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Abstract—Active contours, or so-called snakes, require some pa-
rameters to determine the form of the external force or to adjust the
tradeoff between the internal forces and the external forces acting
on the active contour. However, the optimal values of these parame-
ters cannot be easily identified in a general sense. The usual way to
find these required parameters is to run the algorithm several times
for a different set of parameters, until a satisfactory performance is
obtained. Our nonparametric formulation translates the problem
of seeking these unknown parameters into the problem of seeking
a good edge probability density estimate. Density estimation is a
well-researched field, and our nonparametric formulation allows
using well-known concepts of density estimation to get rid of the
exhaustive parameter search. Indeed, with the use of kernel den-
sity estimation these parameters can be defined locally, whereas, in
the original snake approach, all the shape parameters are defined
globally. We tested the proposed method on synthetic and real im-
ages and obtained comparatively better results.

Index Terms—Active contours, image segmentation, kernel den-
sity estimation, nonparametric methods, snakes.

I. INTRODUCTION

IMAGE segmentation is one of the fundamental problems
in image processing. The most common image segmenta-

tion applications include feature extraction from images, fil-
tering of noisy images, object recognition, and object based
video or image coding. The definition of the image segmentation
problem is as follows: Partition the image into distinct regions
in a way that these regions are homogenous, and none of the
unions of these distinct regions form a homogenous structure.
The homogeneity can be defined in any feature space; hence, it
does not strictly require homogeneity in the color or intensity
space.

Existing image segmentation methods can be categorized into
few main groups. The earliest methods are the edge-based ap-
proaches [1]. Edge-based approaches first detect the edges of
the image, which are subsequently connected and combined to
build object contours. However, these methods are efficient only
if the pixel intensity itself is a suitable feature for segmenta-
tion and the main disadvantage of the edge-based methods is
the fact that they are applicable only when the edges can be
computed, which is not always possible. There are region-based
approaches, like region growing, that have the advantage of
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low computational cost [2]. However, region-based methods are
parametric, and the results of these methods suffer from being
very sensitive to the parameter values. Another category is split
and merge approach that partitions the image into primitive re-
gions and merges them to provide the final results. A similarity
measure is defined to compare similarities between the pairs of
neighboring regions to merge them until a stopping criteria is
ensured [3]. The problem of setting good thresholds and se-
lecting an effective stopping criterion is mostly overcome by
utilization of clustering methods for image segmentation prob-
lems. Clustering-based methods bring the strength of general-
ization properties of unsupervised learning problems into the
image segmentation area [4], [5]. These approaches are gener-
ally nonparametric or have a few parameters, whose efficient
values can usually be estimated from the data.

Another approach that has evolved from edge based ap-
proaches is the active contours, so called snakes [6]–[8]. Snakes
are based on the utilization of the shape priors with the gra-
dient of the edge map of the image. Active contours move
with the effect of internal and external forces. Internal forces,
such as elasticity forces or bending forces, depend on the
contour itself, and the external forces are independent of the
shape of the contour and are only evaluated from the image
intensities. These forces are determined in a way that they
will make the snake move towards the object boundaries.
The external energy function is defined such that it takes its
optimal (generally minimum, depending on the definition of
the optimization problem) values at the object boundaries,
while the internal energy function preserves the shape of the
snake. Generally, in parametric and geometric active contours,
edge maps or some derivatives of edge maps are used to
define the external energy function. A different track in active
contours is the region-based active contours [9], which are
based on the idea of making the contour move towards a
boundary such that both the interior and the exterior of the
contour form homogenous regions.

There are several practical difficulties in using snakes, with
the original definition, most of which are later addressed by
the gradient vector flow (GVF) snake [8]. The most important
problem is that the initialization of the active contour has to be
in a narrow neighborhood of the object boundary. The range of
initializations that leads to the desired segmentation is known
as the capture range of the corresponding external force field.
To overcome the low capture range problem in real life sce-
narios, snakes are usually initialized using the output of another
segmentation algorithm, in which case, snakes can be regarded
as a fine tuning step for another segmentation algorithm. To
increase the capture range, several methods have been proposed
[10]–[12]. A multiresolution based method is proposed by
Leroy and coauthors [11], which addresses the capture range
issue. However, determining the way the snake should move
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through varying resolution levels remains unsolved. Another
approach to solve the same problem is distance potentials
method proposed by Cohen and Cohen [12], which introduces
an external force model to guide the contour towards the object
boundary. This approach significantly increases the capture
range and overcomes the initialization difficulty in most of the
cases.

