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 Abstract. In this paper, we present an ambulatory cognitive state classification system to assess the subject’s mental load 
based on EEG measurements. The ambulatory cognitive state estimator is utilized in the context of a real-time augmented 
cognition (AugCog) system that aims to enhance the cognitive performance of a human user through computer-mediated 
assistance based on assessments of cognitive states using physiological signals including, but not limited to EEG. This paper 
focuses particularly on the off-line channel selection and feature projection phases of the design and aims to present mutual 
information based techniques that use a simple sample estimator for this quantity. Analyses conducted on data collected from 
3 subjects performing 2 tasks (n-back/Larson) at 2 difficulty levels (low/high) demonstrate that the proposed mutual 
information based dimensionality reduction scheme can achieve up to 94% cognitive load estimation accuracy. 
 
1. INTRODUCTION 

Following the successful demonstration of a P300 oddball detector [1], many brain computer interfaces (BCI) are designed 
on similar concepts [2] – evoked response potential (ERP) detection or sliding window classification. Artifact removal using 
adaptive filtering source separation techniques have been proposed [4,5], wavelet coefficients [6], short-term power spectrum 
[7,8,9], and chaos/fractal structure [10,11] have been investigated  as potential features. Various standard classifiers including 
linear discriminants, neural networks, and support vector machines are employed [12-17], parametric and nonparametric 
approximate Bayes classifiers and boosting techniques have been evaluated [18-23]. Some benchmark datasets for BCI design 
evaluations have been proposed [24] has met reasonable acceptance. 

Accurate assessment of cognitive load from ambulatory electroencephalogram (EEG) could lead to a wide variety of 
applications for brain interface systems [3]. Of specific interest to us is the concept of augmented cognition (AugCog), which is 
applicable where the cognitive load of human operators needs to be monitored to design optimal information flow protocols 
from the computer to the human in order to maximize task performance [25]. These applications include, but are not limited to, 
vehicle drivers, machinery operators, air traffic controllers, and robotic surgery operators. Optimizing the information flow for 
seamless human-computer interaction requires the real-time assessments of cognitive states during the execution of certain tasks 
leading to a prescribed goal. An accurate cognitive load estimator is essential for the successful implementation of assistive 
systems that are aware of the user’s status and environment. Instantaneous estimates of mental state and workload can be used to 
control the rate and the modality of the information presented to the operator, which in turn helps the operator allocate mental 
resources to maximize performance [26]. As the envisioned applications require ambulatory EEG recordings, special care must 
be given to proper signal conditioning, noise and artefact reduction. 

The use of EEG as the basis of assessment in brain-computer interface (BCI) and AugCog systems is predicated on 
characteristics such as good temporal resolution, non-invasiveness, low cost, and portability [27]. However, the following 
factors make it particularly difficult to deal with ambulatory EEG signals: (1) noise resulting from motion artifacts; (2) 
contamination with muscular activities, including the usual eye movements and blinks; (3) influence of concurrent but 
irrelevant neural activities; (4) environmental noise; (5) nonstationarity. Under these circumstances, both robustness and 
precision of the designed system are particularly critical. Furthermore, the system must be portable and able to work in real-
time. The focus of this paper is on feature and channel selection for real-time cognitive state classification based on EEG in 
order to address items (1) to (4) in this list. Note that nonstationarity could also be partially addressed to the extent that training 
session provided sufficiently rich data to represent various sources of nonstationarity. 

From a machine learning point-of-view, an EEG characterization system (such as a BCI) requires a robust pattern 
recognition system to assess the cognitive states or the intent of the operator. A typical classification system contains five parts: 
pre-processing, feature extraction, dimensionality reduction, classification, and post-processing. Although any improvement in 
one of these parts can boost the performance of the system, in this paper, our focus will be on dimensionality reduction, because 
criteria such as accuracy, real-time performance and wireless networking require all rely on a set of compact features. 
Furthermore, choosing the most informative and stable feature subset can also partly solve the subject to subject transfer, session 
to session transfer, and nonstationarity problem. The other modules of the classification system were designed following well-
established techniques. For example, we employed a standard adaptive filtering technique for the removal of eye artifacts. We 
used FFT based Power Spectrum Density (PSD) estimation procedures to estimate the power at various frequency bands broadly 
accepted to be associated with cognitive activity – these estimates served as the primary features for classification. Additionally, 
we used Gaussian mixtures model (GMM), K nearest neighbor (KNN) and Parzen window density estimate (Parzen) methods 
for classification. The PSD features constitute a high dimensional vector that contains information pertinent to the classification 
of cognitive states, as well as irrelevant components and noise. Direct classification using such input features is undesirable, 



      
Figure 1. PSD-based feature extraction (left) and dimensionality reduction, 
classification, and post-processing flow diagrams (right). 

