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TED P
ROAbstract

Under the assumptions of non-Gaussian, non-stationary, or non-white independent sources, linear blind source

separation can be formulated as generalized eigenvalue decomposition. Here we provide an elegant method of doing this

on-line, instead of waiting for a sufficiently large batch of data. This is done through a recursive generalized

eigendecomposition algorithm that tracks the optimal solution that one would obtain using all the data observed. The

algorithms proposed in this paper follow the well-known recursive least squares (RLS) algorithm in spirit. We also propose

to employ this on-line approach for joint image rejection in separating audio signals with the linear mixing varying with

time and in slow fading wireless receivers with successful results.

r 2008 Elsevier B.V. All rights reserved.
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NCORRE1. Introduction

Independent component analysis (ICA) is an
important statistical tool in signal processing and
machine learning, both as a solution to the problem
of blind source separation (BSS) [1–9] and as a
preprocessing step that complements a more com-
prehensive solution as in dimensionality reduction
and feature extraction [9–12]. To implement these
applications feasibly on contemporary digital signal
processors (DSPs), on-line learning algorithms are
required. Currently, the on-line ICA solutions are
U
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obtained using algorithms designed with the sto-
chastic gradient concept (e.g., Infomax [13]). The
drawbacks of stochastic gradient algorithms in on-
line learning include difficulty in selecting the step
size for optimal speed misadjustment trade off and
suboptimal estimates of the weights given all the
samples seen at any given iteration.

Recursive least squares (RLS) is an on-line
algorithm for supervised adaptive filter training,
which has the desirable property that the estimated
weights correspond to the optimal least squares
solution that one would obtain using all the data
observed so far, provided that initialization is done
properly [14]. This benefit comes at a cost of
additional computational requirements compared
to LMS. Nevertheless, it would be beneficial in
certain ICA applications to track at each step the
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optimal solution given all the data up to the step.
The joint diagonalization of higher order statistics
have been known to solve the ICA problem under
the assumed linear mixing model and have lead to
popular algorithms like JADE [1,4]. This motivates
the derivation of a recursive generalized eigende-
composition (GED) based ICA algorithm that is
similar to RLS in principle, but solved by the
simultaneous diagonalization of the second and
fourth order joint statistics of the observed mix-
tures. This can be done in three major ways,
assuming the sources are non-stationary and dec-
orrelated [8], non-white and decorrelated [9], or
non-Gaussian and independent [15].

GED is an extremely useful statistical tool in
many applications like feature extraction, pattern,
classification, signal estimation and detection
[16,17]. Alternatively, GED is also sometimes
referred to as oriented principal component analysis
(OPCA) [18,19]. PCA which finds enormous real-
world applications is a special case of GED and
analytical techniques have been developed in the
linear algebra literature [20]. These numerical
techniques are computationally inconvenient and
moreover require blocks of data. Only fast on-line
algorithms can adapt quickly to the changing
environment while block techniques lack this
feature. The past decade or so has produced plenty
of on-line algorithms and efficient computation
techniques for PCA and subspace tracking
[18,21,22]. These algorithms can be used to solve
GED. For instance, a two-step PCA approach has
been proposed [17]. But the application of these
GED methods using PCA can be limited due to
computational requirements. Compared to PCA,
there are fewer on-line algorithms to directly solve
UNCOR

Fig. 1. Scatter plots for the two speech so
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GED. The traditional power series method for PCA
has been revisited recently with improvements
[22,23]. We shall employ a similar method for
solving GED, such as [24].

The on-line implementation of ICA through
GED also requires a sample-by-sample estimation
of the correlation and cumulant matrices. Certain
efficient methods for on-line and adaptive estima-
tion of cumulants for a white stochastic process
have been proposed [25,26]. These methods are very
useful for estimating the fourth order cumulant for
a scaler process but require careful choice of certain
parameters for consistent convergence. Moreover,
their extension for a vector time series is non-trivial.
Instead we shall start with first principles and derive
a very fast and reliable estimation technique
following the ideas used in the RLS algorithm for
optimal filtering.

An area where these types of on-line algorithms
would be useful in wireless receivers. Here we also
present an efficient method of image rejection in
diversity wireless receivers. Since the algorithm
would work in a DSP with digital base band data,
it could eliminate highly selective RF band pass
filters (BPF) in the front end thus making the front
end less costly and more compact. We shall follow
the approach presented in [27] to formulate the
problem as one of BSS, where the authors present a
variant of the Fast-ICA algorithm which is used on
batches of data rather than being on-line.

The next section presents the recursive BSS
(RBSS) algorithms. Section 3 demonstrates their
use in separating linearly mixed speech with a
constant mixing matrix and a time varying one,
while Sections 4 and 4.1 present the approach for
image rejection in wireless receivers and the
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corresponding simulation results, respectively (Fig.
1).