Another well-known problem is that the snakes have dif-
ficulties in progressing into concavities along the boundary.
Directional attractions [14], control points [13], and pressure
forces [10] are among the methods proposed to solve this
problem. However, the most satisfactory results are obtained
with the GVF formulation by Xu and Prince [8], which also
solves the capture range issue very effectively. GVF snakes
provide a principled and effective way of defining the external
field, providing an insensitivity to initialization and an ability
to progress into boundary concavities. However, the method of
defining the internal energy function with the optimal selection
of its parameters remains to be determined. As with most para-
metric methods, the usual way of seeking the desired result is to
run the algorithm several times for a set of different parameter
values until a satisfactory performance is obtained.

We approached the problem of defining the energy function
in a nonparametric way. Our approach translates the problem of
seeking efficient values for the parameters into the problem of
seeking for an efficient density estimate. Density estimation is
a well-researched field, and exploiting the connection that we
use, different density estimation methods can be applied. Here,
we mainly focused on kernel density estimation (KDE) [15] and
derived an algorithm that exploits the underlying kernel density
estimate of the data.

In the next section, we start with how we employ KDE to
define the nonparametric snake, also emphasizing the reasons
behind using KDE in the density estimation step. We will con-
tinue with a fast and practical algorithm and present our results
providing comparisons in several synthetic and real data exam-
ples.

II. NONPARAMETRIC SNAKES

In this section, we develop the nonparametric snake. In this
particular realization of the concept, kernel density estima-
tion, Euclidean inner product, and fixed-point iterations are
employed. A discussion of how to address typical problems
encountered by active contours in the proposed nonparametric
framework will be presented.

In general, determining a suitable parametric family is prob-
lematic. Data probability density functions may take complex
forms, hence, nonparametric density estimation methods are
preferred for their versatility. KDE offers continuous and
differentiable density estimates provided that continuous and
differentiable kernel functions are employed. Further, ex-
ploiting variable kernel bandwidth parametrizations provide
further benefits similar to nearest neighbor techniques while
maintaining smoothness.

Determining a suitable kernel function is the most significant
step in KDE, and there is a wide literature about how to select
the kernel function [15]–[17]. Usually, isotropic or anisotropic
Gaussians are selected as the kernel function, which will suffice

for our purposes. The most typical choices for the kernel band-
width are i) Silverman’s rule of thumb, ii) leave-one-out cross
validation maximum likelihood estimator, iii) median of the
nearest neighbor distance with an isotropic Gaussian, and iv) co-
variance of the nearest neighbor distance with a anisotropic
Gaussian. The first two examples are utilized for identifying
optimal fixed-bandwidth kernels under minimum-squared-error
and Bayesian reasoning, whereas the latter two represent vari-
able-bandwidth kernel selection heuristics commonly utilized in
similarity based learning techniques.

Selecting the kernel bandwidth according to an objective
function is a well-researched field. Therefore, throughout the
paper, we will use the term suitable kernel function, leaving the
specific selection to the user in the broader context. Specifics
of kernel selection in the presented experiments will be pro-
vided. There exist variable-weight variants of KDE, as well,
though they are not as popular as variable bandwidth. The most
general variable-weight variable-anisotropic-bandwidth KDE
will be the generic tool that will be exploited in the proposed
framework.

A. Nonparametric Edge Density Estimates

Consider an image . For each pixel the vector
denotes its location. Let denote the edge map of

this image as a function of space. The edge maps can be obtained
using any suitable edge detector of choice and the edge values
can be binary or continuous.

1) Estimating the Edge Density From a Binary Edge Map:
In order to illustrate the edge distribution estimates obtained
using KDE, consider the more intuitive case of a binary edge
map such that

is an edge pixel
otherwise.