Independent 
Features 

y 

Original 
Feature

x

Low-Dim 
Features 

f ICA 
Projection 

(W) 

MI-Based 
Sorting 
I(yi;c) 

Class Labels 
c

 
 
 
 
 
Figure 2. Feature projections using ICA preprocessing and 
mutual information sorting. 

since the unwanted components have an adverse effect on the overall classification performance and the generalization ability of 
the system. Consequently, a practical technique for extracting the relevant information from these features is necessary. 

We present: (1) a nonparametric sample estimator for mutual information that combines fast linear ICA solutions with 
sample-spacing entropy estimators to achieve computational simplicity, (2) EEG channel selection and linear feature projection 
techniques based on mutual information to achieve dimensionality reduction for computational and generalization benefits. 
 
2. METHODS 
 Hardware Platform: A mobile wireless sensor suite was assembled using a variety of off-the-shelf components. EEG 
was collected from 32 channels using a BioSemi Active Two system [28]. Vertical and horizontal eye movements and blinks 
are recorded with electrodes below and lateral to the left eye. This system integrates an amplifier with an Ag-AgCl electrode 
– this affords extremely low noise measurements without any skin preparation. Information from the sensors is transmitted 
(via a combination of Bluetooth, serial port, and USB) to and recorded on a body worn laptop (Pentium 4.3GHz with 1GB 
RAM). A base station computer controls the experiment and communicates with the laptop via an 802.11 wireless network.1

 Signal Processing and Classification: All channels reference the right mastoid. EEG is recorded at 256Hz sampling 
frequency while the subject is performing tasks with various cognitive loads. EEG signals are pre-processed to remove eye 
blinks using an adaptive linear filter based on the Widrow-Hoff training rule [29]. Information from the VEOGLB ocular 
reference channel was used as the noise reference source for the adaptive ocular filter. DC drifts were removed using high 
pass filters (0.5Hz cut-off). A band pass filter (between 2Hz and 50Hz) was also employed, as this interval is generally 
associated with cognitive activity. The PSD of the EEG signals, estimated using the Welch method [30] with 1-second 
windows, is integrated over 5 frequency bands: 4-8Hz (theta), 8-12Hz (alpha), 12-16Hz (low beta), 16-30Hz (high beta), 30-
44Hz (gamma). The energy levels in these bands sampled every 0.2 seconds (i.e. sliding windows with 80% overlap) are 
used as the basic input features for cognitive classification. The particular selection of the frequency bands is based on well-
established interpretations of EEG signals in prior experimental and clinical contexts [31]. The overall schematic diagram of 
the signal processing system is shown in Figure 1. 
 In the design phase, the PSD features are used to rank and select EEG channels to reduce dimensionality. For this 
purpose, we assume that training patterns are representative of the spectral patterns one would expect in the performance 
environment. The final feature vector, with a much lower dimensionality than the original input, is then fed to a committee of 
three classifiers. Since the distribution of the feature vectors is unknown, we used both parametric and non-parametric 
classifiers in the committee: GMM, KNN, and Parzen. The classification component signal flow is illustrated in Figure 1. 
The GMM is a parametric approach where the class probability distributions are approximated by a small number of 
Gaussians. KNN is a nonparametric approach where the classification is based on the count of nearest neighbors from each 
class (can be understood as a variable-size rectangular Parzen estimate of the class distributions). The Parzen classifier is a 
nonparametric approach to estimate the posterior probability of a feature vector belonging to a given class, using Gaussian 
kernels in this case. The estimate is a mixture-of-Gaussians with smooth contributions from all samples and this represents a 
compromise between discrete votes from nearest neighbors and the small number of Gaussian components of the parametric 
model. The details of the classifiers are discussed in the Appendix. We now describe the EEG channel selection and feature 
projection procedures in more detail, as this is the main focus of this paper. 
 
3. DIMENSIONALITY REDUCTION 
 Feature extraction is the process of discovering a statistical pattern that can differentiate various classes that lead to distinct 
observations. In contrast, dimensionality reduction is a process of finding optimal feature vectors with reduced dimensionality 
                                                           
1 A real-time AugCog system based on the selected channels is implemented successfully in a communication-routing system that prioritizes information and 
messages for timely delivery to the subjects in a high-communication task, resulting in increased accuracy of situation awareness (measured by correct responses 
to questions in post-session interview). Besides EEG, the system incorporates a wearable arousal meter. This unit senses a subject’s electrocardiogram (ECG) 
signals and outputs inter-beat interval data in conjunction with a derived measure of a subject’s cognitive arousal. The details of this implementation and results 
are not the subject of this paper. 



from a large pool of candidates to keep the useful information and eliminate irrelevant information. This reduces the 
computational load and increases the robustness of the classification system. Both feature extraction and dimensionality 
reduction are important steps in classifying EEG signals. Note that some researchers use the term feature extraction to mean 
dimensionality reduction via linear or nonlinear projections. In our terminology, feature extraction is the process of 
determining candidate features from raw measurements (in this particular case, the act of calculating energies in five frequency 
bands from the PSD estimates of all EEG electrodes). 