2. Recursive BSS algorithms

The square linear ICA problem is expressed as

X ¼ AS, (1)

where X is the n�N observations matrix, A is the
n� n mixing matrix, and S is the n�N independent
sources matrix. If we consider each column as a
sample in time, (1) becomes

xt ¼ Ast. (2)

The joint diagonalization of the covariance matrices
and higher order cumulant matrices can be com-
pactly formulated in the form of a GED problem
that gives the ICA solution an analytical form [28].
This formulation follows the fact that the matrix A

appears conveniently in the expansion of various
cross-statistics of the observations xt in terms of the
corresponding statistics of the source. More speci-
fically for the covariance matrix RX ¼ E½xtx

H
t �:

RX ¼ ARsA
H, (3)

where Rs is the diagonal covariance matrix for the
independent or decorrelated sources. Here we
consider the general case of complex variables and
the superscript H is the Hermitian transpose
operator. Other cross-statistics Qs have the same
diagonalization property when the sources are non-
Gaussian, non-stationary, or non-white such that

QX ¼ AQsA
H. (4)

For source separation, a demixing matrix WH is to
be found such that WHA ¼ I. This gives

sðtÞ ¼WHAsðtÞ ¼WHxðtÞ. (5)

Let us assume the diagonal matrix Qs is non-
singular. Right multiplying (3) and (4) with W and
(4) again with Q�1s , and combining the results gives

RXW ¼ QXWL, (6)

where L ¼ Q�1s Rs is diagonal since Qs and Rs are
both diagonal from the assumptions. Eq. (6) is a
generalized eigenvalue equation, where the demix-
ing matrix WH is fully determined for distinct
eigenvalues specifying n column vectors to corre-
sponding to at most n sources. The recovered
sources are arbitrary up to scale and permutations,
since the order and scale of the eigenvectors are
arbitrary (generally the eigenvectors are scaled to
unit norm).
Please cite this article as: P.P. Pokharel, et al., Recursive complex BS
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To properly separate the sources the choice of the
two cross-statistics matrices in (6) is important and
are decided according to the assumptions that are
most appropriate for the sources. RX is usually the
covariance matrix and QX is a cumulant matrix for
non-Gaussian and independent sources, the covar-
iance matrix at a different time instant for non-
stationary and decorrelated sources, or the cross-
correlation matrix with a certain time delay for non-
white and decorrelated sources. Here the recursive
algorithms for all these cases are presented.

2.1. Non-Gaussian and independent sources

For non-Gaussian independent sources that are
stationary and white more than second order
statistics is required for proper separation. For this
case, QX is chosen as the cumulant matrix estimated
using sample averages. While any order of cumu-
lants can be employed, lower orders are more robust
to outliers and small sample sizes, so we focus on
the fourth order cumulant matrix

QX ¼ E½ðxHxÞðxxHÞ� � RX traceðRXÞ

� E½xxT�E½x�xH� � RXRX, ð7Þ

where xH, xT and x�, respectively, represent
Hermitian transpose, transpose, and complex con-
jugate of x. Since the fourth order cumulant
vanishes for the Gaussian distribution this strategy
is only valid for non-Gaussian sources. With iid
samples, expectations reduce to sample averages for
covariance and cumulant matrices. Then one can
define recursive update rules for the estimates of the
covariance and cumulant matrices, R and Q. Also
throughout this paper we shall assume that all the
signals are zero mean (which otherwise can be
trivially obtained by subtracting the mean from the
signal). Since the recursive updates are performed
with each new incoming data sample, we can
introduce a forgetting factor l (0olp1) in the
update equations (similar to that used in RLS). This
effectively introduces a decaying window on the
data with the ith sample in the past being weighted
by lði�1Þ=2. This can be clearly understood by an
inspection of the update equations that follow.

The recursive update rule for the covariance
matrix at instant t can be written as

Rt ¼
t� 1

t
lRt�1 þ

1

t
xtx

H
t (8)

and the update rule for the cumulant matrix is given
by
S via generalized eigendecomposition and application in image
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Qt ¼ Ct � BtB
�
t � Rt traceðRtÞ � R2

t . (9)

C is E½ðxHxÞðxxHÞ� and its estimate can be updated
as

Ct ¼
t� 1

t
l2Ct�1 þ

1

t
ðxHt xtÞxtx

H
t . (10)

B is E½xxT� and its estimate can be updated as

Bt ¼
t� 1

t
lBt�1 þ

1

t
xtx

T
t . (11)

