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VI. CONCLUSION

This brief paper presents a novel localization algorithm, named
DANN. We build a WLAN-based location fingerprinting system based
on DANN architecture. Our approach incrementally inserts DCs, and
recursively updates the weightings in the network until no further
improvement is required. In this way, the network adapts the weights
depending on the discriminative information from the inserted DCs.
In other words, the redundant information is discarded because it is
regarded as noise, which cannot progress the network learning.

Our localization system is developed in a real-world WLAN environ-
ment, where the realistic measurement of signal strength is collected to
perform the experiments. We implement and compare the traditional
approaches on the same test- bed, including WKNN, ML, and MLP.
Three different performance metrics including mean of error, standard
deviation of error, and accuracy are calculated and compared among
different techniques. The experimental results indicate that the pro-
posed algorithm is much higher in all the performance metrics. Fi-
nally, we analyze the number of inserted DCs from the cumulative per-
centage of eigenvalues obtained in our algorithm. It supports the fact
that our network can intelligently throw out the redundant information
for training and present better performance than other approaches do,
because the network efficiently adapts the weights depending on only
the useful discriminative information.
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Continuously Differentiable Sample-Spacing
Entropy Estimation

Umut Ozertem, Ismail Uysal, and Deniz Erdogmus

Abstract—The insufficiency of using only second-order statistics and
premise of exploiting higher order statistics of the data has been well un-
derstood, and more advanced objectives including higher order statistics,
especially those stemming from information theory, such as error entropy
minimization, are now being studied and applied in many contexts of
machine learning and signal processing. In the adaptive system training
context, the main drawback of utilizing output error entropy as compared
to correlation-estimation-based second-order statistics is the computa-
tional load of the entropy estimation, which is usually obtained via a
plug-in kernel estimator. Sample-spacing estimates offer computationally
inexpensive entropy estimators; however, resulting estimates are not
differentiable, hence, not suitable for gradient-based adaptation. In this
brief paper, we propose a nonparametric entropy estimator that captures
the desirable properties of both approaches. The resulting estimator yields
continuously differentiable estimates with a computational complexity
at the order of those of the sample-spacing techniques. The proposed
estimator is compared with the kernel density estimation (KDE)-based
entropy estimator in the supervised neural network training framework
with computation time and performance comparisons.

Index Terms—Entropy estimation, minimum error entropy (MEE) cri-
terion, supervised neural network training.

I. INTRODUCTION

Mean square error (MSE) has been the workhorse of adaptive system
training [1]–[3]. The simple analyzable structure, and low computa-
tional requirements are the most important advantages of the MSE cri-
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terion. Under Gaussianity assumption, MSE, which solely constraints
the second-order statistics, is capable of extracting all possible infor-
mation from the data, whose characteristics are uniquely defined by its
mean and variance.

In many applications, data densities take complex forms; hence, the
Gaussianity assumption becomes restrictive and many real life phe-
nomena cannot be sufficiently described by only second-order statis-
tics. At this point, constraining the information content of the signals
is more promising as compared to using simply their energy. In fact, the
insufficiency of mere second-order statistics has been discovered, and
more advanced information theoretic objectives are now being studied
[4]–[7]. Due to its conceptual simplicity, error entropy minimization
merits special attention here.

Entropy is introduced by Shannon as a measure of the average
information in a given probability density function (pdf) [8], [9]. It
is an explicit function of the pdf itself; hence, it includes all the
high-order statistical properties defined in the pdf. Consequently, as
an optimality criterion, entropy is superior to MSE, as minimizing
the entropy constrains all moments of the error pdf, whereas MSE
constrains only the first and second moment of the pdf. In this context,
minimizing the output error entropy is equivalent to minimizing the
distance between the probability densities of the output and the
desired signal [6].

Entropy is a function of the data pdf, and analytical data distribu-
tions are never available in real applications. Therefore, entropy must
be estimated from the data samples. One common approach is to di-
rectly substitute an estimate of the pdf of the signal into the sample
mean approximation for the expectation [10], and here, kernel den-
sity estimation (KDE) is the typical density estimation scheme [11],
[12]. If the kernel function itself is continuously differentiable, KDE
yields a continuously differentiable density estimate, which is crucial
for gradient-based adaptation. Another alternative is employing den-
sity estimators based on sample spacing. This is another nonparametric
approach, which is based on the distance between pairs, or generally
�-tuples, of the data samples. In this approach, there is no problem
such as kernel selection; however, the resulting estimates are not dif-
ferentiable, hence, not suitable for gradient-based adaptive learning.