The PSD features of EEG signals constitute a high dimensional vector (5 frequency bands for 32 EEG channels yield 160 
features) that contains information pertinent to the classification of cognitive states, as well as irrelevant components and noise. 
Direct classification using these raw input features yields poor generalization performance. We therefore propose a mutual 
information based technique to preserve channels and feature subspaces with maximal generalizable discriminative power 
given the finite training set. Dimensionality reduction can be achieved by feature transformations. The transformation 
generates either a new feature space, which is called feature projection; or generates a subset of the original feature space, 
which is called feature selection. Feature selection is a special case of linear projections where the projection matrix is sparse 
with only one unity per row. Linear transformations are widely used due to their simplicity and robustness. Therefore, they are 
often preferred to computationally complex and more fragile nonlinear counterparts, especially with small training sets. 
 Optimal feature selection coupled with a specific classifier topology, namely the wrapper approach, is computationally 
very complex (combinatorial complexity – overall 2n-1 feature subsets to evaluate in selection for n candidate features); thus, 
is in feasible for large number of features. In contrast, a filter-based approach, which selects features by optimizing a given 
criterion, is independent of the classifier and is more flexible, but might not yield classifier-tuned optimal results. Since we 
use a committee of classifiers, the filter approach is found more suitable. 
 Principal component analysis (PCA) is a widely used dimensionality reduction technique [32,33]; however, the 
projections it finds are not necessarily related to the class labels, hence are not particularly useful in pattern recognition. 
Linear discriminant analysis (LDA) attempts to eliminate this shortcoming of PCA by finding linear projections that 
maximize class separability as measured by Fisher’s criterion that is based on a unimodal class conditional distribution (e.g. 
Gaussian) assumption [34]. The LDA projections are optimized based on the means and the covariance matrices of classes, 
which are not descriptive of an arbitrary multimodal probability density function (pdf). Independent component analysis 
(ICA) has also been used as a tool to find linear transformations that maximize the statistical independence of random 
variables [35,36]. However, like PCA, the projection ICA finds has no necessary relationship with class labels in itself, 
hence, are not able to enhance class separability [37]. 
 In the filter approach, it is important to optimize a criterion that is relevant to Bayes risk, which is typically measured by the 
probability of error (for equal class-error risks). Therefore, a suitable criterion for assessing the quality of a low-dimensional 
feature vector f (either in selection or projection) is the mutual information (MI) between f and the class labels c as defined by 
 ( ; ) ( ) ( | )S S c Sc

I c H p H c= −∑f f f  (1) 
where pc is the class prior, HS and IS denote Shannon’s definitions of entropy and mutual information [38]. The justification for 
(1) is intuitively found in argument that f should exhibit maximal class-label (i.e. cognitive load) relevant information. More 
formally, lower and upper bounds in information theory that relate mutual information to the Bayes probability of error pe 
[39,40], such as pe(f)≤(HS(c)-IS(f;c))/2 [40], as well as Fano’s bound, motivate the use of MI in discriminative dimensionality 
reduction. Several MI-based methods have been proposed for feature selection [41-45]. However, since features are typically not 
independent, these approaches cannot guarantee optimal feature selection that would maximize mutual information and joint 
information among multiple features (redundancy) is usually ignored, or approximated with pairwise mutual information 
estimates. In this paper, we propose a greedy framework for feature selection and dimensionality reduction based on maximal 
mutual information as (1) suggests (Figure 2). 
 
3.1. Estimating Mutual Information 
 A computationally efficient sample estimator for MI that exploits fast linear ICA algorithms to separate mixed features into 
approximately independent features is proposed. The estimator then employs a one-dimension entropy estimator. In a square 
invertible ICA transformation y=WTf, the relationship between the entropy of the low-dimensional features f∈ℜd and the 
entropy of the transformed features y satisfies [38]: 
 ( ) ( ) log | | ( | ) ( | ) log | |c

S S S SH H H c H c= − = −f y W f y W  (2) 
where W is the ICA separation matrix for all data, and Wc is the ICA separation matrix for the data from class c (in case classes 
are oriented differently).2 If the components of the random vector y in (2) are approximately independent, the joint entropy 
becomes the sum of marginal entropies. Similarly, if y conditioned on c has approximately independent components, the 
conditional joint entropy becomes the sum of marginal-conditional entropies. 
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2 Given an arbitrary random vector f, one can always find a nonlinear transformation y=g(f) that is invertible and results in independent components y={y1,…,yn} 
[47]. However, in small datasets, finding a robust nonlinear ICA solution is difficult. An approximate linear ICA solution can be sufficient [62]. 