Thus BtB
�
t can be updated recursively with

BtB
�
t ¼

ðt� 1Þl
t

� �2

Bt�1B
�
t�1 þ

1

t2
ðxTx�Þxtx

H
t

þ
ðt� 1Þl

t2
ðxtz

H
t þ ztx

H
t Þ, ð12Þ

where z ¼ Bt�1x
�. The following recursive update of

R2 can be obtained by squaring (8):

R2
t ¼
ðt� 1Þ2

t2
l2R2

t�1 þ
1

t2
ðxHt xtÞxtx

H
t

þ
t� 1

t2
l½vtx

H
t þ xtv

H
t �. ð13Þ

For further computational savings we introduce the
vector vt as vt ¼ Rt�1xt and we can obtain R�1 and
R�1Q by iterating to avoid matrix multiplications
and inversions having Oðn3Þ computational load.
These two matrices are required for the fixed point
algorithm that solves for the GED which is
discussed later. Employing the matrix inversion
lemma [14], the recursion rule for R�1 becomes

R�1t ¼
t

lðt� 1Þ
R�1t�1 �

t

lðt� 1Þat

utu
H
t , (14)

where at and ut are defined as

at ¼ lðt� 1Þ þ xHt ut; ut ¼ R�1t�1xt. (15)

Here we also define the matrix D as

Dt ¼ R�1t Qt. (16)

To obtain a recursion rule, (16) can be written using
(14) and (9) as

Dt ¼ R�1t Ct � R�1t BtB
�
t � traceðRtÞI� Rt. (17)

Recursive rule for R�1t Ct can be obtained as

R�1t Ct ¼ lðR�1t�1Ct�1 � utðu
H
t Ct�1ÞÞ

þ
xHt xt

lðt� 1Þ
1þ

uHt xt

at

� �
utx

H
t . ð18Þ

Now the recursive rule for R�1t BtB
�
t can be obtained

by using (12) and (14) as
Please cite this article as: P.P. Pokharel, et al., Recursive complex BS
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R�1t BtB
�
t

¼
ðt� 1Þl

t
R�1t�1Bt�1B

�
t�1 �

1

a
utðu

H
t ðBt�1B

�
t�1ÞÞ

� �

þ
1

t
1�

uHt xt

at

� �
utz

H
t þ ðR

�1
t�1ztÞx

H
t

� �

þ
xTt x

�
t

t

1

ðt� 1Þl
�

uHt xt

at

� �
þ

1

t
uHt zt

� �
utx

H
t .

ð19Þ

Thus the calculation of Dt has been reduced to
vector–matrix multiplications instead of matrix–-
matrix multiplications, saving computation time. Of
course, this will be appreciable when the number of
sources is large. Following the algebraic manipula-
tions presented so far, the overall computational
complexity of computing the cumulant matrix is
reduced to Oðn2Þ, since all the matrix–matrix multi-
plication operations have been reduced to a set of
vector–matrix operations.

2.2. Non-stationary and decorrelated sources

When the source signals are non-stationary (more
specifically in power), the source covariance matrix
Rs becomes a function of time RsðtÞ. Moreover if
they are uncorrelated with each other RsðtÞ becomes
diagonal. Thus, A is a transformation that expands
the diagonal covariance of the sources into the
observed covariances at all times as given by (3)
despite the signals being non-stationary. In this
case, Qx is set as the covariance matrix E½xkx

H
k �

where k is at a different time than that used to
calculate Rx. This will give the diagonal cross-
statistics required for the generalized eigenvalue
equation (6). For computation, we can estimate the
expectations of the two covariance matrices by
sample averages of the data points in non-over-
lapping windows, both with lengths close to the
stationarity time of the signals. We can also
introduce a forgetting factor as before to help in
cases where the mixing matrix may change slowly.
Then the update rule for Qx is

Qt ¼
t� 1

t
lQt�1 þ

1

t
xkþtx

H
kþt, (20)

and that for Rx is

Rt ¼
t� 1

t
lRt�1 þ

1

t
xtx

H
t , (21)

where k is chosen to be greater than the stationarity
time of the data. Also, it can be shown that the
S via generalized eigendecomposition and application in image
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matrix Dt ¼ R�1t Qt can be found recursively by

Dt ¼ Dt�1 þ
1

lðt� 1Þ
ðR�1t�1xtþkÞx

H
tþk

�

�
uHt xtþk

at

utx
H
tþk

�
�

1

at

utðu
H
t Qt�1Þ, ð22Þ

where at and ut are given by (15).