(1)

A KDE of the edge map can be constructed using variable-
anisotropic-bandwidth kernels as follows:

(2)

where is the number of pixels and

(3)

An illustration of this density estimate using fixed-isotropic-
bandwidth Gaussian kernels is shown for the simple U-shaped
image, in Fig. 1. This image has also been used by Xu and Prince
to underline the GVF snake’s ability to progress towards the
boundary concavities [8]. The same will be illustrated for the
nonparametric snake on this image later.

2) Estimating the Edge Density From a Continuous Edge
Map: Suppose we have a continuous edge map

. The most common choices for a continuous edge map
include: i) a binary edge map convolved with a Gaussian, ii)
the magnitude-square of the gradient field, and iii) the mag-
nitude-square of the gradient field convolved with a Gaussian.
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Fig. 1. Example of the edge probability density estimate for the binary case. (a) U-shaped image. (b) Probability density estimate of the edge map of the U-shape.

Fig. 2. Example of the edge probability density estimate for the corresponding continuous edge map. (a) Original image. (b) Continuous edge map obtained by
E(s) = r I(s) +r I(s) . (c) Probability density estimate of the continuous edge map around the object boundary.

Explicitly, these choices are

(4)

For continuous edge maps, the density can be expressed as a
variable-weight variable-bandwidth KDE as

(5)

where the weights are obtained for each pixel as its normal-
ized edge map value

(6)

Note that the binary edge map density is a special case of the
latter, obtained by thresholding the weights appropriately to ob-
tain binary weights for each pixel. In Fig. 2, an illustration of the
edge density is presented obtained by using a continuous edge
map for the aircraft image obtained from the Berkeley Segmen-
tation Dataset and Benchmark [25].

3) Noise Robustness and Variable Bandwidth KDE: Robust-
ness of the snake to outlier edge pixels, referred to as fake edges,
in the image that might arise due to noise or texture is a desir-
able property. Such fake edges may adversely effect the pro-
gression of the snake as well as the quality of the final solution
obtained by one. In the KDE framework, the influence of such
isolated outlier data points can be suppressed by employing vari-
able-bandwidth kernel estimates. Convenient methods for se-
lecting data-oriented kernel widths typically involve -nearest
neighbor type approaches. For statistical consistency, is usu-
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Fig. 3. Comparison of variable and fixed-size KDE for a noise edge map. (a) Noisy U-shaped image (b) Probability density of the noisy edge map with fixed-size
KDE. (c) Probability density of the noisy edge map with variable size KDE.

ally selected to be a sublinear monotonically increasing func-
tion of , the number of samples (pixels), such as .1 A
practical solution we have utilized in various domains success-
fully is to select the covariance of the kernel for sample to
be proportional to the KNN-covariance of its nearest neighbors,

, where is optimized using leave-one-out
maximum likelihood cross validation [21].

An illustration of how variable-bandwidth KDE eliminates
spurious edge pixels and helps boundary identification is pre-
sented in Fig. 3. A noisy binary edge map is obtained by adding
noise to a clean U-shaped image such that , where

represents the logical or operator and the probability density
of the noise is

(7)

Edge density estimates using fixed-isotropic KDE and variable-
anisotropic KDE are shown in the figure. Clearly, the latter pro-
vides a better cost function surface by smoothing out the den-
sity for the outlier edges and preserving the object boundary
unchanged for detection purposes.

In the earlier approaches, noise robustness is generally ob-
tained by convolving the original edge map with a Gaussian
filter. However, while this low-pass filtering operation reduces
noise, it also leads to a loss in the edge information by blurring
weak edge regions. Choosing a variable kernel width individu-
ally for each sample, effectively corresponds to controlling the
amount of the blurring adaptively throughout the image (in a
spatially nonstationary manner). This provides noise reduction
in the edge density estimate without introducing locally signifi-
cant blur to the edges. On the negative side, variable-bandwidth
KDE imposes a higher computational cost than its fixed-band-
width counterpart.