Above, IS(y) and IS(y|c) denote any residual mutual information after the linear ICA procedure. Overall, assuming that these 
residual dependencies are negligible, we have 
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For simplicity, in the following, we further assume that the linear transformations satisfy W=Wc for all c. Thus, 
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Consequently, the MI between the classes and d-dimensional feature vector can then be computed by evaluating d one-
dimensional MI estimates as in (5). 
 Fast Linear ICA Solution: There are several efficient algorithms for solving the linear ICA problem based on a variety of 
assumptions including maximization of non-Gaussianity, minimization of mutual information, nonstationarity of the sources, 
etc. [46,48,49]. The fourth-order statistical methods can be compactly formulated in the form of a generalized 
eigendecomposition problem that gives the ICA solution in an analytical form [50]. This formulation will be employed in this 
work for its simplicity. Under the assumption of iid samples, the separation matrix W is the solution to the following 
generalized eigendecomposition problem: 
  (6) =f fR W Q WΛ
where Rf is the covariance matrix of f and Qf is the cumulant matrix estimated using sample averages: Qf=E[fTfffT]-Rftr(Rf)-
E[ffT]E[ffT]-RfRf. Given these matrices, the ICA solution can be easily determined using efficient generalized 
eigendecomposition algorithms.3

 Once the ICA transform is determined and employed to obtain y such that (5) holds (approximately), the marginal 
mutual information of each independent feature yi with the class label c can be computed using (1) and a simple one-
dimensional entropy estimator. One needs to estimate the overall feature entropy HS(yi) using all samples regardless of class 
labels, and the conditional entropy of each class using only the samples from the corresponding class. 
 Marginal Entropy Estimator: There exist many entropy estimators in the literature for single-dimensional variables [51]. 
Here, we use sample-spacings estimator, which is based on order statistics. This estimator is selected because of its 
consistency, rapid asymptotic convergence, and its computational efficiency. Given a set of iid samples {y1,…,yN} of a 
random variable y, the estimator first sorts the samples in increasing order such that y(1)≤…≤y(N). The m-spacing entropy 
estimator is given in terms of the sorted samples by [46]: 
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where N is sample number. This estimator is based on two assumptions: the true density p(y) is approximated by a piecewise 
uniform density determined by m-neighbors and outside of the sample range, the contribution of the true density is negligible 
and/or does not change the expected entropy computed by (7). The selection of the parameter m is determined by a bias-
variance trade-off and typically m=N1/2. In general, for asymptotic consistency the sequence m(N) should satisfy 
  (8) 0/)(lim)(lim =∞=
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3.2. EEG Channel Selection Using Mutual Information 
 In real-time brain interface applications such as the ambulatory cognitive load estimation problem considered in this 
work, the reduction in the number of input features is further motivated by the limited data acquisition and processing 
capabilities of the hardware. While collecting measurements from all EEG channels and then projecting their combined 
feature vector to a lower dimensional linear or nonlinear manifold would be desirable, the hardware limitations and the 
prohibitive cost of collecting and processing each additional EEG channel signal beyond the capacity of the hardware 
imposes us to focus on identifying the salient EEG channels that contain the most useful information for accurate estimation 
of the cognitive state in the design phase. Each channel yields several (five in our case) features and our goal is to find a 
quasi-optimal subset of EEG channels such that the MI between features obtained from the selected channels and class labels 
is maximized for the given number of channels (our hardware can handle up to 7 channels): 
 1

1{ ,..., }
max ( , , ; )m

m

ii
Si i

I cf f…  (9) 

where fi is the feature vector that contains all features from channel i, c is the class label, and m is the number of EEG 
channels being considered in . IS(f;c) can be estimated using the method described in Section 3.1. 1[ , , mi Ti TT =f f f… ]

                                                          

 In order to determine an effective subset of the available features or channels (which encompass multiple features), we 
rank the channels using a forward incremental strategy. We first select the channel whose features have maximum mutual 

 
3 Note that fourth-order cumulant-based ICA algorithms typically require a much larger sample size than information theoretic methods such as Infomax [50] and 
Mermaid [51], thus has much larger estimation variance for a given sample size. Also, joint diagonalization of more than two higher-order  cumulants is usually 
preferred. 



information with class labels and assign it rank 1. The second rank is assigned to the channel that has maximum MI when 
used in conjunction with the previously selected rank-1 channel. The procedure then ranks iteratively all features or channels 
taking into account the joint mutual information with previously ranked channels.4 The following algorithm is used: 
 Algorithm: Initialize ChannelSet to include all channel indices and RankedChannelSet to empty set. Iterate the following 
until ChannelSet is left empty. 

