood [8]. A straightforward method is to use a circular Gaussian
kernel, with a width parameter (variance) determined utilizing
the Silverman’s rule of thumb given in [9]

2/(n+4)
1 ) (15)

g 1
o° = ;tr(EQ(m

where n is the dimensionality of the data x, N is the number
of samples, and ¥ is the sample covariance of the training
set. Further improvements can be achieved by utilizing a vari-
able kernel size for each class or even each data point itself,
as well as using anisotropic kernels or employing kernel op-
timization methods. Variable size kernel density estimation is
known to have a better outlier performance, where the kernels
are selected as a function of the likelihood of particular sam-
ples being outliers. For example, one can use the median of
K nearest neighbor distances of each sample with spherical
Gaussian kernel for variable size kernel density estimate (KDE)
and scale the nearest neighbor distances with a global scaling
factor optimized using maximum likelihood to obtain kernel
widths. Using the sample covariance of K nearest neighbor in-
stead of their distances leads to an anisotropic Gaussian kernel
function for each data sample. For the variable size KDEs, the
required computational cost increases as the quality of the den-
sity estimate improves.

In our illustrative experiments, we used the Silverman’s rule
given in (15) as a simple and computationally inexpensive selec-
tion. The results we present could be improved by incorporating
computationally more expensive kernel optimization techniques
or using variable size kernel estimates. However, for a fair com-
parison, we will keep using the fixed size Gaussian kernel func-
tion here to be able to keep the computational requirement of
our algorithm at the same level with the ones it is being com-
pared with.

D. Summary of Implementation

Table I summarizes the implementation of the proposed
detector design in RKHS. A MATLAB implementation of
the algorithm will also be made available at the authors’ web
pages [19].

III. EXPERIMENTAL RESULTS

In this section, we will provide experiments to evaluate the
performance of the proposed RKHS-BD and provide compar-
isons with other methods. To relax the white noise assumption,
the linear matched filter is usually coupled with a whitening
step at the preprocessing stage. Since the utilization of this
prewhitening is a commonly used technique, which increases
the matched-filter performance by enforcing the covariance cir-
cular symmetry condition on noise, we will couple the matched
filter with a prewhitening step in our comparisons.
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TABLE 1
SUMMARY OF THE RKHS-BD IMPLEMENTATION

Given training data x;e R", with corresponding class labels
cef{l.2},i=1,...N

Training Phase:

- Select the kernel bandwidth (for example as in (15)).
The kernel may also be selected as a data-dependent

manner.
- Construct the kernel matrix K, where K, = K(x, -x;) and
decompose  into  eigenvalues-vectors  such  that
K=0'AD, .

- Build the membership vectors such that my=1 if c;=c, 0
otherwise.

- Evaluate B:K"[ml my]r. If the relative risk values are not

provided, use r'=[{p,/p,—p,/p,I' to achieve

minimum error, which assumes equal risk values for
misdetection and false alarm.

Testing (Operational) Phase:
- For each test sample, evaluate y(x)=BTk(x).
- Decide 1 if y(x)>0, decide 2 otherwise.

We start with a comparison of RKHS-BD with the KDE-
based Bayes classifier, and illustrate the underlying class con-
ditional densities for these two methods. The detection problem
can also be regarded as a binary classification problem, and there
are many linear and nonlinear topologies to solve these classi-
fication problems in the literature. Therefore, we also provide
comparisons of the RKHS-BD with (Fisher) linear discriminant
analysis (LDA) [15], which is a widely used linear classifier, and
its nonlinear extension kernel (Fisher) LDA [14], [16], as well
as the KDE-based approximate Bayes classifier, support vector
machine (SVM), AdaBoost, and Logitboost.

A. RKHS-BD Versus KDE-Based Bayes Classifier

We compare RKHS-BD with the KDE-based Bayes detector
on a simple illustrative example. For illustrative purposes, we
employ a 2-D toy data set for this example, and present the un-
derlying density estimates for each of these methods. The den-
sity estimate for the usual KDE-based Bayes classifier is shown
in Fig. 1(a). The underlying density estimate that RKHS-BD
utilizes is a weighted KDE, where the selection of the weights
is inherently determined by the method such that the class con-
ditional probability densities become approximately uniform in
the support of the data, and they sharply decay to zero outside
the support of the data.

This behavior can be interpreted as increasing the significance
of the samples that are close to the boundary while building the
classifier—similar to what largest margin classifiers do. The un-
derlying class conditional probability densities for this data set
are presented in Fig. 1. Since the classes are selected to be well
separated for better illustration, for this trivial data set, we do
not present the classifier performances. Performance compar-
isons for KDE Bayes classifier will be included in the following
experiments performed on real data.