2.3. Non-white and decorrelated sources

When the sources are non-white and decorre-
lated, one can use second order statistics in the form
of cross-correlations for different time lags t:

RxðtÞ ¼ E½xtx
H
tþt� ¼ AE½sts

H
tþt�A

H
¼ ARsðtÞAH. ð23Þ

More details on simultaneous diagonalization of
cross-correlations can be found in [9]. Of course,
with the assumptions, RsðtÞ will be diagonal and (6)
can be employed. For simplicity, let us take

Rx ¼ ½RxðtÞ�t¼0. (24)

Thus the update rule for Rx in (3) will remain the
same as in (20). Qx in (3) can be taken as the
symmetric cross-correlation matrix with a non-zero
time delay, i.e.,

Qx ¼ E½xtx
H
tþt þ xtþtx

H
t �=2. (25)

This can be estimated on-line with the forgetting
factor l using

Qt ¼
t� 1

t
lQt�1 þ

1

t
ðxtx

H
tþt þ xtþtx

H
t Þ=2. (26)

t is chosen so that autocorrelation terms in Qx are
non-zero. The matrix Dt ¼ R�1t Qt can be found
recursively by

Dt ¼ Dt�1 �
1

at

utðu
H
t Qt�1Þ

þ
1

2lðt� 1Þ
utx

H
tþt þ ðR

�1
t�1xtþtÞx

H
t

�

�
uHt xt

at

utx
H
tþt �

uHt xtþt

at

utx
H
t

�
, ð27Þ

where ut and at are the same as given by (15). Again
the overall complexity of computing these matrices
as presented in these two subsections is Oðn2Þ.

2.4. Deflation procedure

Having the update equations, the aim is to find
the optimal solution for the eigendecomposition for
the updated correlation and cumulant matrices in
Please cite this article as: P.P. Pokharel, et al., Recursive complex BS
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each iteration. As given by (3) we need to solve for
the weight matrix W. We will employ the deflation
procedure to determine each generalized eigenvector
sequentially. Every generalized eigenvector w that is
a column of W is a stationary point of the function

JðwÞ ¼
wHRw

wHQw
. (28)

This fact can easily be seen by taking the derivative
of the expression on the right of (21) with respect to
w and equating it to zero which will result in

Rw ¼
wHRw

wHQw
Qw. (29)

This is the equation for GED, the eigenvalues being
the value of the objective function JðwÞ given in (28)
evaluated at its stationary points. Thus the fixed
point algorithm becomes

w 
wHRw

wHQw
R�1Qw. (30)

A similar update rule for the standard eigendecom-
position or PCA is traditionally referred to as the
power iteration method and hence appropriately we
shall use the same name for (30). This procedure
converges to the principal GED vector (the one
corresponding to the largest generalized eigenvalue)
of R andQ, and the deflation procedure is employed
to manipulate the matrices such that they have the
same generalized eigenvalue and eigenvector pairs
except for the ones that have been determined
previously. This method has been described in detail
in [24]. The larger eigenvalues are replaced by zeros
in each deflation step. Thus a power iteration step
after the dth deflation step would result in the GED
vector corresponding to the dth largest GED
eigenvalue. Note that in this subsection the time
index is implicit and omitted for notational con-
venience.

Qd ¼ I�
Qd�1wd�1w

H
d�1

wH
d�1Qd�1wd�1

� �
Qd�1,

Rd ¼ Rd�1. ð31Þ

The deflated matrices are initialized to Q1 ¼ Q and
R1 ¼ R. Obtaining the new matrices, we employ the
same fixed point iteration procedure given in (26) to
find the corresponding eigenvector.

Given (30), it is clear that iterating R�1 and D as
suggested will result in computational savings. The
deflation rules for these matrices can be deduced
easily. The deflation of R�1 is
S via generalized eigendecomposition and application in image
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R�1d ¼ R�1d�1. (32)

Similarly, the deflation rule for D can be obtained
by combining (16), (31) and (32) resulting in

Dd ¼ Dd�1 I�
wd�1w

H
d�1Qd�1

wH
d�1Qd�1wd�1

� �
. (33)

For each generalized eigenvector, the corresponding
power iteration rule becomes

wd  
wH

d Rdwd

wH
d Qdwd

Ddwd . (34)

