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Principal Curve Time Warping
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Abstract—Time warping finds use in many fields of time series
analysis, and it has been effectively implemented in many different
application areas. Rather than focusing on a particular application
area we approach the general problem definition, and employ prin-
cipal curves, a powerful machine learning tool, to improve the noise
robustness of existing time warping methods. The increasing noise
level is the most important problem that leads to unnatural align-
ments. Therefore, we tested our approach in low signal-to-noise
ratio (SNR) signals, and obtained satisfactory results. Moreover,
for the signals denoised by principal curve projections we pro-
pose a differential equation-based time warping method, which has
a comparable performance with lower computational complexity
than the existing techniques.

Index Terms—Kernel density estimation (KDE), principal
curves, signal denoising, time warping.

I. INTRODUCTION

T IME series analysis is an important field in adaptive
signal processing with numerous applications in econo-

metric studies on stock market data, in biomedical and speech
processing, or even in intelligent transportation systems anal-
ysis. A common problem in all these applications is to derive
a suitable distance measure between time series signals. In
many cases, although some pairs of signals demonstrate similar
characteristics (for unsupervised scenarios) or belong to the
same class (for supervised scenarios), the predominant struc-
tures of the signals do not align in the time axis. Dynamic time
warping (DTW) is a technique to solve this alignment problem
[1]. In general, DTW is a method that finds an optimal match
between two sequences of feature vectors with certain restric-
tions—monotonicity, continuity, and boundary conditions. The
problem is modelled as finding the minimum distance through
a matrix of pairwise distances of the data samples, and DTW
uses dynamic programming techniques to obtain the solution.

DTW algorithm is later referred to as the DTW model, since
it was reinterpreted as a parametric model [2], [3]. Although it
has found widespread use, DTW is susceptible to noise, and
time warpings over low signal-to-noise ratio (SNR) signals
may end up with many singularities. Singularities are defined
as “unintuitive alignments where a single point on one time
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series maps onto a large subsection of another time series” [8].
Literature on DTW is rich on modifications to increase noise
robustness. However, most of these are heuristic attempts which
are not guaranteed to remove all singularities. Even worse, they
may lead to suboptimal solutions. Techniques include using
moving average filters on the time series signals to reduce
the high frequency content, assuming that most of the high
frequency content is the noise [4]–[6]. This can be considered
as constraining the search space of allowable warpings, and
although constraining the search space of allowable warpings
may theoretically lead to suboptimal solutions for the time
warping function, strong empirical evidence has also been
reported that to this approach may increase the classification
performance [7]. Most recent work in time warping literature
includes derivative dynamic time warping (DDTW) [8] that
uses the derivative of the signals rather than the original values,
enhanced dynamic time warping (EDTW) [9] that brings a
unifying view to DTW and hidden Markov models, and context
dependent dynamic time warping (CDDTW) [10] that exploits
application specific contextual characteristics of the signals to
improve performance.

Our proposition to improve the noise sensitivity of the time
warping problem is a principal curve-based preprocessing step,
and we show that this approach allows one also to evaluate the
time warping function in low SNR cases. Principal curves are
defined by Hastie and Stuetzle [11], [12] as “self-consistent
finite length smooth curves passing through the middle of
data.” Principal curve algorithms in the literature include Tib-
shirani’s mixture-model expectation maximization approach
[13], Sandilya and Kulkarni’s bounded curvature approach
[14], Kegl and colleagues’ piecewise-linear bounded-length
approach [15], [16], and Stanford and Raftery’s outlier robust
algorithm [17]. We recently proposed another definition, which
describes the principal curve in terms of the gradient and the
Hessian of the data probability density [18], and we will use
our definition throughout this paper.

The contribution of this paper is twofold: i) Principal curve
projection of the data is proposed as a preprocessing step for
existing time warping algorithms. This projection can be per-
formed either in the original signal space or any feature set de-
rived from the data. Therefore, this denoising step can be cou-
pled with any time warping approach in the literature. ii) We
propose a simple differential equation-based method to find the
time warping function. Although this method does not provide
a robust approach for noisy cases, it brings a suitable computa-
tionally inexpensive alternative for the signals denoised by the
principal curve projections.