The computational bottleneck for these entropy estimators is the
computational complexity of the density estimation method employed.
Typically, KDE results in ����� complexity, whereas the sample-
spacing methods result in �����, where � is the number of data
samples, and � is the number of samples used for sample spacing. We
propose a blend of these two methods to be used in the entropy estima-
tion that captures the desirable properties of KDE and sample-spacing
methods. Proposed approach yields a continuously differentiable den-
sity estimate such as KDE, yet it has a low computational complexity,
equivalent to the sample-spacing methods.

The high computational requirement of KDE makes it impractical
to use KDE-based entropy estimators with many samples, and one of
the most important applications that suffers from this limitation is the
error-entropy-minimization-based learning. Therefore, we will present
the results regarding to the proposed entropy estimator in the context
of output error-entropy-based supervised neural network training.

II. ENTROPY ESTIMATION METHODS

A. KDE-Based Entropy Estimates

In KDE, the density estimate is obtained as a sum of kernel functions,
where the kernels are centered at the data samples. A crucial point is the
selection of the kernel function, and the most commonly used kernel
function is the Gaussian. The Gaussian kernel function itself is con-
tinuously differentiable; hence, it results in continuously differentiable

density estimates. For a given kernel function�� � �, kernel density es-
timate of a random variable � with samples �������� becomes

����� �
�

�

�

���

���� ���� (1)

There is a wide literature on how to select the bandwidth of the
Gaussian kernel and there are supervised and unsupervised solutions
to this problem [11]–[14]. Methods vary from nearest-neighbor-based
heuristics to principled maximum-likelihood (ML)-based approaches.
Still, the selection of the optimal bandwidth is an open ended problem.
For the same random variable �, Renyi’s order-� entropy is given by

	���� �
�

�� �
��� �����
�� (2)

Substituting (1) into (2), one can obtain the KDE-based entropy esti-
mate as
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Shannon’s entropy is the limiting case of Renyi’s entropy where ��
�, and the KDE-based estimator for Shannon’s entropy can be obtained
in a similar way. In our experiments, we will focus on Renyi’s second-
order entropy �� � 	� in line with the earlier results presented by
Erdogmus [6], [7].

B. Sample-Spacing Estimates

Consider a random variable �, and its order statistics. Using the order
statistics, one can rearrange the samples in a nondecreasing order to
obtain ��� � �� � 
 
 
 � ���. The 1-spacing density estimate is
given by

����� �
�

�� � ������� � ���
� if �� � � � ����

�� otherwise.
(4)

Note that the probability mass between two successive samples of
the random variable here is ����� � ��.1 The statistical variance of
this estimator can be decreased by a factor of � by using successive
�-sample intervals rather than each successive pair

����� �
�

�� �������� � ���
� if �� � � � ����

�� otherwise.
(5)

This is the �-spacing estimator. Similarly, the expected value of the
probability mass between successive samples is ����� ���. The
�-spacing estimator of the Shannon’s entropy is given by [16], [15]

	��� �
�

�

���

���

���
�

�
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In Section III, we will write Renyi’s second-order entropy for contin-
uously differentiable sample-spacing (CDSS) estimator using the con-
nection to KDE. Similarly,�-spacing estimator of Renyi’s entropy can
be written. We skip this derivation here, because it is not central to the
focus of this paper.

III. CONTINUOUSLY DIFFERENTIABLE SAMPLE-SPACING

ENTROPY ESTIMATION

To build our continuously differentiable sample-spacing estimator,
we reinterpret the sample-spacing-based pdf estimation as a sum of fi-
nite support uniform kernel functions centered at the midpoint of suc-
cessive m-sample intervals, where the weight of each kernel is deter-
mined inversely proportional to the corresponding sample spacing—as

1Note that there is a slight difference in the density estimator that Miller and
Fisher use [15].
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Fig. 1. Polynomial kernel for � � � and �� � �.