A. Select channel i from ChannelSet. Let CandidateChannelSet_i be the union of RankedChannelSet and {i}. Estimate the 
joint MI between all features obtained from the channels in CandidateChannelSet_i and let this estimate be Ii. Evaluate 
Ii for all channels in ChannelSet.  

B. Include the channel index that has maximum Ii
 in step A in RankedChannelSet and remove it from ChannelSet. 

 This procedure results in an ordering of EEG channels such that the rank-d channel is the optimum choice given the 
previous d-1 channels. While the top d channels do not necessarily have to be the best d-subset, determining the latter 
requires a combinatorial search, and is infeasible for very large dimensional situations (such as with 32 EEG channels or 160 
features). Using the incremental ranking strategy, the computational complexity is (n+1)n/2 (n is the total number of EEG 
channels) instead of the (2n-1) of exhaustive search. The search procedure could be modified easily to include a channel 
subtraction phase where a previously ranked channel is removed to the unranked set if it does not contribute to the joint 
information of the current ranked subset. Another advantage of this method is that, using MI for ranking results in classifier-
independent EEG channel ranking, thus it is computationally efficient compared to wrapper techniques (it uses a simple MI 
estimator and does not require repeated classifier training). 
 
3.3. Maximally Informative Linear Feature Projections 
 Even after channel selection, further dimensionality reduction might be desirable to improve classifier generalization 
performance. This can also be achieved using the maximum MI framework because an invertible transformation does not 
change the mutual information. In particular, the linear, invertible ICA mapping guarantees that IS(f;c)=IS(y;c) for y=WTf. 
Furthermore, since (5) holds for the independent features and since MI is a nonnegative quantity, the best d-dimensional 
linear projection consists of the d components of y that have maximum individual mutual information with c. After the ICA 
mapping, one needs to evaluate the mutual information IS(yi;c) for i=1,…,n. n is the dimension of the transformed features y. 
The projection matrix then consists of the d columns of the ICA matrix W that corresponds to the top d components of y. 
This projection scheme is illustrated in Figure 2. Typically, the channel selection procedure described in Section 3.2 is 
employed for selecting the useful sensors motivated by physical constraints, and the feature projection procedure described 
here is employed to the selected channels to improve classifier robustness and generalization capability in the availability of 
only a relatively small training data set. 
 
3.4 Bias Analysis 
 The approximations in Section 2 introduce an estimation bias to each MI evaluation step. From the derivation we can see 
that the bias, defined as the expected difference between the estimation and the true MI, is 
 ( ) ( )ˆ[ ( ; ) ( ; )] log | | log | | ( ) ( | )c
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where y=WTf is the ICA transformation. 
 
4. EXPERIMENTS AND RESULTS 
 In this section, we present analyses carried out on data collected from three subjects performing two tasks in multiple 
sessions (used for training and testing). Note that in many BCI experiments, reports are provided in terms of leave-one-out 
performance on the complete data set due to scarcity. However, in our experience, this overestimates actual generalization 
performance (due to nonstationarity being nulled by the leave-one-out procedure). 
 
4.1. EEG Channel Selection 
 In this experiment we demonstrate the performance of the channel selection procedure outlined examine the 
effectiveness of the selection procedure outlined in Section 3.2. Based on hardware limitations for real-time processing of 
EEG, the goal of identifying up to 7 channels out of the 30 available ones (we omitted 2 extremely noisy channels in this 
dataset) is set. Three subjects S1-S3 executed two mental tasks called Larson and n-back [56-58]. In the Larson task, the 
subjects are required to maintain a mental count according to the presented configuration of images on the monitor. The 
combination of mental activities during this task includes attention, encoding, rehearsal, retrieval, and match. The 
complexity of this task was manipulated by varying the inter-stimulus interval (low and high). In the n-back task, subjects are 
required to match the letter in either spatial location or verbal identity in the previous trials. The easy task only requires 
comparing the current stimuli with the first one, involving the combination of mental activities include attention, and match. 
The difficult task requires comparing the current stimuli with stimuli presented two trials previously, and involves a complex 

 
4 Note that when ranking channels, since al features associated with the signals of an EEG channel must be included or excluded simultaneously, the algorithm 
considers concatenating feature vectors of channels to form candidate feature subsets. In contrast, if all channels could be measured, one could also do feature 
subset selection using the same algorithm, this time concatenating features individually to form candidate subset feature vectors. 