II. PRINCIPAL CURVE TIME WARPING

To motivate the reader, we start with a brief discussion of our
principal curve definition. Overall, principal curves generalize
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Fig. 1. Noisy signals ���� � � ��	 � and � (blue) and the noiseless signals ���	 and �����		 (red) are presented (left). Same signals in the � space is also
shown (right).

the self-consistency property of the principal line, the first prin-
cipal component, into nonlinear structures, and they are used for
capturing the predominant structure of the data. We define the
principal curves in terms of the gradient and the Hessian of data
probability density. We show that open ended problems in prin-
cipal curve literature, like overfitting or smoothness constraints,
can be answered by well studied results of density estimation lit-
erature. According to our definition, a point in the data feature
space is on the principal curve if and only if the gradient of the
pdf is an eigenvector of the Hessian of the pdf, and the remaining
eigenvectors have negative eigenvalues [18], which defines the
ridge of the pdf as the principal curve. This definition yields sub-
space constrained maximum likelihood algorithms [19], which
can be developed in the spirit of the well-known mean shift algo-
rithm [26], [27]. However, time warping problem yields a spe-
cial principal curve and we provide a specialized derivation par-
ticularly for this problem. For further details of the general defi-
nition and the subspace constrained mean shift algorithm, please
refer to our earlier work [18], [19].

A. The Feature Space and Principal Curve Projections

In template matching or hypothesis testing algorithms, the
test signals are compared with the noiseless template signal.
Here we consider the more realistic case of two noise corrupted
signals, assuming a noiseless template signal may not be avail-
able in all applications. We write the noisy signals as

(1)

where is the time warping function and and are
unimodal additive noise. Here we assume that the signals
and have the same length, and we build the principal curve
feature space as

(2)

Fig. 1 shows two realizations of along with the corresponding
noisy signal pairs , and and noiseless signal pairs

, and . Fig. 1(a) presents piecewise linear signals
, and (red) and their noisy versions , and

(blue). The data structure in given in Fig. 1(b) demonstrates the

pairwise signal characteristics, as a perturbation around a pre-
dominant shape in time; again red and blue show the noiseless
and noisy signals, respectively. As the noise level increases, the
amount of perturbation around the predominant shape increases.
Here, we propose to use the principal curve projections of the
data samples to approximate the noiseless signal characteristics
in domain. Projecting the signal samples onto the principal
curve can be regarded as a nonparametric nonlinear filtering.
This yields

(3)

where is the projection of onto principal curve.
To implement the principal curve projections, one can di-

rectly use the approaches we proposed earlier [18], [19]. How-
ever, particularly for the time warping application, we have a
much easier scenario due to the following:

1) Only the samples of the principal curve at time indices
are sufficient. Higher time resolution

or seeking for the portion of the principal curve that lies
outside the given time interval are unnecessary.

2) Under the unimodal additive noise assumption there will be
no branching in the principal curve, since and
are functions of time. Thus, for every subspace of defined
by there is a single point on the principal
curve.

3) Unlike the general case of random vectors, the third dimen-
sion of is deterministic; in the case of uniform sampling,
we can model this density as being uniform for theoretical
analysis.

One can select the initialization of the algorithm and the con-
strained space of the projection using above simplifications. At
this point, starting from the data samples themselves, and se-
lecting the constrained space as the for each data sample
is our choice for the two following reasons:

1) Selecting constrained space orthogonal to time index guar-
antees that there is only one denoised signal value at all
time indices.

2) One important observation here is that the peak of the pdf
in each constrained space is very close to principal
curve.
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Fig. 2. The noisy (blue), the noiseless data (red) characteristics in �, along with the principal curve estimated from the noisy data (green) is shown (left), and the
corresponding alignments are shown for the same signals (right).