in (4) or (5). Although this fact is easier to observe in 1-spacing esti-
mator, it is also valid for any �-spacing estimator. Using this interpre-
tation, one can replace each uniform kernel with a continuously dif-
ferentiable kernel function to obtain a continuously differentiable es-
timate. Defining the midpoints of each sample pair ���� ����� as ���,
one can obtain the kernel centers

��� � ����� � ������ (7)

Using ��, the �-spacing pdf estimate in (5) can be rewritten as

����� �
�

�� ���

���

���

�� ��� ���� (8)

where the kernel function �� � � � is uniform at the value
���������� � ���� in the interval 	��� ����
, and zero otherwise.
(Note that �� is by definition in a nondecreasing order.) To obtain a
continuously differentiable density, one should substitute this uniform
kernel with a kernel function that meets the following conditions: 1)
it is zero outside the interval 	��� ����
; 2) it satisfies the boundary
conditions at �� and ���� , that is, the limit and the derivative of the
kernel function at these point has to be 0; 3) it integrates to 1; and 4) it
is continuously differentiable.

A fourth-order polynomial—with double roots at �� and ����—is
the minimum-order polynomial that meets the above four conditions

�� �
	���� 
��

���� 
��
�� � � 	�
�� 
�


�� otherwise
(9)

where 
� is selected to be


� � ����� � ����� (10)

and the normalization factor 	� can be evaluated by integrating the
kernel and equating it to 1. For our selection in (9), 	� becomes

	� � ��
��� �� (11)

An illustration of the selected kernel function is shown in Fig. 1.
The resulting density estimate becomes continuously differentiable

and suitable for first- and second-order iterative learning algorithms.
Besides, the finite support property of the kernels will provide signif-
icant computational savings in the entropy estimation. Using the den-
sity estimate in (8), one can easily formulate the entropy estimator by

approximating the expected value operator with the sample mean. Con-
sider Renyi’s second-order entropy
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To write this estimator in terms of the samples only, one should substi-
tute (7), (9), (10), and (11) for ������ � � �� 
� and 	�, respectively. To
implement the finite-support kernels and remove unnecessary evalua-
tions, one should change the summation indices accordingly. This yields
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(13)

where the estimator is directly given in terms of error samples.

IV. COMPARISON OF UNDERLYING DENSITY ESTIMATES

Before we proceed to the adaptive system training scenario, we will
briefly discuss properties of underlying density CDSS density estima-
tion and KDE. Comparison of the characteristics of the underlying den-
sity estimates is critical to understand the characteristics of the resulting
entropy estimators.

The most important open ended problem in KDE literature is the se-
lection of an efficient kernel bandwidth, and the results severely suffer
from improper kernel width selections. CDSS approach automatically
eliminates the necessity for searching for the kernel width, and the
kernel bandwidths are automatically selected exploiting the sample
spacings as shown in (10).

Another well-known fact in the density estimation literature is the su-
perior asymptotic behavior and improved outlier robustness provided
by the variable kernel width density estimates. Variable kernel widths
are selected in a manner that the width of the kernel increases for
the samples that are more likely to be outliers of the distribution. In
CDSS density estimation, sample spacings naturally implement each
sample’s outlier likelihood and the resulting estimator is a variable
bandwidth kernel density estimator. Note that the only parameter in
the final CDSS entropy estimator in (13) is �, the number of samples
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used in sample spacing. This parameter adjusts the tradeoff between
the computational complexity and the asymptotic behavior of the es-
timator. Similar to sample-spacing density estimates as in (5) and (8),
a consistent and asymptotically unbiased estimator exists if and only
if ������� � � and ������������� � �. Typical selections
for � include � �

�
� and � �

�
� [15]. The computational

complexity of CDSS entropy estimator is �����, which becomes
������� and ������� for these choices, both of which are signifi-
cantly less than ����� computational complexity of the KDE entropy
estimator. Moreover, the computational complexity can be further re-
duced to���� if a priori information about the data or empirical eval-
uations yield a sufficient constant value for �.