4) Ridges of the Edge KDE Give the Object Boundaries: As
it is clear from the illustrations above, the sought boundaries
of the objects are identified by the ridges of the edge KDE and
one simply needs to trace these ridges of interest. Pixel-level
intensity-ridge tracking has been previously employed in med-
ical image segmentation [19], [20]. In this approach, the image

1An asymptotically unbiased and consistent density estimate should satisfy
lim K = 1 ; lim K=N = 0

is mapped into a 3-D space consisting of the pixel coordinates,
, and the corresponding intensity . The segments of

the image are considered to be relatively constant, and segmen-
tation is achieved by tracing the ridges of the image intensity
map using exhaustive search at pixel resolution. In contrast, the
KDE-smoothing employed in this paper allows subpixel level
ridge-tracing.

It can be shown that for the points on the ridges of the edge
KDE: i) the local gradient of the edge KDE is parallel to an
eigenvector of the local Hessian of the edge KDE evaluated at
the same point, ii) the other eigenvector of the Hessian has a
negative eigenvalue, that is, the ridge is a local maximum in the
subspace orthogonal to itself [22]. Consequently, if one identi-
fies any point on the ridge (such as a local maximum), the eigen-
vectors of the local Hessian can be traced using a numerical
integration algorithm such as Runge–Kutta-4 [23], in order to
identify the true optimal boundary of the objects. However, our
experiments using this approach (not shown here) demonstrated
that this approach is numerically unattractive due to high com-
putational load and error accumulation at high curvature ridge
locations.

B. Optimization Criterion

Given the active contour samples and the den-
sity of the edge map , our aim is to find a contour that
captures the structure of the edge field around the object to
be segmented. We formulate this idea as maximizing the inner
product between the probability density function of the snake

and the probability density of the edge map

(8)

where the probability density of the snake is also eval-
uated as a KDE, using the samples of the snake

(9)
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TABLE I
SUMMARY OF THE HIERARCHICAL FIXED-POINT ALGORITHM.

where is the number of points on the snake. Substituting
(9) and (5) into (8), the plug-in KDE-based estimate of the ob-
jective function is obtained

(10)

Note that this cost function is additive in terms of the samples of
the snake. Therefore, near the optimal point along the ridge of
the edge density, higher and lower sampling rates of the snake
would lead to an accordingly denser or sparser evaluation of
the optimality criterion along the ridge. The KDE of the edge
map contains all smoothness information needed by the snake,
which can be simply extracted by sampling the snake at a higher
rate (as will be demonstrated later in the paper). In practice,
utilizing an isotropic fixed-bandwidth for is sufficient
(i.e., ).

C. Fixed-Point Algorithm

In order to achieve faster convergence than gradient-like step-
based algorithms, a fixed-point approach will be preferred in op-
timization algorithm design. To derive a fixed-point iteration for
the samples of the snake, we equate the gradient of the optimiza-
tion criterion by using the fact that for any fixed point of the den-
sity inner product cost function, the gradient of the inner product
with respect to should be equal to zero. This yields the
following:

(11)

Reorganizing the terms and solving for , the fixed-point
update rule can be written as2

(12)

This iteration is similar to that of the mean-shift and has been
shown to be an EM-update [24], [18], thus, is convergent. Since

2In (12), the division denotes left multiplication with the inverse of the matrix
given in the denominator. Specifically, for a spherical Gaussian, the matrix in
the denominator will become a scalar.

this iteration propagates the snake samples to local maxima
along the ridge, careful manipulation of the kernel size for
the edge KDE will facilitate obtaining a sufficiently dense
snake-sample distribution along the ridge. Specifically, one
could utilize wide kernels to eliminate spurious maxima to
facilitate locating the object and then switch to narrow kernels
to generate more local maxima along the ridge to facilitate the
interpolation of the boundary. Although, in our experiments, a
need to implement this procedure has not been necessary, there
might arise certain situations that would benefit from it. In
practice, the iteration above converges at a rate proportional to
the cube of the eigenvalue of the local Hessian in the vicinity of
a local maximum. Consequently, along a relatively level ridge,
one eigenvalue is significantly closer to zero (corresponding to
the eigenvector pointing along the ridge) than the other. Due
to the elimination of spurious edge maxima, the nonparametric
snake does not suffer from poor capture range.

The fixed-point iterations above introduce a drawback: de-
pending on the initial conditions, the original set of snake sam-
ples might be unable to progress into boundary concavities. The
GVF definition overcomes this problem, and given suitable pa-
rameters, the GVF snake is able to progress into concavities. For
the nonparametric snake, since the optimal interpolation idea of
tracing the ridge by following the eigenvectors of the local Hes-
sian is found to be numerically unattractive, an alternative solu-
tion to densely populate the snake is proposed next.