TABLE I
PRINCIPAL CURVE DENOISING

The second observation here is based on the additive uni-
modal noise assumption and the fact that there is no branching
in the principal curve. Although it is close, the maximum in the
constrained space is not exactly on the principal curve.
Therefore, after convergence in subspace, we will use
the eigendecomposition of the Hessian matrix to select the con-
strained space to ensure the projection onto the principal curve.
Using Kernel density estimation (KDE) to estimate the density
of one can write

(4)

where is the kernel function with covariance . We use
the typical Gaussian kernel, and we will discuss the selection of
the covariance of the Gaussian later in detail. Substituting the
Gaussian kernel function into (4), the KDE of , and its gradient
are given as

(5)

Using , one obtains

(6)

Solving for yields the well-known mean shift update rule [26],
[27]

(7)

To implement the constraint on the space, assuming the sam-
pling times are noisefree, one should modify (7) by projecting
the update onto the initial plane. This can simply be im-
plemented using a matrix multiplication from left.

(8)

The projection matrix , and translation vector are given by

(9)

where is the time index of the initial sample . Iterating (8)
until convergence, one obtains the conditional maximum of the
pdf in the constrained space . Although the maximum in
the space is very close to the principal curve, to ensure the
convergence onto the principal curve, one should use the eigen-
decomposition of the Hessian of the pdf as we proposed ear-
lier in SCMS algorithm [19]. Here we skip the derivation of the
SCMS algorithm; however, to provide a complete implemen-
tation, details of the SCMS algorithm is included in Table I.
Overall, the proposed denoising scheme has a complexity of

.
Fig. 2(a) shows the found principal curve (green) for the

signal pairs presented in Fig. 2(b) along with their time align-
ments. We will provide a more detailed analysis on the accuracy
of the approximation given in (3) in the experimental results
section by presenting the distance between the noiseless signal
structure and the principal curve of the noisy signal.

B. Solving for the Time Warping Function

Regarding the principal curve projections as an independent
denoising preprocessing filter, proposed principal curve projec-
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tions can be coupled with any time warping algorithm in the lit-
erature. For this purpose, one can simply use the original DTW
algorithm or any of its derivatives in the literature. Here we
present a differential equation-based method as a computation-
ally efficient alternative.

Instead of directly working on the signal samples, we use
the derivative of the signals to ensure the continuity and mono-
tonicity properties of the time warping function. We define a
nonnegative and bounded derivative by construction to guar-
antee these properties. Using the approximation in (3), one can
write the derivative of as

(10)

Using one can write a differential equation to find the deriva-
tive of 1. This yields

(11)

Selecting the initial condition of the differential equation ac-
cording to the boundary condition , and integrating it
with a suitable step size one can evaluate the time warping
function. For convenience, we drop the subscript of the time
warping function for the rest of the paper.

(12)

To approximate the derivative of and we use the same step
size . This yields

(13)

Substituting (13) into (12), one can obtain the differential equa-
tion for the solution of the time warping function, the result of
which can be evaluated by integrating the differential equation
throughout the time interval with a suitable step size .
The default selection should be so that the solution
of the differential equation can be carried out over the available
signal samples. As increases, the computational complexity
decreases. This is not much different than subsampling the sig-
nals to end up with a smaller cost matrix for DTW. Therefore,
we will use in our experiments.

Let us briefly review the required properties of the time
warping function.

Boundary Conditions: To satisfy boundary conditions
one should satisfy .
Monotonicity: Given , the time
warping function has a nonnegative derivative; if this con-
dition is not satisfied due to numerical errors we modify
the update equation as to ensure the resulting
time warping function is nondecreasing.

1Note that a best-fit solution that satisfies (11) could also be obtained by
solving an error minimization problem with initial and final value constraints.

Continuity: Given as a solution of a differential integra-
tion problem, the time warping function is continuous by
construction.