Employing this power iteration for each dimension
and solving for the eigenvectors sequentially, one
can update the W matrix and proceed to the next
time update step. The computational burden for
computing these GED vectors is Oðn2Þ for each
eigenvector extracted. This is generally true for
other power iteration type algorithms [21,29]. Of
course, the computational burden could possibly be
reduced if the matrices involved have some especial
properties, like if they are Toeplitz or Hankel. But
that is not the case here. Nevertheless this approach
results in extremely fast and accurate convergence.
A detailed analysis of the convergence properties
can be found in [24]. Even with the vector w

initialized randomly (with unit norm), the power
UNCORREC
Table 1

Summary of recursive blind source separation (RBSS) algorithms

Source assumption Cross-statistics ðQxÞ

Non-Gaussian independent E½xHxxxH�

�RX traceðRXÞ

�E½xxT�E½x�xH�

�RXRX

Non-stationary decorrelated E½xkx
H
k �

Non-white decorrelated E½xtx
H
tþt þ xtþtx

H
t �

Matrix inversion

R�1t ¼
t

lðt�1ÞR
�1
t�1 �

t
lðt�1Þa utu

H
t ; at ¼ lðt� 1Þ þ xHt ut; ut ¼ R�1t�1xt

Deflation and eigendecomposition steps

D ¼ R�1Q; Dd ¼ Dd�1 I�
wd�1w

H
d�1

Qd�1

wH
d�1

Qd�1wd�1

h i
; Qd ¼ I�

Qd�1wd�1w
H
d�1

Qd�1wd�1w
H
d�1

h i
Qd�1

Rd ¼ Rd�1; wd  
wH

d
Rdwd

wH
d
Qdwd

Ddwd

(fixed point iteration for each dimension, d)
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iteration converges within 10–15 steps. After suc-
cessive time steps accurate convergence can be
reached in less than five steps, since one can start
the power iteration with W initialized to what it
converged to in the previous time step.

The combination of these weight updates, matrix
deflation procedures, and recursive covariance/
cumulant updates give us the RBSS algorithms for
the three sets of assumptions. The algorithms are
summarized in Table 1. In theory, these recursive
algorithms are expected to track the batch GED
solutions that one would obtain at any given time
point using all the data available up to that instant.
In practice, random initialization and numerical
errors (in updates and power iterations) culminate
in some deviation. Still this approach results in
extremely fast convergence to the original GED BSS
in batch mode [28]. To demonstrate this fact, Fig. 2
shows the comparison of the proposed RBSS with
its batch mode counterpart. One thousand Monte
Carlo (MC) runs were performed with random unit-
norm initialized vectors and random mixing ma-
trices with a condition number of 20. The source
signals were iid and uniformly distributed with unit
variance. To show the quick decay of the effect of
initialization, one set of simulations were performed
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Recursion rules

Rt ¼
t�1

t
lRt�1 þ

1
t
xtx

H
t ;

Qt ¼ Ct � BtB
�
t

�Rt traceðRtÞ � R2
t ;

Ct ¼
t�1

t
l2Ct�1

þ 1
t
ðxHt xtÞxtx

H
t ;

Bt ¼
t�1

t
lBt�1 þ

1
t
xtx

T
t

R2
t ¼

ðt�1Þ2

t2
l2R2

t�1

þ 1
t2
ðxHt xtÞxtx

H
t

þ t�1
t2

l½vtx
H
t þ xtv

H
t �

vt ¼ Rt�1xt

(Q is fourth order cumulant matrix)

Rt ¼
t�1

t
lRt�1 þ

1
t
xtx

H
t ; Qt ¼

t�1
t
lQt�1 þ

1
t
xkþtx

H
kþt

(k chosen greater than stationarity time of sources)

Rt ¼
t�1

t
lRt�1 þ

1
t
xtx

H
t ;

Qt ¼
t�1

t
lQt�1

þ 1
t
ðxtx

H
tþt þ xtþtx

H
t Þ

(t chosen for non-zero autocorrelation in sources)

;
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Fig. 2. Performance comparison of the original GED BSS and that of proposed RBSS using an on-line sample by sample update.
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with the correlation and fourth order cumulant
matrices initialized to 10�4I (top and bottom left
plots) and another set with the matrices initialized
to 2I (top and bottom right plots). Obviously, it is
always suitable to choose a small initialization for
these algorithms. In both cases the tracking error
between the RBSS approach and that of the batch
mode GED BSS is very minimal. Of course, the
tracking convergence with a small initialization is
much faster than that with a large one. This is
demonstrated by the bottom two curves. These
properties are the same as is observed for the RLS
update rules for optimal filtering.

To summarize the computation burden for each
time step, the power iteration is Oðn2Þ for each GED
vector and the matrix updates are overall Oðn2Þ. So,
major part of the computation is for the GED
solution. So the overall complexity is dominated by
Oðn3 þ n2Þ especially if n is large. But this approach
provides fast and reliable convergence which is
crucial for any on-line method. Moreover, unlike
less complex stochastic algorithms, dependence on
the initialization and adaptation parameters is very
minimal. In contrast, a batch mode algorithm
would have to wait for a sufficiently large data size
before it can be run and may require an extra
prewhitening stage which again cannot be per-
formed on-line and would require extra computa-
tion burden. Moreover these methods cannot be
Please cite this article as: P.P. Pokharel, et al., Recursive complex BS

rejection for BPSK, Signal Process. (2008), doi:10.1016/j.sigpro.2007.
TED Pemployed in a changing environment. We shall
show one simple example where the RBSS algo-
rithm shall work for separating speech signals with
the linear mixing varying with time.