Selection of � is in line with selection of kernel bandwidth in KDE.
At this point, note that in CDSS, computational savings is an impor-
tant criterion to be considered in the selection of �, whereas in KDE,
the selection of bandwidth does not bring any computational savings.
In KDE literature, one of the most principled kernel optimization ap-
proaches is to use the leave-one-out cross-validation ML procedure.
Consider the random variable � with samples ���� ��� � � � � ���. The
KDE that leaves the �th sample out of density estimation is given by

����� �
	

�

�

����� ���

	���� ��� (14)

and the objective of the kernel bandwidth optimization problem is de-
fined by maximizing the log-likelihood function over all samples

�
�
�

��

�

���

�����
 (15)

This optimization problem can be solved using a line search. For CDSS,
a similar approach can be defined over the sample-spacing parameter
�. This leads to a discrete optimization problem over �, which is not
much more difficult than the analogous problem for KDE for the 1-D
case here.

In KDE-based minimum error entropy (MEE) adaptive system
training context, implementing any kernel optimization procedure
is quite impractical, and computationally more efficient—mostly
heuristic—kernel selection methods have been used in the MEE
system training literature. The reason is this optimization should
be performed at every step of system adaptation. Regardless of the
adaptive system used in the training, at every step of system adaptation
the error samples of the training set change. This requires an ML
kernel optimization procedure at every step of the system training,
which is computationally unfeasible. Similarly for CDSS, no kernel
optimization technique known to the authors is computationally cheap
enough to be used in the system adaptation iterations. If CDSS is
going to be used for other applications, the ML approach explained
above can be used, but with today’s computational power, MEE-based
learning algorithms are unfortunately still bound to employ heuristics,
visual or empirical inspections for selecting the kernel parameters.

For the kernel function selected in (9), note that 1-spacing density
estimator in particular is rather problematic; the pdf is equal to 0 at
all data samples.2 For simplicity, here we used the lowest order poly-
nomial that satisfies the four constraints listed before, and employed
an �-spacing estimator. For a 1-spacing estimator, the kernel function
should be modified in a way that the finite support of the considered
fourth-order polynomial extends beyond the sample pairs. This can be
achieved either by modifying the placement of the root of the polyno-
mial or using a piecewise defined function that satisfies the aforemen-
tioned constraints.

2In sample-spacing entropy estimation, kernels can be centered at the sample
of interest or at the midpoint of the convex interval (or center of mass of the
volume in multidimensional cases) that contains all �-nearest neighbors. The
first choice does not have the counterintuitive zero-likelihood observed samples.
We choose the second option and this creates the problem of zero-likelihood
estimates for the observed sample set.

Finally, note that the CDSS procedure applied here is specifically
based on order statistics in one dimension and the estimation cannot
be directly generalized into multivariate estimates. Still, the modifi-
cations to convert the proposed estimator into multivariate scenarios
is very straightforward. In higher dimensional spaces, instead of just
the ordering, one needs to generate 	-nearest-neighbor statistics for
each sample by checking pairwise distances between all samples.3 This
methodology is the basis of Kraskov’s work on mutual information
estimation [17]. Using the same interpretation of uniform rectangular
kernel, one can replace these with continuously differentiable kernel
functions to obtain a multivariate CDSS estimator.

Overall, CDSS yields a computationally efficient variable width
kernel density estimate that is robust to outliers. The optimal way to
select the scale parameter can be achieved by maximizing the data
likelihood; however, this is still as computationally expensive as it is
in KDE, and therefore, cannot be used in MEE context, because the
error distribution is changing at every step of the system training.

V. MINIMUM ERROR ENTROPY AND ADAPTIVE SYSTEM TRAINING

In adaptive learning context, MEE has been shown to be superior to
methods based on second-order statistics [6], [7]. Although the error
entropy minimization approach is very promising, it can only be ap-
plied to small scale problems due to high computational complexity.
Therefore, we present CDSS results in minimum-error-entropy-based
adaptive system training context. Here, one can define the optimiza-
tion criterion over the entropy estimate ��, or equivalently, one can
also use the corresponding information potential ��, which is the term
in the logarithm in (13).

For gradient-based adaptation, one needs the derivative of the
optimization objective with respect to the system parameters. Using
chain rule this can be decomposed into two parts: 1) �������� the
derivative of the error entropy with respect to the system output, and
2) ������� the derivative of the system output with respect to the
system parameters. The first part 1) is specific to the CDSS definition
here, whereas the second part 2) is independent of the CDSS definition
and only depends on the system to be trained. To make the derivation
generic for any system selection, here we focus on the first part, and
leave the specific system selection choice to the user. Depending on
the choice of the adaptive system, the form of ������� can be
decided from the relevant literature [2].