C. Selecting the Covariance of the Kernel Function

A significant practical consideration for the implementa-
tion of the algorithm is the selection of the bandwidth of the
Gaussian kernel function. As with many other kernel-based
approaches, PCTW cannot provide satisfactory results for
improper bandwidth selections. Fortunately, literature on den-
sity estimation and kernel machines present many reliable
methods for selecting the kernel bandwidth [20]–[25]. These
techniques extend from local neighborhood distances-based
heuristic approaches [20] to maximum likelihood-based prin-
cipled methods [21]. For instance, Silverman’s rule [23], and
Comaniciu’s data driven approach [24] are among the most
commonly used bandwidth selection techniques. In many
kernel machine applications, spherically symmetric Gaussian
kernels suffice. However, this cannot be the case for the feature
space we define in (3). The variance around the principal curve
in the first two dimensions depends on the noise power of the
two compared signals, whereas time index in the third dimen-
sion may have any arbitrary scale depending on the sampling
rate.

Furthermore, the bandwidth of the Gaussian kernel can be ad-
justed by exploiting the actual physical meaning of data feature
space. In many signal processing applications, the noise power
can be estimated very reliably. In such cases, the estimate of the
noise distribution can be used as the kernel function. Assuming

and are independent Gaussian noise, one can write the
covariance of the Gaussian kernel function as

(14)

where controls the amount of smoothness to be introduced
along the time axis. Generally, this choice is not optimal; still, it
eliminates tedious kernel optimization efforts, and yields satis-
factory results. Specific selections regarding to our experiments
will be mentioned in the experimental results section.

III. EXPERIMENTAL RESULTS

We will start the experimental results on the accuracy of the
denoising approximation [that is (3)], and present the error be-
tween the noiseless signal structure and the principal curve for
different noise levels. Afterwards, we will present signal pairs
and corresponding time warping functions for synthetic and real
data examples. These experiments use the true signal or the
true time warping function to report results for different noise
levels. Eventually, the aim of time warping is to define a dis-
tance measure between time series signal pairs to increase the
clustering/classification performance. Therefore we also present
results for the time series clustering and time series classifica-
tion.

A. Noiseless Signal Versus Principal Curve of the Noisy Signal

The principal curve denoising results presented in this sub-
section exclude the solution of the time warping function to give
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the reader the chance to evaluate the principal curve denoising
step independently. Therefore, here we present results for the
approximation we make in (3), and give the integrated error be-
tween the noiseless signal structure and the principal curve of
the noisy signal for different noise levels. In this experiment,
we will use the following synthetic signal to be able to repeat
the experiment for different noise levels.

(15)

where is uniformly distributed between 0.05 and 0.45, and
is uniformly distributed between 0.55 and 0.952. We generate
realizations of this random signal of length

for each noise level, and add white Gaussian noise to obtain
the samples of the noisy signal for 10, 5, 3, and 2
dB. Hence, the noisy signal is

(16)

For 100 pairs of random realizations of , we build
the feature space as described in (2) and use the iterative scheme
given in Table I to project the data onto the principal curve. The
kernel function is selected by using the known SNR levels of the
signals, as described in Section III-C. We evaluate the integrated
error between the noiseless structure using pairs of ,
and the approximation provided by principal curve for different
noise levels.

Fig. 3 shows the mean and the variance, the error bar demon-
strates standard deviation from the mean, of the integrated
error of these 100 Monte Carlo simulations at noise levels 10, 5,
3, and 2 dB. The accuracy of the principal curve approximation
decreases with increasing noise level. Still, the method is able
to provide reliable approximations for noise levels as high as
2 dB.

B. Solutions of PCTW in Different Noise Levels

In this section, we present the solutions of PCTW on syn-
thetic and real data for different noise levels. First we will
present how denoising actually affects the final results. After-
wards, we will compare results of the original DTW algorithm
and the proposed computationally inexpensive differential
equation method along with their computational times.

For the synthetic dataset, we select the same noiseless signal
used in the previous experiment for simplicity. To show how the
denoising step affects the final results, for this experiment we
compare results of DTW algorithm using (i) the original noisy
signals and (ii) the principal curve projections. Fig. 4 present
the synthetic signal pairs, the noiseless signal pairs, and the so-
lution of time warping function for different noise levels. Also

2In fact, this is the same noiseless signal presented in Fig. 1(a).

Fig. 3. SNR versus integrated error between the noiseless signal structure, and
the approximation given by the principal curve. Mean error and �� standard
deviations are given for 100 Monte Carlo simulations.

