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Abstract—In this letter, we propose a novel least-mean-square
(LMS) algorithm for filtering speech sounds in the adaptive noise
cancellation (ANC) problem. It is based on the minimization of the
squared Euclidean norm of the difference weight vector under a
stability constraint defined over the a posteriori estimation error.
To this purpose, the Lagrangian methodology has been used in
order to propose a nonlinear adaptation rule defined in terms of
the product of differential inputs and errors which means a gen-
eralization of the normalized (N)LMS algorithm. The proposed
method yields better tracking ability in this context as shown in
the experiments which are carried out on the AURORA 2 and 3
speech databases. They provide an extensive performance evalu-
ation along with an exhaustive comparison to standard LMS al-
gorithms with almost the same computational load, including the
NLMS and other recently reported LMS algorithms such as the
modified (M)-NLMS, the error nonlinearity (EN)-LMS, or the nor-
malized data nonlinearity (NDN)-LMS adaptation.

Index Terms—Adaptive noise canceler., least-mean-square
(LMS) algorithm, speech enhancement, stability constraint.

I. INTRODUCTION

T HE widely used least-mean-square (LMS) algorithm has
been successfully applied to many filtering applications,

including signal modeling, equalization, control, echo can-
cellation, biomedicine, or beamforming [1]–[3]. The typical
noise cancellation scheme is shown in Fig. 1. Two distant
microphones are needed for such application to capture the
nature of the noise and the speech sound simultaneously. The
correlation between the additive noise that corrupts the clean
speech (primary signal) and the random noise in the reference
input (adaptive filter input) is necessary to adaptively cancel
the noise of the primary signal. The adjustable weights are
typically determined by the LMS algorithm [3] because of
its simplicity, ease of implementation, and low computational
complexity. The weight update equation for the adaptive noise
canceler (ANC) is

(1)
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Fig. 1. Adaptive noise canceler.

where is a step-size parameter, denotes the complex
conjugate of the error signal , and

is the data vector containing samples of the reference
signal .

Many ANCs [3]–[6] have been proposed in the past years
using modified LMS algorithms in order to simultaneously im-
prove the tracking ability and speed of convergence. Bershad
has studied the performance of the normalized LMS (NLMS)
algorithm with an adaptive step size in [7] showing advantages
in convergence time and steady state. Later, Douglas and Meng
[6] have proposed the optimum nonlinearity for any input prob-
ability density of the independent input data samples, obtaining
the normalized data nonlinearity adaptation (NDN-LMS). Al-
though the latter algorithm is designed to improve the steady-
state performance, its derivation did not consider the ANC in
case of a strong target signal in the primary input. Greenberg’s
modified-LMS (M-LMS) [4] extended the latter approach to the
case of the ANC with the nonlinearity applied to the data vector
and the target signal itself, obtaining substantial improvements
in the performance of the canceler. The disadvantage of this
method is that it requires a priori information about the pro-
cesses which is generally unknown. Recently, an interesting ap-
proach has been proposed based on a nonlinearity applied ex-
clusively to the data vector [5].

This letter shows a novel adaptation for filtering speech
signals in discontinuous speech transmission (DTX) systems,
which are characterized by sudden changes of the signal statis-
tics. The method is derived assuming stability in the sequence
of a posteriori errors instead of the more restrictive hypothesis
used in previous approaches [8], i.e., enforcing it to vanish.

II. CS-LMS ALGORITHM

The NLMS algorithm may be viewed as the solution to a con-
strained optimization problem [11]. The problem of interest may
be stated as follows: given the tap-input vector and the de-
sired response , determine the tap weight vector
so as to minimize the squared Euclidean norm of the change

in the tap-weight vector
with respect to its old value , subject to the constraint

, where denotes the Hermitian trans-
pose. This constraint means that the a posteriori error sequence
vanishes [ , for ].
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In order to solve this optimization problem, the method of La-
grange multipliers is used with the Lagrangian function

(2)

where is the Lagrange multiplier, thus obtaining the well-
known adaptation rule in (1) with the normalized step size given
by . The latter constraint is overly restrictive in
real applications; thus, if we relax it, another interesting solution
can be derived. Consider the constrained optimization problem
that provides the following cost function:

(3)

where . This equilib-
rium constraint ensures stability in the sequence of a posteriori
errors, i.e., the optimal solution is the one that ren-
ders the sequence of errors as smooth as possible. Taking the
partial derivative of (3) with respect to the vector
and setting it equal to zero leads to

(4)

Since for and
, then

(5)

where is the difference between two
consecutive input vectors. Hence, the step of the algorithm is

(6)
Finally, after multiplying both sides of (5) by , the La-
grange multiplier can be expressed as

(7)
where is the difference in the
a priori error sequence [denoted by for short], since the
numerator on the left-hand side of (7) is equal to

.
Therefore, applying the equilibrium constraint on the right-hand
side of (7) leads to

(8)

Finally, the minimum of the Lagrangian function satisfies the
following constrained stability update condition (CS-LMS)

(9)

The weight adaptation rule can be made more robust by in-
troducing a small positive constant into the denominator to
prevent numerical instabilities in case of a vanishingly small

squared norm and by multiplying the weight incre-
ment by a constant step size to control the speed of the adap-
tation. Note that the equilibrium condition enforces the conver-
gence of the algorithm if . Several learning al-
gorithms, where the learning relies on the concurrent change of
processing variables, have been proposed in the past for decor-
relation, blind source separation, or deconvolution applications
[9]. Stochastic information gradient (SIG) algorithms [9] max-
imize (or minimize) the Shannon’s entropy of the sequence of
errors using an estimator based on an instantaneous value of the
probability density function (pdf) and Parzen windowing. In this
way, the CS-LMS algorithm can be considered as a generaliza-
tion of the single sample-based SIG algorithm using variable
kernel density estimators [10].

III. THEORETICAL REMARKS ON THE CS-LMS ADAPTATION

Once the CS-LMS method has been derived, a comparison
is established with the NLMS algorithm. This section shows
that, under some conditions: 1) CS-LMS and NLMS algorithms
converge to the optimal Wiener solution , and 2) for any fixed
step size , the proposed CS-LMS exhibits improvements in
excess minimum squared error (EMSE) and misadjustment (M)
[11] when compared to the NLMS algorithm.

A. Convergence Analysis of CS-LMS

Theorem 1 (Convergence Equivalence): Let be the tap
inputs to a transversal filter and the corresponding tap
weights. The estimation error is obtained by comparing the
estimate provided by the filter with the desired response

, that is, . On the other hand, if the de-
sired signal is generated by the multiple linear regression
model, i.e., , where is an uncor-
related white-noise process that is statistically independent of
the input vector , then the CS-LMS adaptation converges
to the Wiener solution under stationary environment.

Proof: This theorem is proven by showing that
is equal to .

This condition is satisfied since the cross-correlation vector
between the concurrent change in the desired responses
and input-vectors , , where

denotes auto-correlation matrix of .

B. Learning Curves of the CS-LMS Algorithm:
EMSE and Misadjustment

It is common in practice to use ensemble-average learning
curves to study the statistical performance of adaptive filters.
The derivation of these curves is slightly different for the ANC
problem due to the presence of the desired clean signal .
Using the definition of the weight-error vector

and (9) with the step size defined as , we may express
the evolution of as

(10)

where and denotes the noise in
the primary signal ( in Fig. 1). If is assumed to be
generated by the multiple regression model:

, the weight-error vector is expressed as

Authorized licensed use limited to: Northeastern University. Downloaded on June 5, 2009 at 15:29 from IEEE Xplore.  Restrictions apply.



36 IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 1, JANUARY 2009

(11)

By invoking the direct-averaging method [11], the equation
above leads to

(12)

where , and the mean-squared error
produced by the filter is given by

(13)

where and .
The stochastic evolution on the natural modes can be studied

by transforming (12) into

(14)

and by applying the unitary similarity transformation [11] to
the correlation matrix , where is a di-
agonal matrix consisting of the eigenvalues of , is
a unitary matrix whose columns constitute an orthogonal set
of eigenvectors and the stochastic force vector is defined as

. This vector has the following prop-
erties.

• The mean of the stochastic force vector is zero:
.

• The correlation matrix of the stochastic force vector is a
diagonal matrix: , where

, and
.

