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Second-Order Volterra System Identification With
Noisy Input–Output Measurements
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Abstract—System identification with noisy input–output
measurements has been dominantly addressed through the opti-
mization of the mean-squared-error criterion (MSE), especially
in adaptive filtering. MSE is known to provide models that ap-
proximate the conditional expectation of the target output given
the input; however, when the input signal is also contaminated
by noise—a frequent occurrence—MSE yields biased estimates
of the model parameters with the severity of the bias dependent
on the noise power. This drawback has been addressed in various
ways, including errors-in-variables techniques. Recently, error
whitening criterion (EWC) and associated adaptation algorithms
were proposed to address this issue in linear system identification.
We extend the applicability of the main concept behind EWC to
the unbiased identification of order-2 Volterra series models of
nonlinear dynamical systems. The extension does not apply to
higher order Volterra models. The main contribution of this letter
is a statistical criterion that can be utilized to identify analytically
the true parameters of an order-2 Volterra model from noisy
input–output data. We also support the theoretical results with
simulations; however online learning algorithms that can be
derived for the proposed criterion will not be addressed.

Index Terms—Discrete-time order-2 Volterra model, error
whitening criterion, errors-in-variables, instrumental variables,
system identification.

I. INTRODUCTION

T HE mean-squared-error (MSE) criterion has found wide-
spread use in model fitting to noisy data, most relevantly

through Wiener and Kolmogorov’s theories on stochastic
process modeling, which led to the current adaptive filtering
theory [1]. However, in the presence of additive noise in the
input data, the bias that the power of this noise imposes on the
Wiener solution for an optimal linear filter has been an impor-
tant topic of research, which has induced many alternative and
interesting solutions, some of which are reviewed below. An
important consideration in designing a solution to this problem
is to avoid making certain strong assumptions about the signal
distributions; although a Bayesian approach could be employed
to determine the best solution under certain parametric density
model assumptions for the processes involved, these solutions
do not necessarily lend themselves to convenient real-time
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adaptation, and their success is dependent on the suitability of
the density model that is assumed.

Principal subspace Wiener filtering is a trivial modifica-
tion of the least-squares regression solution through principal
component analysis (PCA)-based dimensionality reduction
to improve signal-to-noise ratio (SNR) before employing the
Wiener solution [1]. This approach has clear shortcomings,
for instance, it is only applicable to high SNR situations. Total
least squares (TLS) is a powerful technique that addresses
the problem of input-noise-induced bias in linear regression
[2], [3]. This method requires a singular value decomposition,
therefore computationally efficient algorithms are possible;
however, it is applicable under strict equality constraints for
noise powers. The instrumental variables (IV) method, which
evolved from the errors-in-variables literature in statistics,
relies on exploiting information from the nonzero lags of the
autocorrelation function of the signals and solves the problem
of unbiased linear system identification in white noise [4].
Error whitening criterion is a recent improvement that uses the
IV concept and generates numerically more stable algorithms
for adaptation of linear filters [5]. The IV and EWC solu-
tions can be modified nontrivially by simultaneously learning
prewhitening filters in situations where the noise processes are
not white [4].

Volterra series and their variants have traditionally been
utilized for modeling nonlinear dynamical systems. Due to its
linear-in-parameters nature, this representation exhibits similar-
ities to linear regression and therefore provides us with a good
starting point towards extending the solutions discussed above
which are designed for linear systems to the problem of unbi-
ased identification of nonlinear systems using noisy input and
output measurements. System identification literature is rich in
Volterra series identification papers, where the noiseless input
and noisy output [i.e., the input and the output ]
are available for modeling. For example, Ogunfunmi and Chang
employ Wiener filter theory and LMS to second-order Volterra
series identification [6]. Koukoulas and Kalouptsidis present
a more elaborate approach for the same problem using the
cross-spectrum measurements of the noiseless input, and the
noisy output [7]. However, the more realistic case, where both
input and output measurements are corrupted by noise, is not
addressed in Volterra system identification literature.

We propose a statistical objective measure in the spirit of IV
and EWC that can be evaluated using samples acquired from the
noisy input output processes, yet provide an unbiased estimate
of the true system parameters of an order-2 Volterra model. We
will demonstrate that with this criterion, an analytical solution
for the optimal parameters can be derived. Online algorithms
to calculate the solutions will not be presented due to limited
space. Deriving stochastic gradient (LMS-variant) algorithms to
solve for optimal solution of the proposed criterion is relatively
straightforward, and a brief derivation will be provided in the
Appendix.
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Fig. 1. Block diagram of the system identification problem.

II. VOLTERRA SYSTEM IDENTIFICATION
WITH NOISY MEASUREMENTS

Given the noisy input signal samples and the noisy desired
output signal samples for our model, we are trying to estimate
the model parameters for the unknown order-2 Volterra system,
which is driven by the noiseless input signal and produces the
noiseless output signal . Letting be the noise in the output
measurements and be the noise in the input measurements,
the block diagram of the system identification problem becomes
as shown in Fig. 1. For the unknown plant, the discrete Volterra
series model is

(1)

where , , and are the sets of model coefficients (convolu-
tion kernels) of order zero, one, and two, respectively. Without
loss of generality, we assume that in the rest of this letter.
The bias term can simply be obtained by
after adapting the other coefficients.