TABLE II
PERFORMANCE EVALUATIONS USING THE NOISY DATA

note that for this simple piecewise linear case the correct time
warping function is known, and presented along with the solu-
tions. As the noise level increases, the principal curve denoising
still leads to reasonably good results, whereas for the original
noisy signal, the performance drops significantly.

To present results on real life data, we will use inertial
measurement unit (IMU) readings collected from a wrist-worn
sensor during physical exercise. Evidence has indicated that
following a simple exercise routine improves quality of life for
elderly individuals, and could also help to slow the progres-
sion of dementia. Providing individualized exercise direction
to elders is expensive when people are the ones providing
the direction. Our aim is to provide an automated interactive
exercise routine for elders. The ultimate goal is being able to
have an in-home automated exercise program that can detect if
the subjects are performing the proper exercise they have been
instructed to, and possibly if they are performing it well or not.

The IMU device measures the angular velocity and linear ac-
celeration in and directions. Since the subjects are going
to perform all these moves differently (for example, move up
fast, wait for a while, and go down versus move up slowly go
down fast without waiting, etc.) this is a natural application for
time warping. Fig. 5 shows the particular exercise sequence that
we used in the experiments.3 Fig. 6 shows a pair of 3-channel ac-
celerometer recordings for this exercise. In this high SNR signal

3The data used in this paper is not collected from real subjects of this study.
This preliminary data presented here is collected by A. Ozertem while visiting
our laboratory as a summer intern, by deliberately performing parts of the exer-
cise at different speeds.
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Fig. 4. Correct time warping function and solutions in different noise levels using the original data (left) and the principal curve projections (right).

Fig. 5. The exercise sequence used in the experiments.

Fig. 6. IMU data for two realizations of the exercise sequence in Fig. 7.

pair, one can see that both signals demonstrate similar charac-
teristics, but the structure does not align in the time axis.

In this experiment, we generate 20 of these IMU recordings
for the same exercise and perform the principal curve projec-
tions for each data pair—here we have a total of 190 pairs. We
solve for the time warping function using both DTW and the
differential equation given in Section III-B at different noise
levels—we artificially add Gaussian noise to the data to present
results at different SNR levels. Here we take the time warping
function regarding to the noiseless IMU measurement as the
ground truth and measure the performance using the integrated
error between the found time warping functions and the ground
truth for different noise levels.

Table II shows the results using original features along with
the average computation times. Table III presents the same

Fig. 7. Time series clustering dataset.

comparisons using the results of principal curve denoising.
Here the integrated errors are normalized with the norm of the
correct warping function, and the times are normalized with
the longest computation time. As compared to the proposed
differential equation-based solution, DTW or its derivatives
in the literature provide more robust tools for evaluating the
time warping function. This is obvious as one can observe
from Table II, where the data becomes noisy the performance
of the proposed differential equation-based method drops sig-
nificantly. However, when combined with the principal curve
projections as the preprocessing stage, the proposed differential
equation method is able to provide similar performance in less
computation time.

The reasoning behind the differential equation-based ap-
proach follows directly by observing the characteristics in ;
the derivative of the time warping function can be written in
terms of the partial derivatives of the principal curve. Frankly,
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Fig. 8. Time series clustering results, where the first 200 distances are in-cluster distances and the remaining 200 are intercluster distances. Distances for DTW
are presented with (red) and without (blue) principal curve denoising for different noise levels.

TABLE III
PERFORMANCE EVALUATIONS USING PRINCIPAL CURVE PROJECTIONS

since it suffers from error accumulation, using a differential
equation-based solution may not be the best tool to implement
this idea. For example, fitting a parametric curve (for example
a spline) to the denoised samples may be an alternative that
allows one to take the derivative using the parametric model of
the curve. We leave the investigation of these ideas as future
work.

C. Time Series Clustering Results

We will compare time series classification results for a syn-
thetic dataset using DTW, with and without the principal curve
denoising. To show how much the principal curve denoising
changes the final classification performance, we will provide the
pairwise distances for two clusters.