combination of mental activities that includes attention, 
encoding, rehearsal, retrieval, and match. All three subjects 
performed both tasks at the two designated difficulty levels. 
Each case consists of about 3000 data samples in a 150 
dimensional feature space (30 EEG channels × 5 frequency 
bands) with two classes: low and high workloads. We 
applied the EEG channel-ranking algorithm to the data to 
study the subject and task dependency of the selected 
channels. Prior work suggested that the optimal EEG 
channels may vary for different mental tasks and different 
subjects. 
 We first applied the approach on individual subject-task 
combinations, and obtained specialized EEG channel 
rankings, designated as Local n (n is the number of the 
selected EEG channels). To examine the ability to select 
optimal channels for all tasks and all subjects, we also used 
data from all subjects and tasks to get another ranking called 
Global n. An instance of Local 10 (optimal for subject-task 
pairs) and Global 10 (optimal across subject-task pairs) EEG 
channels are shown in Table 1. The 7 channels selected based 
on literature suggestions for these tasks (see Section 4.2) are 
also listed for reference as Phy 7. Note that the individual 
best channels vary for each subject and task combination as 
expected. Nevertheless, the global ranking strongly coincides 
with these individual rankings as observed from Table 1. 
 To validate the proposed method, we employed a 
committee of 3 classifiers: GMM, KNN, and Parzen, with 
majority vote and decision fusion on the selected EEG 

channels. For jackknife evaluation of performance, the data for each case is partitioned to five sets and each set is saved for 
testing using the other four for training. The confusion matrices are estimated and the correct classification rates are 
calculated. The classification accuracies averaged over the five test sets are shown in Table 2. Note that the MI-selected 
channels significantly outperform the literature-motivated channels. On average, keeping 7 or 10 channels does not make 
significant difference in accuracy. The MI-selected features perform around 80% accuracy on average for all subjects; the 
specific subject-task optimal selections (local) are observed to be similar to the global selections. This indicates that the 
proposed channel selection method can partly solve the subject to subject transfer and the session to session transfer problems. 

Phy 7 Cz, P3, P4, Pz, O2, PO4, F7 
Larson CP5, Fp2, FC5, Fp1, C4, P4, F7, AF3, P7, FC6 S1 n-back AF3, FC5, Fp1, Fp2, F8, F7, FC6, O1, CP6, P4 
Larson Fp2, O1, AF4, F7, C3, PO3, FC6, CP2, C4, Pz S2 n-back C4, O1, F8, Fz, F3, FC5, FC1, C3, Cz, CP1 
Larson Fp2, F8, F7, FC5, FC6, AF3, C3, F4, P4, AF4 

Local 10 

S3 n-back CP5, F8, C4, FC6, Fp2, FC5, P3, AF4, C3, P7 
Global 10 Fp2, FC5, O1, F3, FC6, F8, F7, AF3, O2, CP6 

Table 1. Optimal EEG channels illustration. Phy 7: 7 EEG channels from 
physiological literature; Local 10: 10 best EEG channels evaluated from 
individual subject-task pair; Global 10: 10 best EEG channels evaluated from 
pairs (boldface highlighted). 

 

  Phy 7 7 Local 10 Local 7 Global 10 Global 
Larson 0.78 0.92 0.90 0.92 0.85 S1 n-back 0.86 0.92 0.94 0.93 0.92 
Larson 0.76 0.83 0.88 0.83 0.87 S2 n-back 0.56 0.75 0.74 0.79 0.73 
Larson 0.53 0.67 0.65 0.59 0.65 S3 n-back 0.54 0.64 0.68 0.74 0.72 

Average 0.67 0.79 0.80 0.80 0.79 
Table 2. Correct classification rate for three subjects: S1, S2 and S3, in two 
mental tasks: Larson and n-back, for different subsets of EEG channels. 
Average is arithmetic average of the 6 correct classification rates for a 
particular EEG channel subset. 
 

Dimensions 10-dim input 14-dim input 35-dim input 

Confusion 
Matrix ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

75.024.001.00
0100
015.082.003.0
04.025.033.038.0  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

82.018.000
0100
008.091.001.0
01.017.022.06.0

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

98.002.000
0100
015.083.002.0
01.01.029.06.0

 

Table 3. Confusion matrix for classifiers on 4 cognitive states using 10, 14, 
and 35 dimensional input feature vectors. 

 To provide a wrapper-benchmark for the proposed ICA-MI channel selection method, we also apply error based ranking 
to the ICA projections on the same EEG datasets. The error based ranking method uses the same forward search strategy 
described in the algorithm of Section 3.2. The difference is, this method uses the classification error of the committee-
classifier as its ranking criterion instead of mutual information. The classification results using different channel ranking 
methods for different subjects and mental tasks are shown in Figure 3 (we only show the classification results for top 10 EEG 
channels). Horizontal axis denotes the number of selected features used for classification; vertical axis denotes the 
classification accuracy in percentage. The error based ranking yields more accurate ranking than ICA-MI method. However, 
it is not practical because it is very slow and inflexible (classifier specific). 
 