Considering a training set of input and desired output pairs and
an adaptive system with parameter vector �, one can design a gra-
dient-based adaptation. Gradient descent is the simplest and the most
commonly used choice, whereas second-order alternatives such as the
Newton’s method are also possible. Let � denote the output of the
system, and �� denote the training error between the �th input–output
pair. The gradient of the error entropy with respect to the system
parameters can be obtained using the derivative of the CDSS entropy
estimator in (13). Because the entropy is a monotonic function of
information potential, one can focus on the information potential
�����, which is the argument of the logarithm in (13). This gives
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 (16)

3Also note that the number of neighbors� used here has to be selected greater
than the data dimensionality.
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In (16), ���������� denotes the derivative of the adaptive system
output with respect to the system parameters; therefore, it is indepen-
dent of the CDSS scheme and it only depends on the adaptive system
selected by the user. For the adaptive system to be used, derivative
of the adaptive system output with respect to the system parameter
vector ���������� can be found in the literature; hence, CDSS-based
gradient adaptation approaches can be implemented for different
adaptive systems using (16) only. We will provide the details of the
derivation in the Appendix. In Section VI, we will use standard neural
networks and employ a gradient descent with line search to present the
optimizer of the CDSS-based MEE cost surface.

In many adaptive learning scenarios, the optimization algorithms
are sensitive to local optima. Deterministic annealing is the one of the
most commonly used methods to tackle this problem. The approach
is based on introducing a smoothing to the cost function—so that the
local optima would disappear—and tracking the local optima while
slowly reducing the amount of introduced smoothing. Previously, this
idea was applied in the KDE-based MEE context by Erdogmus [7],
and deterministic annealing is shown to lead to better results. Con-
ceptually, implementing deterministic annealing in KDE-based MEE
is quite straightforward using Gaussian kernel functions. In the entropy
estimation, one should start with a wide kernel bandwidth, leading to
a smooth density function that eliminates local optima in the resulting
objective function. Then, the bandwidth of the Gaussian should be de-
creased slowly as the iterations proceed.

In KDE-based MEE approach, one requires an additional parameter
to adjust the rate of change of the kernel bandwidth—either linearly
or logarithmically.4 CDSS inherently implements the kernel annealing
approach with no additional parameters. Considering (10), one can see
that the kernels adapt the data scale automatically. At a random ini-
tialization of system weights in the beginning, the error samples are
rather big, and kernel functions turn out relatively wide at the initial-
ization, preventing the gradient-based algorithm from getting trapped
in a local optima. However, as the algorithm starts converging and the
error distribution starts becoming narrower, the kernel sizes also shrink
to prevent oversmoothing. In Section VI, we will provide a comparison
of distributions of CDSS kernel sizes throughout iterations.

VI. EXPERIMENTAL RESULTS AND COMPARISONS

The performance of the proposed supervised learning scheme will
be evaluated using a framework consisting of a time delay neural net-
work (TDNN). Three different TDNNs will be trained with three dif-
ferent learning techniques minimizing the following performance met-
rics: 1) mean square error (MSE), 2) error entropy with kernel density
estimation (MEE-KDE), and 3) error entropy with continuously dif-
ferentiable sample-spacing estimator (MEE-CDSS). TDNNs will be
trained to perform two different tasks: the short-term prediction of the
Mackey–Glass chaotic time series and a computer generated time se-
ries, which was actually used in Santa Fe time-series computation, dis-
playing high-dimensional dynamics with finite states and drifting pa-
rameters [18], [19].

A. Case Study I: Mackey–Glass Time Series

The first experiment is the short-term prediction of a Mackey–Glass
chaotic time series with parameter � � ��. The input to the TDNN will
consist of the current value of the chaotic time series, followed by the
five delayed values in time, whereas the output will be the prediction of
the next instant in the series. The TDNN framework for each scheme
consists of a single hidden layer with the network nonlinearity chosen
as the tanh function.

For a comprehensive analysis that avoids convergence to local solu-
tions, a systematic Monte Carlo approach is followed. Each TDNN is
trained 1000 times with random realizations of initial weight and bias

4In annealing, this parameter is generally referred to as the temperature.