Observing (1), one can see that the Volterra series representa-
tion is linear in parameters. To write the equivalent linear model,
one should put all the model coefficients and the corresponding
input polynomials into vectors. This yields

(2)

where the vector form of the coefficients is defined as

(3)

and the vector form of all other scalars is defined using the same
convention of ordering the components in the vector. Using
the definitions of vectors according to the convention in (3), it
is straightforward to see that (1) and (2) are equivalent. Now
consider the system identification scenario. The noisy desired
output is given as

(4)

where is the noise in the output measurements. Similarly, the
noisy input signal is

(5)

where is the noise in the input measurements. Using the noisy
input signal given in (6), we define the model output

(6)

Here, defines the coefficients of the adaptive Volterra model
and the vector forms of the coefficients , and the noise signal

are defined in the same convention of (3).

Assumptions:
• , , and are ergodic, strictly stationary, independent

stochastic processes.
• is colored, and and are strictly white.
• , .
• Volterra model order is known.

The strict stationarity and whiteness of the processes can be re-
laxed to restrict joint moments only up to order 4 without loss
of applicability. As stated, item 2 is equivalent to assuming
and samples are iid. We exploit the cross-correlation of the
noisy desired output , and the model output at lag-

(7)

We introduce the objective function to be minimized as the
squared difference of two cross-correlation functions at opposite
lags summed over lags, where with being the
dimension of

(8)

In the Appendix, we prove that the minimizer of has to be
parallel to ; that is , . Overall, the criterion is
quadratic in and this can be seen easily by substituting (6) in
(8): , where

(9)

The criterion becomes zero when is in the null space of
and the rank of this matrix (with theoretical expectations)

satisfies if the model order matches
that of the true system. Hence, given input–output training data,
one needs to identify the minor component of , which is the
space spanned by if .

To determine the correct scale, one should investigate two
different lags of the cross-correlation function in (7) and use
the ergodicity and stationarity assumptions once again to cancel
out the terms that depend on the noise terms. We can find the
arbitrary scale as

(10)

where . With a derivation similar to the one in
the Appendix, one can explicitly demonstrate that (10) can be
written in terms of noisefree data statistics. Due to lack of space,
we omit this derivation

(11)

Note that the derivation is based on the true values of the cor-
relation and cross-correlation functions. In fact, the underlying
true correlation functions are not available in real applications,
and when all the expected values above are estimated from the
data samples, the contribution of noise terms diminish to zero
with increasing number of samples asymptotically according to
the law of large numbers. In the experimental results section,
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Fig. 2. Cost function value versus the angle between � and � (top), and the
scatter plot of � and its estimator given in (10) (bottom).

we will utilize sample averages and also investigate the depen-
dency on finite sample sizes for a particular example to observe
that the estimation variance is inversely proportional to sample
size.

III. EXPERIMENTAL RESULTS

Here, we will observe two characteristics of the proposed cri-
terion: minimization of (8) at weights that are aligned with the
true parameter vector, and the asymptotic convergence of the
criterion to zero with increasing sample size. We assume that
the order of the system is known, and we generate a random
Volterra system of order two. For this random system param-
eterized with , we plot a cross-section of the criterion in
a two-dimensional subspace that include for 40 different
values selected and arranged such that the set of chosen values
linearly span the range of angles with between .
The set contains a weight vector that is aligned with the true
parameter vector (zero-angle). To decrease the effects of finite
size sample estimators, we run this experiment for 100 Monte
Carlo simulations using 10 000 training samples for each run,
while keeping the correlation function of the noiseless input
signal and the unidentified system the same. The results are pre-
sented in Fig. 2, showing the expected parabolic cross-section of
the criterion. In Fig. 2(a), the average value of the cost function
versus the angle between and is shown along with the cor-
responding 90% confidence level error bars. One can see that
the minimum is obtained when and are aligned. Another
observation is that the robustness of the system identification
scheme increases around the optimizer. The magnitude of the
weight vector is estimated using (10) over the same 100 Monte
Carlo runs of 10 000 training samples each. The scatter plot of

versus its estimate is given in Fig. 2(b), which demonstrates
excellent correlation in the estimation of this parameter.

The effect of sample size on the estimated cost is studied
with Monte Carlo simulations. Previous experiments demon-
strate that the variance of the criterion at the line spanned by the
true parameter vector is significantly small that at other weight
vectors. For a second-order Volterra system, we performed 100
Monte Carlo trials with varying number of samples in training
set (from 10 to ) and evaluated the criterion at true param-
eter vector. Fig. 3 shows the average minimum criterion versus
sample size. The linear decay in the log-log scale indicates the

dependency of the statistical variance of (7).
The effect of finite sample sizes should also be considered

in different SNR levels. To find , here we used the smallest
eigenvector (with a corresponding eigenvalue on the order of

to ) of to find the null-space of this rank
matrix, and the bias term is obtained using

after adapting the other coefficients. We fixed the SNR of
output measurements to 15 dB, and varied the SNR of the input

Fig. 3. Cost function value at � � �� versus number of samples.