In this experiment we use the following two-cluster dataset

(17)

where and are uniformly distributed as shown above. Fig. 7
shows a collection of 20 signals, 10 signal for each cluster. Each
realization of the signal has 50 samples.

Fig. 8 shows the pairwise distances between these signals,
evaluated using DTW, with (red) and without (blue) the prin-
cipal curve denoising for different noise levels. Here we present
the sorted intracluster and intercluster distances, a total of 400
pairwise distances. Hence, the first 200 pairwise distances are
between sample pairs of same cluster, and the second 200 rep-
resent the distances between sample pairs of different cluster.
Principal curve denoising preserves the gap between intra- and
intercluster distances for noisy cases as well, which is essen-
tially what is required for good clustering results.

D. Time Series Classification Results

Very similar to previous section, we will present time series
classification results using a publicly available process control
dataset [28], which has 300 training and 300 test samples. In
this experiment, we present the ratio of samples from the cor-
rect class among the -nearest neighbors using Euclidean dis-
tance, and DTW distance with and without the principal curve
denoising. We add Gaussian noise to both training and testing
data and repeat the experiment for different noise levels and re-
port results for different values of .

Fig. 9 presents the times series classification results using Eu-
clidean distance (red ), and DTW distance with (green ) and
without (blue ) the proposed principal curve denoising. One
can see that for the original dataset in Fig. 9(a), principal curve
denoising does not change the results significantly. We repeat
the same experiment by adding Gaussian noise to the data. Re-
sults are given in Fig. 9(b) and (c). One important observation
is that the proposed projections slightly degrades performance
in the original dataset Fig. 9(a), which presumably due to over-
smoothing of the data. However, for the noisy cases, the prin-
cipal curve denoising improves the results significantly.

Authorized licensed use limited to: Northeastern University. Downloaded on June 5, 2009 at 15:26 from IEEE Xplore.  Restrictions apply.



2048 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 6, JUNE 2009

Fig. 9. Time series classification results. The percentage of correct nearest neighbors are presented for Euclidean distance (blue), and result of DTW with (green)
and without (red) principal curve denoising is presented for different noise levels.

Considering the results presented in time series classifica-
tion context, note that our aim is not to improve upon the per-
formance of any particular existing time warping application.
There are many techniques that use more elaborate application
dependent features to achieve better results; however, such op-
timizations are out of the scope of this paper.

IV. DISCUSSION

We present a robust time warping strategy based on principal
curves. The principal curve projections implement a nonlinear
nonparametric noise reduction filter. We derive the principal
curve-based denoising under unimodal additive noise assump-
tion. Since the proposed principal curve projection converges
to the maxima of the pdf in the constrained space, unimodal
noise assumption is required for theoretical analysis to have a
single maxima point, hence, a single denoised signal value in
the pdf for all time indices. In practice, we implement the prin-
cipal curve projection by a constrained mean shift algorithm
that uses Gaussian kernels. The effect of the multimodal noise
can be removed by increasing the bandwidth of the Gaussian
kernel. However, this may potentially lead to oversmoothing of
the signal and should not be preferred without any knowledge
on the frequency content of the signal.

The nonparametric implementation of the principal curve
time warping technique is based on KDE. At this point, note
that the definition of the principal curve is not coupled with
a specific density estimation method. Hence, one can employ
other density estimation techniques, if a particular method
yields more advantageous characteristics in specific applica-
tions.

For example, if there are too few number of samples or if the
noise level is extremely high, one obvious shortcoming of using
KDE will be the possible ill-conditioning of the Hessian matrix.
One can tackle this problem by imposing more structure to the
density model (such as a Gaussian mixture, etc.) to reduce the
statistical variance on the density estimate and fix the ill-condi-
tioning of the Hessian. Given our KDE-based implementation,
deriving the required algorithms for different density estimation
methods is fairly straightforward by working out the principal
curve projection directly from the definition [18]. Overall, the
improvement on noise robustness not only increases the stability
of existing time warping applications, but also may trigger new
application areas where the signals that need to be compared are
buried in noise.
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