B. Neural Spike Detection

Automatic detection of neural spikes is an important first step
in the study of biological neural systems and their engineering
applications, such as brain machine interfaces [10]. Currently,
all cortical brain machine interface applications rely on an
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Fig. 1. Class conditional densities are shown for (a) KDE-based Bayes clas-
sifier and (b) RKHS-BD, along with the corresponding data for each class, de-
noted with e and ¢ signs.

accurate detection of neural spike timing as neural activity is
characterized by various statistics of the spike distributions.
The majority of the spike detection methods that have been
currently used can be categorized in three main groups: simple
thresholding, energy-based methods, and template matching.
Although they are computationally effective, the first two
methods that are based on thresholding either the integrated
magnitude square of the signal or the raw signal itself are
very primitive and only applicable in high signal-to-noise ratio
(SNR) cases. Template matching, on the other hand, provides
a more powerful tool for low SNR scenarios by considering
linear correlations between the data and the predefined signal
template. These low SNR neural signals are often collected
using microelectrode arrays in neural tissue.

In this experiment, the RKHS-BD is compared with the
conventional correlation-based matched-filter detector coupled
with a prewhitening step. Outputs of the proposed system and
the linear matched filter are presented in Fig. 2 for online mode
of operation. For the given microelectrode recording and the
time stamps of the spike times, neural spikes with a length of
13 samples have been collected from the data. First, a spike
template of 13 samples is generated for the matched filter.
Using uniform sampling, 200 of these spikes have collected
and averaged over their aligned time index to obtain the spike
template for the matched filter. The same set of neural spikes
is used for identifying the weights of the proposed system in

Voltage (arbitrary units)

Time (samples)

(a)

Voltage (arbitrary units)

o 100 200 300 400 500 600 700 800 900 1000

Test statistic

o 100 200 300 400 500 600 700 800 900 1000
Time (samples)

(b)

Fig.2. (a) Spike template obtained by averaging according to common conven-
tion (thick—dashed line) with actual sample spikes (thin—solid line). (b) Sample
microelectrode signal (top), the matched filter output (bottom—dashed), and
RKHS-BD output (bottom—solid).

conjunction with a set of equal number of nonspike samples.
This corresponds to assuming that the existence and nonexis-
tence of a spike are equal at 0.5, which is surely a suboptimal
assumption for a typical spike train signal. The relative im-
portance of missing and false alarms could also have been
introduced manually by assigning appropriate risk values in
place of class priors. For this reason, rather than providing
the detection and false alarm rates for specific risk values we
present the performance as a receiver operating characteristic
(ROC) curve. Along the ROC curve, r1/r ratio varies from
zero to infinity, which shows the results for all possible risk
function pairs. For the testing phase, both for the matched filter
and the RKHS-BD, the time series signal is transformed into
a 13-dimensional input stream using a tapped delay line, and
detection results for each 13-dimensional input of both systems
are associated with the time index of the centering sample,
accordingly.

The resulting spike template is presented in Fig. 2(a) (the
dashed line) along with the individual spikes that have been used
here to generate the template. In some cases, neural spikes may
show significant differences in time due to the nature they have
been created, which makes the template matching methods vul-
nerable. However, observing Fig. 2(a), one can conclude that the
neural spike pattern used in this experiment has a stationary na-
ture. Fig. 2(b) shows a comparison for the output of the matched
filter and the RKHS-BD along with the original input signal. For
the outputs in this figure, both algorithms have neither a miss
nor a false alarm; but, still the RKHS-BD generates a relatively
better separation.
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Fig. 3. ROC curves for the linear matched filter (dashed) and SCND (solid):
(a) without the prewhitening step, and (b) after a prewhitening step.

The batch mode results for the proposed nonlinear matched
filter are presented in Fig. 3. Fig. 3(a) shows the RKHS-BD
results along with the corresponding results obtained for
the matched filter. Provided the prewhitening step, both the
matched filter and the RKHS-BD perform better, which is
presented in Fig. 3(b). Providing higher detection rate and
lower false alarm rates, RKHS-BD demonstrates superior
performance, either with or without the prewhitening step.

At this point, one may argue that the prewhitening step
should not change the results of RKHS-BD, because it in-
herently should be able to capture the linear and nonlinear
characteristics of the data regardless of any scaling and rotation
with respect to the eigenvectors. In general, this argument is
true. However, we used spherically symmetrical kernels in our
experiments as given in (15) to have a lower computational
cost, and the prewhitening helps to normalize the data along
its eigenvectors, which actually makes the results using a
spherical kernel more accurate. Possibly, better results could
still be achieved using anisotropic kernels that will inherently
handle the whitening, or data-dependent variable anisotropic
kernels that exploit an estimate of the local eigenspread of
the data. Comparing the results in Fig. 3(a) and (b), one can
also see that RKHS-BD without prewhitening [Fig. 3(a), solid
line] performs better than linear matched filter cascaded with
a prewhitening step [Fig. 3(b), dashed line]. Since RKHS-BD
and kernel LDA produced very similar results for this data set,
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we do not include kernel LDA in this comparison. We will
present comparisons with this method in Section III-C.