4.2. Feature Projections 
 In this section, we demonstrate how an optimal ICA-feature subspace selected according to the mutual information 
criterion performs in reducing feature dimensionality without adversely affecting classification performance. Data was 
collected from one subject as four predetermined ambulatory tasks were executed: slow walking, navigating and counting, 
communicating with radio, and studying written information while standing. Tasks are assigned class labels from 1 to 4, 
corresponding to the assigned task. After preprocessing and feature extraction, approximately 6000 data samples were 
obtained, each with 35 dimensional feature vectors (7 EEG channels with 5 frequency bands each) and a desired class label. In 
this experiment, the channels corresponded to sites CZ, P3, P4, PZ, O2, P04, F7. These were selected based on a saliency 
analysis of EEG collected from various subjects performing cognitive test battery tasks [54]. A randomly selected one third of 
these samples were used as the training set for feature projection and classification, and the remaining two-thirds were used as 
the test set. The feature projections were obtained as described in Section 3.3. Correct classification rates for different 
dimensionality of optimally selected features were evaluated using the classifier committee over 50 Monte Carlo runs (random 
partitions of training and testing data). To provide benchmarks for the proposed ICA-MI linear projections, we also present 
results using other linear feature projection methods. These are ICA transformation followed by classification error based 
selection (instead of MI), as a wrapper benchmark, and LDA (major generalized eigenvectors of between and within class 



scatter matrices), as a filter-type common contender. To 
compare these methods fairly, we normalize the data before 
we apply the KNN classifier to the projected features (see 
Appendix B). 
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The classification results for different feature ranking 
methods are shown in Figure 4. The horizontal axis denotes 
the number of selected features used for classification; the 
vertical axis denotes the classification accuracy. From Figure 
4 we see that ICA-MI can yield an accuracy of 80% with 14 
dimensional projections, while the remaining 21 dimensions 
do not significantly contribute to the classification accuracy. 
The classification results based on 10, 14, and 35 dimensional 
optimally selected features using ICA-MI algorithm are 
compared in Table 3 via the confusion matrix of the 
classification results (The ijth entry of confusion matrix P 
shows P(decide class i | true class is j)). Although in this 
particular experiment keeping all 35 features yielded the best 
performance, the classification results illustrated here shows 
that this feature selection method is able to capture the low-
dimensional relevant components in the original feature space. 
This suggests that the additional features may introduce 
irrelevant and confusing information that might impair the 
classification accuracy. In conclusion, mutual information 
based feature projections are expected to eliminate 
unnecessary dimensions from the feature vector if not 
improve performance. 
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The classification results for ICA-error ranking 
expectedly exhibits better performance than that of ICA-MI, 
however, it takes much longer time. 5  The result of LDA 
ranking is similar to that of ICA-MI for the first 5 features, but 
the classification performance decreases dramatically when 
the number of features increases due to the unimodality 
assumption. In experiments not shown here, we also compare 
the proposed feature projection method to the Mermaid-SIG 
algorithm [55]. The results show that the classification 
performances are similar. However, the ICA transformation 
followed by MI sorting algorithm is much faster. 
 
5. DISCUSSION 
 We described a framework based on mutual information 
maximization to solve the EEG feature/channel selection and 

dimensionality reduction problems in order to perform cognitive state classification. The initial real-time and off-line 
experiments suggest that the developed practical and fast algorithm that combines ICA transformations and sample-spacing 
entropy estimators can classify a small set of discrete cognitive states with a reasonable accuracy when combined with 3 
parametric and non-parametric classifiers  

 
(e)      (f) 

Figure 3. Correct classification rate vs. number of optimally selected 
channels (up to 10, using ICA-MI and error based methods) for three 
subjects performing two mental tasks. 
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Figure 4. Correct classification rate vs. dimensionality of optimally selected 
features for different methods. 

 The experiments demonstrated that the important EEG sites are consistent with prior physiological knowledge ⎯ frontal 
sites associated with working memory tasks are rated high [57]. Some classification performance when using the EEG 
channels which were selected from ICA-MI method are even better than the performance of using pre-defined EEG channels. 
The actual ranking of the most salient sites are highly dependent on subjects and particular tasks they are performing. 
Nevertheless, a global ranking of EEG sites using the MI principle resulted in virtually no performance loss in classification 
accuracy on average (across subjects and tasks). This is an important observation that needs to be validated by other BCI 
researchers, since it indicates that subject-to-subject and task-to-task transfer might indeed be possible, thus making 
predesigned BCI systems practical. 