3. Experiments for speech separation

We will demonstrate performance of the RBSS
algorithms we have proposed to separate linearly
mixed speech sources. We will present two basic
experiments in this section:

(a) Comparison of the original GED-BSS algo-
rithms [28] with the results of the proposed RBSS
algorithms.

Here the forgetting factor was taken as unity. For
reference, Fast-ICA [29] results are included in the
comparisons. Although we initially attempted to
include comparisons with the stochastic gradient
based Infomax [13] algorithm, finding a large stable
stepsize for each individual run proved to be
challenging, therefore these results are omitted.
The experiments include the separation of speech
signals from instantaneous linear mixtures. The
database consists of 10 clips of acoustic signals (five
male, four female, one symphony). We selected nine
random pairs from this set and run 10 MC
simulations for each pair. In each MC run, a mixing
matrix with constant condition number is gener-
ated, and the RBSS algorithms were randomly
S via generalized eigendecomposition and application in image
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initialized to small diagonal correlation matrices
and random weight matrices. Original GED-BSS
and Fast-ICA algorithms both ran on a batch of
data, with the batch size increasing by one sample in
each iteration. The RBSS algorithms operate on-
line updating matrices and weights using one new
sample at a time. All RBSS algorithms and Fast-
ICA were allowed five fixed-point updates per new
sample using their respective update rules. This
means, Fast-ICA implements five fixed point itera-
tions over the whole available data set at any given
time. Comparisons are provided using the standard
average signal-to-interference ratio (SIR) measure
in decibels (dB) [30]. Fig. 3 shows the performance
of Fast-ICA, original GED-BSS and the three
RBSS methods for mixture condition number of
40. The results were very similar for condition
numbers from small values like 5 to moderately
large values like 100, as we would expect. In these
cases, the convergence speed was not affected by the
mixture condition number. The two algorithms
using non-Gaussianity and independence assump-
tions and Fast-ICA performed worse than the
RBSS algorithms using the more suitable non-
stationarity and non-whiteness assumptions for
speech. It is known that Fast-ICA shows degraded
performance when the sources are non-white and
UNCORREC

Fig. 3. SIR (dB) for Fast-ICA and recursive BSS using the assumptions

condition number of the mixing matrix as 40.
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when the data size is small [31]. Fig. 4 shows the
tracking error between the RBSS algorithms and
their corresponding GED-BSS algorithms. The
asymptotic tracking error could be made arbitrarily
small by letting RBSS algorithms iterate more per
sample.

(b) Performance of the RBSS algorithms for a
time varying mixing matrix.

Here we design an example that simulates a time
varying mixing for speech signals. Our scheme is
depicted in Fig. 5. Speech source S1 remains fixed at
its position, whereas source S2 moves long the circle
with radius r and center at O. The audio sensors are
fixed at P1 and P2 collinear and at a distance l from
the center. S2 is normal at O to the line between P1
and P2. y is the angular separation between S1 and
S2. So, as S2 moves y increases. Here we will assume
that the attenuation of each speech signal as
received by an audio sensor is inversely related to
the distance between the source and the sensor. So
we shall take the time varying mixing matrix to be

AðnÞ ¼
a11ðnÞ a12ðnÞ

a21ðnÞ a22ðnÞ

" #
, (35)

such that
TE
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103of non-Gaussianity, non-stationarity and non-whiteness with the
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Fig. 5. The arrangement of two speech sources (with one

moving) to simulate time varying linear mixing.

Fig. 4. Performance difference between the original GED-BSS and the proposed RBSS for the three different assumptions of non-

Gaussianity, non-stationarity and non-whiteness.
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a11ðnÞ ¼ a21ðnÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r2

p , (36)

a12ðnÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ r2 þ 2rl sin yðnÞ
q , (37)

and
Please cite this article as: P.P. Pokharel, et al., Recursive complex BS
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Ta22ðnÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ r2 � 2rl sin yðnÞ
q . (38)