TABLE I
COMPUTATION TIME VERSUS L1 PERFORMANCE COMPARISONS AND

TRADEOFFS FOR THE LEARNING SCHEMES—MACKEY–GLASS

TIME-SERIES PREDICTION

Fig. 2. The error probability densities for MSE, MEE-KDE and MEE-CDSS
for the Mackey-Glass time-series prediction.

values whereas the number of neurons in the hidden layer is also varied
between 5 and 10. All TDNNs were tested with 10 000 samples with
a sampling period of 0.1 s. A well-known backward propagation al-
gorithm with a variable step size is used for error minimization [20].
For MEE-KDE, the kernel size is empirically chosen to be � � ����.
As suggested in the literature, the sample size for MEE-CDSS � is
chosen as integer multiples of

�
	 where 	 is the size of the training

input [15].
After empirical analysis, � is chosen to be �

�
	 . Note that unlike

searching efficient values of the kernel bandwidth in KDE, selection of
� affects the computation time as well. To be able to present results
for different number of samples while fixing the computation time, we
set this parameter empirically.

Table I compares the performances and computational complexities
of the three supervised learning schemes. For the first three rows,
all TDNNs were trained with the exact same number of samples.
MEE-KDE has the best L1 performance while requiring more com-
putation time than the other two algorithms. On the other hand,
MEE-CDSS has a very similar performance to MEE-KDE with less
than only ���th of its computation time.

The novelty of the MEE-CDSS scheme becomes more obvious when
it is allowed to train using more training samples such that its compu-
tation time is approximately similar to MEE-KDE. The last two rows
of Table I displays the results for such a scenario where both MSE and
MEE-CDSS are allowed to use more samples for training to match their
computation time that of MEE-KDE. The L1 performance of MSE,
while getting closer, still cannot outperform MEE-KDE; on the con-
trary MEE-CDSS now has a lower error than MEE-KDE while dis-
playing asymptotic stability.

Fig. 2 shows the error distribution for the three schemes for different
number of iterations. Even though they are all concentrated around
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Fig. 3. Comparison of CDSS kernels throughout the TDNN training, at the initialization, 50th, 100th, and 200th iterations, from left to right. As the error samples
get smaller, they get close to each other; hence, smaller kernel sizes are required. CDSS kernels automatically adapt the scale of the data.

zero mean error, MSE has a considerably larger variance whereas
MEE-KDE and MEE-CDSS distributions display quite similar char-
acteristics. More importantly, when the computation time is fixed and
MEE-CDSS is allowed to use more training samples to compensate for
reduced complexity, the error variance is decreased. Fig. 3 compares
the distribution of the kernel widths throughout the iterations. At the
initialization, broader kernels are required to avoid local optimizers. As
the adaptive algorithm converges, the error samples get much smaller
and smaller kernel bandwidths are required to prevent introducing an
oversmoothing to the density estimate. Even though � is kept constant
throughout, CDSS implements kernel annealing with no additional
parameter.

B. Case Study II: Time Series With High-Dimensional Dynamics

For the second task, we used a computer generated data set with
high-dimensional dynamics and weak nonstationarity modeled by
drifting parameters [19]. This data set was used in the Santa Fe
time-series competition directed by N. Gershenfeld and A. Weigend.
The internal state dynamics and the output of the system can be
summarized by the following equations.

The time series is basically generated by numerically integrating the
dynamic equations of motion for a weakly damped and periodically
driven particle [21] given below:

���

���
� �

��

��
��� ��� � � ��� (17)

where � is a 4-D vector

� � ���� ��� ��� ���
� (18)

defining an asymmetric 4-D, four-well potential �

� � �� ���
�
� ��

�
� ��

�
� ��

�
�� �� ����

�

� � ����	 (19)

A small drift is introduced into dissipation, �� parameter, by inte-
grating a Gaussian random variable. To solve the equations, an arbi-
trary period of ���
��� is enforced in the �� direction

� ��� � 	
�����	 (20)

The time series is generated by observing the following variable:

� � ���
�
� �	�

�
� ���

�
� �	�

�
� ��

�
� ��

�
(21)

which was sampled at every 0.05 s. The main reason for choosing such
a system is the existence of high-dimensional dynamics and the slow
drift of parameters to ensure a long-term change in transition probabil-
ities. Moreover, by picking such an observable, the complexity of the
problem is increased by having more internal states than externally ob-
servable [19].