As a comparison, we also implemented the wrapper approach for feature/channel selection: use classification error as the 
criterion. As expected, the wrapper approach exhibited better performance than filter approach because it is optimal to specific 
classifiers; however, it is much more slower, which makes it infeasible in practice with dense array EEG systems that are 

                                                           
5 As an indication of the order-of-magnitudes of difference in speed, in this experiment, it takes a few seconds for the ICA-MI projection, but it takes tens of hours 
for ICA-error ranking. 



becoming increasingly popular in BCI research. 6 The proposed system is feasible; however, the nonstationarity of the EEG data 
still poses a great challenge making session-to-session transfer a difficult problem to solve. This means we have to retrain the 
system for different subjects and different sessions, unless a very large training set encompassing a variety of operating 
conditions, numerous subjects and tasks is available. We have utilized PSD-based features and perhaps higher-order statistics or 
wavelet-based time-frequency features are more stationary and could lead to more robust designs. Future work will focus on 
determining better features. 
 Acknowledgements. This research was supported by DARPA under contract DAAD-16-03-C-0054 and NSF under 
grants ECS-0524835 and ECS-0622239. 
 
APPENDIX A 
 Gaussian Mixture Model (GMM) Classifier: Gaussian mixture models are widely used to model the probability density 
functions. In this paper, they are employed to approximate class-conditional distributions. It is assumed that each class 
distribution consists of four Gaussian modes and the parameters of the mixture is optimized using the expectation-
maximization (EM) algorithm [59]. The estimated distributions are then utilized to form an approximate Bayes classifier. 
 K Nearest Neighbor (KNN) Classifier: The KNN classification approach is a non-parametric technique that makes no 
assumptions about the form of the probability densities underlying a particular set of data. Given a particular test sample, the 
K nearest training samples (usually in an Euclidean sense) are determined and the test sample is assigned to the class which 
lends the most neighbors to this set. It can be shown that if K is large, this classifier will approach the best possible 
classification performance given by the true Bayes classifier [60]. 
 Parzen Window Classifier: Parzen windowing [61] is a nonparametric density estimation technique. It is employed to 
estimate the class distributions and to form a nonparametric approximation to the Bayes classifier. In this context, it serves as 
a bridge between the KNN where each sample contributes discretely to the decision (depending on whether they are in the 
neighborhood or not) and the GMM classifier where each sample indirectly contributes to the Gaussian modes. In our 
implementation, we used Gaussian window functions, thus the Parzen classifiers is essentially a KNN classifier with 
decreasing  influence by distance, and at the same time it is a GMM itself, where a Gaussian is placed on each sample. 
 Fusion: The classifiers output a decision at 10Hz and the majority vote determines the final cognitive state estimate. The 
Parzen classifier decision was accepted when there was no agreement. It is also assumed that this state will not change over a 
period of 2 seconds, thus a median filter applied to the most recent 10 decisions is utilized to smoothen the classification 
output. This post-processing step significantly improves performance and reduces flickering. 
 
APPENDIX B 
 When comparing different linear projection propositions using a classifier whose training and performance depends on 
Euclidean sample distances and angles, for the purpose of having a controlled environment, it is important to guarantee that 
the classifier performances are not affected by Euclidean transformations of data across projection methodologies. Data 
normalization to satisfy this desirable property is essential to conclude with certainty that differences in performances of 
classifiers due to various linear projections are invariant to affine transformations. 
 Suppose that a linear projection matrix W∈ℜm×n where m<n is proposed as the optimal projection according to the 
criterion of that particular technique (e.g., PCA, LDA, ICA, MI would yield different propositions). Let W=UDVT be the 
singular value decomposition of this matrix where D is the diagonal matrix of eigenvalues and U and V are orthonormal left 
and right eigenvector matrices. Define the multiplicative group inverse W+=VD+UT, where D+

ii=Dii
-1 if Dii≠0 and D+

ii=0 if 
Dii=0 (i.e., D+ is the group inverse for diagonal matrices under multiplication). 
 In the comparison of linear projections using a particular classifier (e.g., KNN, SVM, etc.), instead of utilizing the 
samples obtained by y=Wx, where y∈ℜm, utilize the samples generated with z=W+Wx. Note that, although z∈ℜn, since 
rank(W+W)=rank(VImVT)=m ⎯where Im=diag(1,…,1,0,…,0) is n×n diagonal with m ones on its diagonal⎯ the samples of 
the random vector z lie on an m-dimensional hyperplane determined by the rows of W. The variable z is a scale-normalized 
version of the desired projection y, and its use eliminates the problems that might arise from the scale dependency of 
particular classifier topologies and improper training procedures that might not take these into account. 
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	 Hardware Platform: A mobile wireless sensor suite was assembled using a variety of off-the-shelf components. EEG was collected from 32 channels using a BioSemi Active Two system [28]. Vertical and horizontal eye movements and blinks are recorded with electrodes below and lateral to the left eye. This system integrates an amplifier with an Ag-AgCl electrode – this affords extremely low noise measurements without any skin preparation. Information from the sensors is transmitted (via a combination of Bluetooth, serial port, and USB) to and recorded on a body worn laptop (Pentium 4.3GHz with 1GB RAM). A base station computer controls the experiment and communicates with the laptop via an 802.11 wireless network. 
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