C. Automatic Target Detection Using Satellite Images

Automatic target detection results for SAR images from
MSTAR imagery [11] will be presented in this section. For
the experiments, BMP-2 sn-9596 targets with 15° depression
angle have been used, and the background samples have been
obtained from the available clutter image samples with the
same depression angle. Fig. 4 shows some examples of the
targets to be detected and the background clutter images used
in this experiment. The size of the images of BMP-2 targets is
138 x 139. Therefore, the size background samples obtained
from the public clutter data have been arranged to the same
size as that of the target images (through random sampling).
To demonstrate the relative size of the target images, two
138 x 139 rectangles are marked on the background image in
Fig. 3(b), and two examples of background clutter are shown.

Features used for classification here are simple Gabor coef-
ficients. A total of 24 Gabor filters have been used for this pur-
pose; six equally spaced orientations in the spatial domain and
four wavelet scales. After obtaining the 24-dimensional feature
vectors for each sample target or background image, the data set
has been partitioned into training and testing sets. Here, we used
240 target and 240 background images in total, and the resulting
data after the Gabor filter feature extraction step consists of 480
24-dimensional samples. For all the methods compared in this
section, training set consists of 80 samples from each class, and
the testing set contains 160 samples from each class.

Associated results for the testing set are presented in Fig. 4(c)
with ROC curves. In this experiment, we compare four methods:
RKHS-BD, LDA, kernel linear discriminant analysis, and KDE-
based Bayes classifier. RKHS-BD demonstrates superior per-
formance in terms of probability of detection and probability of
false alarm for a wide range of risk function ratios. To assure a
fair comparison, the same kernel function is used for RKHS-BD,
KLDA, and KDE-Bayes classifiers.

D. Sonar Mine Detection

The sonar signal data set consists of sonar signals bounced
off a metal cylinder and those bounced off a roughly cylin-
drical rock. Each sonar reflection is represented by a 60-dimen-
sional vector, and each dimension represents the energy that
falls within a particular energy band, integrated over a certain
period of time. There are 208 60-dimensional sonar signals in
this data set; 111 of them belong to mines and 97 of them are
obtained by bouncing sonar signals from rocks under similar
conditions. The sonar signals are collected from a variety of
different aspect angles. This data set was originally used by
Gorman and Sejnowski in their study of sonar signal classifi-
cation [17].

As in the previous experiment, in this experiment, we com-
pare four different methods: RKHS-BD, LDA, KLDA, and

SNote that the aim of this experiment is not to compare results with earlier
work on SAR-ATR literature, since more informative and specialized features
or using more training samples will certainly improve the final results. This ex-
perimental setup aims to demonstrate the favorable performance of the proposed
method over alternatives for a given set of feature vectors.
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Fig. 4. (a) BMP-2 sn-9596 examples. (b) Sample background image selected
from the public clutter data. (c) ROC curves for RKHS-BD, KLDA, LDA, and
KDE-Bayes classifiers.

KDE-based Bayes classifier. For all these methods, the same
training and testing data is used, and the training set contains
69 independently selected sonar signals; 37 mines and 32
rocks. The remaining 139 sonar signals are used in the training
phase. As in the previous experiment, RKHS-BD, KLDA, and
KDE-Bayes classifiers all use the same kernel function. The
performance is presented as ROC curves and RKHS-BD shows
superior performance.

All performance comparisons presented so far include
only dimensionality-reduction-based classification algorithms.

Similar to our approach, for dimensionality-reduction-based
approaches, it is very easy to adjust the tradeoff between the
misdetection and false alarm by shifting the decision boundary
(that is the threshold for 1-D subspace projections) towards
either class. Therefore, all performance comparisons with
dimensionality-reduction-based methods have been presented
using ROC curves that summarize the performance for all
possible relative risk levels. On the other hand, in general, this
may not be the case for a classification algorithm, and one may
have to rerun the algorithm many times to obtain results for
different risk ratios.

Aside from comparisons with dimensionality-reduc-
tion-based classification methods, we will also provide com-
parisons with SVM [20], AdaBoost [21], and LogitBoost [22].
SVM is based on the idea of constructing a separating hyper-
plane in the feature space of data samples such that the margin
between two data sets is maximized. Although the original
proposition of Vapnik was a linear classifier, later the idea of
using a nonlinear kernel function to transform the problem into
RKHS is used to build a nonlinear classifier. Hence, SVM that
is built in the same RKHS is directly comparable to our ap-
proach. Another common approach in classification is boosting
[23]. Boosting is based on the idea of building a strong learner
(for example, a classifier) from a set of weak learners. The main
variation between boosting algorithms in the literature is their
method of weighting training data points and hypotheses, and
two most commonly used boosting approaches are AdaBoost
and LogitBoost.