TABLE II
COMPUTATION TIME VERSUS L1 PERFORMANCE COMPARISONS AND

TRADEOFFS FOR THE LEARNING SCHEMES—MOTION OF A

DAMPED, DRIVEN PARTICLE

Fig. 4. Error pdfs for MSE, MEE-KDE, and MEE-CDSS for the prediction of
the motion of a weakly damped and periodically driven particle.

The specifications/parameters (number of iterations, � with 
�
 ,

etc.) of TDNNs used and the training and testing process using the
Monte Carlo approach are practically identical to the ones used for
Mackey–Glass as described in Section VI-A above. For this experi-
ment, 10 000 samples are used for testing.

Table II compares the performances and computation times of the
three supervised learning schemes for the second case study. As the
table shows, the results confirm those of the first experiment. When the
exact same number of iterations and the same size of training data is
used, MEE-KDE has the best performance with the tradeoff of having
a higher computation time. Also note that, with the increasing size of
the training samples available, the ratio of the computation times of
MEE-KDE and MEE-CDSS increases; however, the L1 performance
of MEE-CDSS is still very close to MEE-KDE. Once again, the
performance of MEE-CDSS scheme surpasses MEE-KDE assuming
a fixed amount of computation time is allowed for both algorithms.
Fig. 4 shows the error distributions for the three training schemes.
Given the same number of iterations and the same size of training
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data, the error variance of MEE-KDE is noticeably less than that of
MSE, however there is only a marginal difference between MEE-KDE
and MEE-CDSS. On the other hand, given a fixed computation time
and more training samples, the error density of MEE-CDSS achieves
a more concentrated peak around zero.

To summarize, it has already been shown that MEE-KDE prefers
a larger and more concentrated peak around zero error and approxi-
mates the pdf of the desired output much better than MSE with the
cost of a substantially increased computational time during the training
of the system [6]. Results presented in this section simply demon-
strate that with the use of continuously differentiable sample spacing,
MEE-CDSS can achieve a similar performance to MEE-KDE with
much less computational complexity.

VII. CONCLUSION

We present a hybrid entropy estimator that combines the desirable
properties of KDE and sample-spacing methods. For this purpose,
we reinterpret the sample-spacing method and utilize variable-size
finite-support kernels. With a single analytical expression over the
nonzero interval, a fourth-order polynomial is the lowest order poly-
nomial that satisfies the boundary conditions. The finite-support na-
ture of the resulting kernel function yields significant computational
savings.

Outlier robustness and better asymptotic behavior are well-studied
results of variable size KDE. In CDSS, variable kernel sizes that lo-
cally fit the data naturally arise after the reinterpretation of the sample-
spacing estimates, and the resulting variable kernel size entropy es-
timator has no parameters except �, which eliminates tedious kernel
size optimization requirements to adjust data-dependent variable band-
widths. Furthermore, it is known that deterministic annealing improves
the results if there is local optima in the optimization objective. In MEE
context, this annealing is performed over the kernel bandwidth, and
CDSS density estimator inherently implements this kernel annealing
without any additional parameter. However, ML-based optimal selec-
tion of the sample spacing � is still as computationally expensive as
optimization of the Gaussian bandwidth in KDE, and cannot be imple-
mented in MEE context.

We tested our computationally efficient CDSS entropy estimator
in supervised adaptive system training context, which is one of the
main areas that suffers from the computational complexity of en-
tropy estimation. The CDSS entropy estimator has proven superior
to its KDE-based counterpart by having the best computational
complexity-performance tradeoff while displaying asymptotic sta-
bility. To sum up, the reduced complexity will allow one to employ
error-entropy-minimization-based techniques for mid- or large-scale
problems; in addition, when compared to the fixed kernel size
KDE-based scheme, CDSS entropy estimator enables training with
more samples and achieves better performance in the same amount of
computation time.

APPENDIX

We will briefly present the intermediate steps of the result
presented in (16). We start with rewriting the entropy estimator
����� � � ��������, where �� is

����� �

���
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�����

�����

����� � �����
���� � ���
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�

Taking the derivative of �� with respect to system parameters, one
should consider � � �� �, and �	��
�	�� � ��	��
�	��, where �

is the output of the system, and � is the known desired output. Taking
the derivative using chain rule, one obtains
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Substituting the expression for �	��
�	�� and collecting the common
terms in 	�� , one obtains the result presented in (16).
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