The first two moments of the natural modes can be ob-
tained by using these properties as in [11], which allow one to
show the evolution of with time step . The third term of
(13), in light of the direct-averaging method, is equal to

(15)

where . Assuming that the input
signal is weakly correlated , the second term
can be bounded in the last equality of (15) with the first term
(natural evolution), i.e.,

, and then

(16)

where denotes the th-component of natural mode
[11]. If the exponential factor is neglected with increasing

(17)

The reduction in is achieved whenever

(18)

i.e., the desired signal is strongly correlated. It also follows from
classical analysis [11] that 1) the high value of balances the
trade-off between and the average time constant since

(19)

where is the filter length, and 2) a necessary condition for
stability is that , for all .

IV. EXPERIMENTS

The experimental analysis is mainly focused on the deter-
mination of EMSE,1 and the misadjustment at different SNR
levels, step sizes, and environments, since these quantities per-
fectly define the filtering performance of the algorithm. The im-
pulse responses of the filters and were modeled, for prac-
tical reasons, as low-pass IIR filters

(20)

and .

A. Numerical Experiment

The first evaluation experiments considered a simple ANC
configuration to test the analytical results shown in Section III.
In this case, the desired signal is a sum of an intermit-
tent zero-mean AR(1) process with variance 1 and its pole
at and a zero-mean additive white noise with
variance 0.001. The AR(1) process turns on and off every
3000 samples. The noise source is a zero-mean Gaussian
process with variance 1, and it is assumed to be independent
of . Both CS-LMS and NLMS algorithms use an eight-tap
weight vector initialized to zero and different step sizes (0.001,
0.01, 0.1). The Monte Carlo simulations resulting of run-
ning the two algorithms (over 100 trials) are shown in Fig. 2
for . It is shown that and of the CS-LMS
algorithm are larger than for the NLMS method over noise
segments as expected: using (13) ;

. Note that
on noise segments. Somehow when turns on (to model
correlated speech segments), there is a clear reduction in
EMSE if the value of is sufficiently high (to cope with a
nonstationary environment). However, on speech segments:

; .

B. Nonstationary Environment

To check the tracking ability and the robustness against noise
of the proposed algorithm, let us assume that the noise in Fig. 1

1������� � ����� ����� ��� ���� ��� , where � � �		 is the
number of samples used in the estimation
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Fig. 2. Numerical experiment in the ANC problem. Top: MSE and EMSE [in
�� � �� ��� 	�
] comparison between the CS-LMS and NLMS algorithms.
Bottom: zoom on MSE evolution over noise and speech segments. Stationary
environment (� � ���, � � � � � �).

is one of the eight real-world noises extracted from AURORA 2
database at SNRs from 20 dB to 5 dB [13], i.e., babble noise.
In this case, was selected from the AURORA subset of the
original Spanish SpeechDat-Car database [12], which contains
4914 clean recordings from more than 160 speakers. Several ex-
periments are obtained by varying the filter length ;12;24
and the step size of the algorithms ac-
cording to DTX application. Note that should be large enough
to cope with rapid transitions in the channel. The range for the
step size was selected empirically.

Fig. 3 shows the operation of the algorithms for filtering a
speech signal corrupted by noise in a DTX scenario. Observe
how the equilibrium constraint obtains the best trade-off in the
filtering performance of the canceler. Finally, Table I summa-
rizes the averaged results of the EMSE and M in a nonstationary
environment using the proposed and referenced algorithms for
all the recordings of the database and the set of parameters

and noises. Thus, we are including the optimal
results of each algorithm and check which one obtains the best
averaged accuracy. The proposed method yields the minimum
EMSE and M for the selected range of filter lengths and step
sizes as shown in Table I.

V. CONCLUSION

This letter introduced a novel CS-LMS algorithm based on
the concept of difference quantities and the constraint of equi-
librium condition in the sequence of a posteriori estimation er-
rors. The method, which applies nonlinearities to the error and
input signal sequences, was derived using the Lagrange multi-
plier method as a generalization of the NLMS algorithm. Under
certain conditions, the proposed ANC based on the CS-LMS
algorithm showed improved performance by decreasing the ex-
cess mean-squared error and misadjustment compared to refer-
enced algorithms [4]–[7].
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