To compare SVM, LogitBoost, and AdaBoost to the proposed
approach, we use the sonar mine detection data set. One third of
the data set has been independently selected for training and
Table II shows the average classification error for 50 Monte
Carlo simulations along with average computation times. For
AdaBoost and LogitBoost, we will present results with different
number of iterations to show the tradeoff between performance
and computation time. For RKHS-BD, we used Silverman’s rule
(15) to select the kernel bandwidth. With the same kernel band-
width, SVM tends to assign most of the test samples into one
class, which might be due to the small sample size. Therefore,
we experimented with different kernel sizes in SVM and pre-
sented the best result as well. In the comparisons, we use a pub-
licly available MATLAB SVM toolbox [24].

IV. CONCLUSION

If the class conditional probability densities and the associ-
ated risks are known, the optimal results are given by the Bayes
classifier. Specifically, for a two-class scenario, linear matched
filter provides the optimal results under certain symmetry con-
ditions; however, in the presence of non-Gaussian noise or non-
linear channel distortion, traditional matched filter and other
linear methods easily lose optimality. For these cases, coupling
the matched filter with a nonlinear preprocessor is a computa-
tionally efficient method to obtain suboptimal processors that
will outperform the linear matched filter. However, in most of
the cases, these methods are not reliable at approximating the
results obtained for an optimal classifier.

We approach the problem in a different way. Regarding the
Bayes discriminant function as a nonlinear mapping from the
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Fig. 5. ROC curves for RKHS-BD, KLDA, LDA, and KDE-Bayes classifiers on the sonar mine detection data.

TABLE II
AVERAGE ERROR AND COMPUTATION TIMES

Average Error (¢std) | Time
RKHS-BD (6 =0.14) | 0.2173+0.0323 0.0935 s
AdaBoost (100 iter) 0.2378+0.0355 6.0455 s
AdaBoost (20 iter) 0.2871+0.0357 14392 s
LogitBoost (100 iter) | 0.2307+0.0353 6.0699 s
LogitBoost (20 iter) 0.2528+0.0331 1.4467 s
SVM (06 =0.14) 0.4620+0.0132 1.4576 s
SVM (0 =0.65) 0.2112+0.0382 1.3534 s

original feature space to one dimension, we seek for the solu-
tion in the subspace spanned by the class conditional probability
densities, and we achieve an analytical solution for the approx-
imate Bayes decision boundary, and computationally expensive
optimization procedures are avoided. We tested our approach on
typical detection problems on real data. Even for a computation-
ally inexpensive suboptimal kernel selection, RKHS-BD pro-
vided superior performance as opposed to linear matched filter,
LDA, and KLDA.

RKHS-BD produced only slightly better results as compared
to KLDA. However, note that KLDA requires an optimization
step and is known to be numerically unstable if there are not
enough training samples. On the other hand, the proposed
method achieves the similar performance level with an ana-
Iytical solution—both for the class discriminant functions and
the optimal threshold. Similar conclusions can be made for
the comparisons with SVM, AdaBoost, and LogitBoost. SVM
and, given enough number of iterations, boosting algorithms
we used in the comparisons produced very similar results

with RKHS-BD. However, note that the analytical solution
achieved by our proposition not only eliminates the numerical
stability issues, but also yields faster computation times, since
an iterative optimization scheme is not required.

Constraining the search space for nonlinear designs has po-
tential uses in regularizing classifiers, and classification prob-
lems in very high-dimensional spaces with a few number of
training samples. Defining the subspace that the Bayes discrim-
inant function lies in, one can see that the behavior of the pro-
jection function that lies in the orthogonal space of class con-
ditional probability densities does not affect the performance.
Hence, the required regularization term can be sought in the
subspace of class conditional densities. In the case of many di-
mensions with too few examples, which is typical in biomed-
ical problems, the generalization performance in the high-di-
mensional space is an important problem, and constraining the
space as we propose above, one can achieve a better generaliza-
tion performance.

Computational complexity of the proposed algorithm is
O(N?3) if all eigenvectors of the kernel are utilized, where N is
the number of training samples, in its raw form, since inversion
of the kernel matrix is required. In practice, a few significant
eigenvectors of the kernel matrix could be selected and ex-
tracted sequentially. An efficient subspace approximation to
the inverse kernel matrix would reduce training complexity
easily. Furthermore, in testing, /N kernel evaluations are uti-
lized for each novel test data. Techniques based on truncated
polynomial expansions such as the fast Gauss transform and
its variants (for the particular kernel) could be implemented to
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realize this conceptually trivial computational simplification
methodology. In this paper, we did not consider these issues,
since the corresponding solutions are well known in the kernel
machine literature and they are directly applicable.
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