For our results we used l ¼ 1 and r ¼ 2 and yðnÞ
increased (starting at yð0Þ ¼ 0) at a rate of 4p=9000
radians per sample. With a sampling rate of 16 kHz
that would translate to approximately 0:0071p
radians per second. And accordingly, the mixing
matrix AðnÞ would change. Fig. 6 shows the
corresponding SIR plots. Since for speech, the
RBSS algorithms with the assumption of non-
stationarity and that with the assumption of non-
whiteness work the best, we have only shown the
results for these cases. We used a forgetting factor
of l ¼ 0:995 in both cases. We selected nine random
pairs from the audio data set mentioned earlier and
the plots show the average performance. Note that
in the plots the steep valleys occur when y is an
integer multiple of p (since the mixing matrix would
be singular). The assumption that the sources are
non-stationary does not work as well as the
assumption that they are non-white since the former
requires the covariance matrices to be computed at
S via generalized eigendecomposition and application in image
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two time instances separated well enough to exploit
the non-stationarity of the data resulting in two
different mixing matrices (since the mixing is time
variant).
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UNCORREC4. Joint image rejection

One major advantage of RBSS algorithms will be
for problems where the observations are obtained
sequentially with time. These situations are also
prevalent in communication receivers. For more
integration and control, DSPs are required to
perform most of the radio receiver functionalities
and more efficient means of performing front end
operations are required. One challenging task for
wireless receivers is to reject the radio frequency
(RF) image that is generated by the wireless process.
Highly selective RF BPF can be used but this
increases the cost and the difficulty in integration
[32]. Low intermediate frequency (IF) systems
mitigate the image problem, but the mismatch
between the in- and quadrature-phase down con-
version paths also requires additional processing
and more hardware [33,34]. We shall follow the
approach presented in [27] to formulate the problem
as one of BSS. We shall frame the source separation
problem for BPSK receivers. The image signal (that
interferes at the receiver, usually through hetero-
Please cite this article as: P.P. Pokharel, et al., Recursive complex BS
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TED Pdyning [35]) can be considered as an additive
interference. In fact, the same procedure could be
followed in a slow fading multichannel communica-
tion system to remove unwanted signal components
from other channels. As is well known, BPSK or its
variants are used in many applications for reasons
of robustness and link budget enhancement [36–38].
This is usually very crucial for the control channel
of a wireless network. So we believe the following
presentation could contribute for such cases.

Fig. 7 shows the simple receiver structure employ-
ing the usual steps to convert the received signal to
digital base band [35]. Two antennas are used thus
resulting in two base band observations. The
antennas receive two signals each consisting of the
desired signal sðtÞ and image signal iðtÞ. Each of the
signals has its fading coefficients defined as

f sk ¼ aske
jcsk , (39)

f ik ¼ aike
jcsk , (40)

where kð¼ 1; 2Þ is the antenna index; f sk and f ik are
the fading coefficients for the desired and image
signals, respectively. Likewise, ask and aik are the
channel’s amplitude responses, and csk and cik are
the channel’s phase responses. As we shall see later
the type of fading (Raleigh or otherwise) is not
important for this approach of image suppression.
Using simple mathematical manipulations we can
S via generalized eigendecomposition and application in image

12.001

dx.doi.org/10.1016/j.sigpro.2007.12.001


ARTICLE IN PRESS

SIGPRO : 3398

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

Fig. 7. Block diagram of the BPSK diversity receiver employing RBSS.
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show that a proper BSS algorithm can remove the
image component [27] without any prior knowledge
of the transmitted signal.

The received signal of the kth antenna rkðtÞ can be
expressed as

rkðtÞ ¼ 2Re½sðtÞf ske
jðoCþoIÞt þ iðtÞf ike

jðoC�oIÞt�

¼ sðtÞf ske
jðoCþoIÞt þ iðtÞf ike

jðoC�oIÞt

þ s�ðtÞf �ske
�jðoCþoIÞt þ i�ðtÞf �ike

�jðoC�oIÞt, ð41Þ

where Re½�� gives the real part of the complex
argument oC is the oscillator frequency of the first
mixer and oI is the frequency of the second local
oscillator. The receiver employs the basic mixing
and filtering scheme to retrieve the base band signals
from (41). At the receiver a constant frequency
oscillator (CFO) is present to generate the mixer
signal with the appropriate frequency. It is given by

xLOðtÞ ¼ 2 cosðoCtþ fÞ ¼ ejðoCtþfÞ þ e�jðoCtþfÞ,

(42)

where f is the CFO phase offset. Next the signals
are down converted to IF followed by BPF with the
center frequency at oI for band selection. The
output of the BPF is then

~rkðtÞ ¼ sðtÞf ske
jðoIt�fÞ þ iðtÞf ike

�jðoItþfÞ

þ s�ðtÞf �ske
�jðoIt�fÞ þ i�ðtÞf �ike

jðoItþfÞ. ð43Þ

At the final stage the IF signals are further down
converted to base band and A/D conversion is
performed resulting in the discrete time signal given
by

xkðnÞ ¼ Re½sðnÞf ske
�jf þ i�ðnÞf �ike

jf�. (44)