Fig. 4. Angle (degrees) between the actual and estimated parameter vectors
for the proposed approach (solid lines) and least squares method (dashed lines)
versus SNR.

measurements from 5 to 20 dB. Results of 100 Monte Carlo
simulations are presented in Fig. 4.

Fig. 4 shows the angle between the estimated coefficient
vector and the actual coefficient vector for the proposed
method (solid lines) and least squares (dashed lines) for dif-
ferent orders of samples. For high SNR scenarios, higher
number of samples does not significantly increase the estima-
tion performance. However, as the SNR level decreases, much
more samples are required to keep the performance.

IV. DISCUSSION

In this letter, we address the problem of order-2 Volterra dy-
namic system model identification problem under the conditions
of noisy input and noisy output measurements, exploiting the
assumption that input and output noise processes are white and
the true excitation input is colored. Traditionally and typically,
the presence of noise in the input measurements is ignored in
nonlinear model regression, which leads to biased solutions for
model parameter estimates. Existing techniques in adaptive fil-
tering that attempt to correct for this bias limit their attention to
linear FIR filters. In this letter, we present a statistical criterion,
which enables one to identify the true parameters of a nonlinear
order-2 Volterra model from noisy data with reasonable assump-
tions of independence and stationarity regarding the stochastic
processes involved. The extension of the technique to other gen-
eralized linear models, including higher order Volterra models,
is the topic of future research. The fundamental departure in the
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set of assumptions exploited in the presented approach com-
pared to those employed in Bayesian regression is the utiliza-
tion of colored-excitation input versus iid sample requirements
of typical Bayesian modeling approaches, which lead to sim-
plification of likelihood calculations. In this letter, we explicitly
exploit the fact that noise is distinguished from signals of in-
terest by its temporal correlation structure.

This letter extends the unbiased model identification capa-
bility from linear (order-1) Volterra models to order-2; however,
in its current form, it cannot be proven to work for higher order
Volterra models. In typical nonlinear signal processing applica-
tions where Volterra models are used (e.g., modeling nonlinear
amplifiers), typically low-order Volterra models are used (up to
order-3). Since the model order is fixed a priori and sample
training data is typically available, the bias-variance trade-off
is not generally considered in these applications. The proposed
criterion offers an analytical solution for the weight vector, ex-
pressed in the form of a linear system of equations; therefore,
the implementation of LMS variants that solve for the optimal
Volterra weights online can be easily developed. We provide the
derivation of this approach in Appendix B, but due to limited
space, we leave further discussion on this topic to a future pub-
lication.

APPENDIX A

Here we show that for an order-2 Volterra system and adaptive
model and sufficiently large [that is ], is in
the linear span of if and only if becomes zero.

Let . For this case, we have

(12)

Note that since and are independent and the latter is zero
mean, the second term on the right-hand side vanishes to zero
for any . The matrix in the first term can be decomposed into
three components: 1) terms that depend only on the statistics of

, 2) terms that depend only on the statistics of , and 3) terms
that depend on the mixed statistics of these two processes. The
terms of types 2) and 3) vanish due to independence, ergodicity,
stationarity, and zero-mean assumptions on . To see this result,
note that

(13)

where , , .
The expectation in the first term of (12) consists of three types
of terms that correspond to the description above and indicated
by the three terms on the right-hand side of (13) in the same
order. The terms of type 1) remain as nonzero contributors. The
terms of type 2) become zero after the subtraction of and
terms due to stationarity of . The terms of type 3) become zero
because of stationarity of as well as its independence from
and it having zero mean. Consequently, the expression for
reduces to

(14)

Due to symmetry, . Hence, .

Let . This implies that has at least one
zero-eigenvalue. It is assumed that is sufficiently large, so
we let . This implies that must lie in the
null-space of . From the previous part of the proof, we know
that the line spanned by is always contained in the null space
of , and since the exact dimensionality of the null space is one,
we must have .

There is no upper bound on other than computational
constraints. When the adaptive weights are parallel to the true
parameters of the unknown second-order Volterra system, all
terms simultaneously diminish to zero, and including more
delays improves the statistical variance of the weight estimates.

APPENDIX B

Based on the proposed criterion, one can derive a stochastic
gradient algorithm, if an online training is necessary. Rewriting
the cost function in (8) and taking its derivative with respect to

, one obtains

(15)

Hence, the update equation should be

(16)

where is the step size. To obtain the stochastic gradient-type
algorithm, one should drop the expected value operators in
and use the instantaneous values of , , , and . This
yields

(17)
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