Since sðnÞ and iðnÞ are real for BPSK signals, we can
write (6) as

xkðnÞ ¼ aksðnÞ þ bkiðnÞ, (45)
Please cite this article as: P.P. Pokharel, et al., Recursive complex BS
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ROOFwhere ak ¼ Re½f ske

�jf� and bk ¼ Re½f �ike
jf�. Thus

using the two antennas in the receivers, Eq. (28) can
be in vector form as

xðnÞ ¼
a1 b1

a2 b2

" #
sðnÞ

iðnÞ

" #
¼ AsðnÞ. (46)

Eq. (46) is of the same form as (2) and hence BSS
can be applied to recover sðnÞ. Of course the mixing
matrix A must be non-singular for proper source
separation. This is usually not a problem due to the
randomness of the wireless channel. In order to
mitigate the inherent ambiguity in the order of the
separated sources, we shall assume that reference
sequences are present in transmitted signals, which
are available in most communication standards.
Also notice that the type of fading in the channel
does not affect the final form of (46). In next section
we shall present the simulation results using the
proposed RBSS algorithm using the assumption of
non-Gaussianity as explained in Section 2.1.

4.1. Experimental results

Here we present some simulation results for
image rejection in a wireless receiver as explained
in Section 4. We have performed 100 MC simula-
tions with random fading coefficients and BPSK
symbols transmitted. The amplitudes and phase for
the fading coefficients are generated as Rayleigh
distributed with parameter value of 1 and uniform
distributed in ½0; 2pÞ, respectively. Likewise, the
phase offset in (42) is also chosen to be uniformly
distributed in ½0; 2pÞ. The measure of performance is
SIR as before. We have employed the RBSS
algorithm assuming non-Gaussian distribution and
using the fourth order cumulant as described in
Section 2.1. As before we have also included the
performance of using the Fast-ICA algorithm,
S via generalized eigendecomposition and application in image
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Fig. 8. Performance of Fast-ICA using a batch of data and that of RBSS using an on-line sample by sample update.

Fig. 9. The standard deviations of the two methods: Fast-ICA using a batch of data and RBSS using an on-line sample by sample update.
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which unlike the proposed method works with a
batch of data and hence would incur tremendous
computational burden if employed to work on-line
with the batch size increasing by one with each
Please cite this article as: P.P. Pokharel, et al., Recursive complex BS
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sample. Also this method would require the system
to store all the past observations. The RBSS
algorithm and Fast-ICA are allowed five fixed-point
S via generalized eigendecomposition and application in image
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updates per new sample using their respective
update rules.

Figs. 8 and 9 show the performance of these two
approaches. Fast-ICA [29] has a slight advantage
over RBSS with an improvement of about 5 dB on
an average as the curves settle. Nonetheless, RBSS
also achieves image rejection successfully with an
added advantage of it being on-line. Again results
obtained using Infomax [13] which is an on-line
method has been omitted since choosing a proper
nonlinearity for this problem (the source has a
bimodal distribution with BPSK and a simple
sigmoid would not work) was challenging and
performance was far inferior.

5. Conclusion

On-line ICA/BSS algorithms are essential for
many signal processing and machine learning
applications, where the ICA solution acts as a
front-end preprocessor, a feature extractor, or a
portion of a solution to a larger problem. Though
stochastic gradient based algorithms motivated by
various ICA criteria is used in such situations with
the advantage of yielding computationally simple
weight update rules, they do not offer an optimal
solution at every iteration and choosing an appro-
priate step size is still an inconvenience. In this
paper we presented recursive BSS algorithms based
on the joint diagonalization of various cross-
statistics based on three standard assumption sets
regarding source signals: non-Gaussianity, non-
stationarity, and non-whiteness. The derivation
employs the use of the matrix inversion lemma
and the update rules for the expectations approxi-
mated by sample averages. The resulting algorithm,
of course, is computationally more expensive than
stochastic gradient type algorithms per update.
However, it converges to and tracks the optimal
solution based on its separation criterion in a small
number of samples/iterations, even with random
initialization.

To demonstrate the tracking ability of RBSS we
applied this for linearly mixed speech sources with
one source moving circularly around the audio
sensors. Thus the mixing matrix became a function
of time. Results show that these set of algorithms
are appropriate for such scenarios as well. We also
presented an elegant application of the RBSS
algorithm in image rejection for wireless receivers.
The method is independent of the channel fading
type and can be effectively incorporated in the DSP.
Please cite this article as: P.P. Pokharel, et al., Recursive complex BS
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This works with the digital base band signal,
removing the need of economically and spatially
expensive frequency selective band pass analog
filters in the receiver front end.
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