D. Fast and Robust Approach to Populate the Snake

The fixed-point iterations and the optimization criterion pre-
sented above can be utilized to increase the number of samples
in the snake in order to densely populate the boundary once
initial convergence is achieved by the original snake samples.
The idea is to initialize multiple snake samples for each orig-
inal sample around the corresponding convergence points and
have the new samples converge to the boundary utilizing the
same fixed-point iterations. The process can be repeated until a
suitable criterion is satisfied (such as the maximum separation
between two snake samples is less than pixels). A step by step
summary of the overall algorithm is given in Table I.

Once the stopping criterion is achieved, smooth interpola-
tion of the final samples using various schemes is trivial to ob-
tain a closed contour. The most commonly used interpolation
methods in the literature include nearest neighbor interpolation,
bilinear interpolation, bicubic interpolation, and spline interpo-
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Fig. 4. Example of binary edge map results. (Left) Result of the fixed-point
iterations and (right) the final result are shown. (a) Result of the fixed-point
algorithm for the U-shaped image. (b) Final result after interpolations along the
ridge of the pdf (see in color).

lation, which have found wide spread use in active contour field.
For example, Xu and Prince mention that they use bilinear in-
terpolation to obtain the active contour in a subpixel accuracy
[8].

The underlying assumption behind utilizing interpolation of
snake samples to obtain a closed contour is that there is a single
object whose boundary is sought and this object occupies a con-
nected region in the image. If the assumption of a single ob-
ject fails, then the snake samples may identify boundaries of
multiple objects and the closed contour obtained via interpola-
tion will yield a wrong segmentation result. Since the proposed
approach constructs the snake in a nonparametric manner one
sample at a time, standard clustering algorithms (such as ones
based on pairwise similarity) with appropriate model order se-
lection mechanisms can be employed on the final snake sam-
ples to identify the number of distinct objects whose boundaries
are identified. Therefore, the interpolation of the boundaries of
these multiple objects can be carried out properly as usual. Since
model order selection in clustering is an evolving research field,
we do not investigate this proposition here in detail.

III. EXPERIMENTAL RESULTS AND COMPARISONS

A. Binary Edge Map—The U-Shape

We use the U-shaped image to show how capture range and
boundary concavity issues are addressed by the proposed algo-
rithm. This also provides the opportunity to compare our results
with those obtained by the GVF snake. We initialize the non-
parametric snake to the image boundary. It takes a few iterations
for the fixed-point approach to find the boundary coarsely. Fig. 4
shows results obtained for this image, where the underlying den-
sity estimate of the binary edge field is previously presented in
Fig. 1. Fig. 4(a) shows the convergence of the original snake
samples after two iterations and Fig. 4(b) shows the final result
after repeated runs of the fixed-point iterations as described in
Table I.

B. Continuous Edge Map – Berkeley Segmentation Dataset

We present the performance of the proposed approach using
a continuous edge map. The aircraft image used in this example
is chosen from Berkeley Image Segmentation Benchmark [25].

Fig. 5. Example of continuous edge map results. (Left) Result of the fixed-point
iterations and (right) the final result are shown. (a) Result of the fixed-point
algorithm for the BISB image. (b) Final result after interpolations along the
ridge of the pdf (see in color).

Fig. 6. Comparison of GVF snake and nonparametric snake on a noisy example
with missing edges. (a) GVF snake iterations for the G-shaped image. (b) Final
result for the GVF snake. (c) Result of the second iteration for the nonparametric
snake. (d) Final result of the nonparametric snake using the hierarchical fixed-
point algorithm (see in color).

The snake is initialized to the image boundary. Fig. 5 shows re-
sults obtained with the nonparametric snake for the continuous
edge map. The corresponding continuous edge map and the es-
timate of the underlying probability density were presented in
Fig. 2. Fig. 5(a) shows the initialization and the convergence
of the original snake samples after a few fixed-point iterations.
Fig. 5(b) shows the final result of the algorithm in Table I.

C. Comparison With the GVF Snake—Noisy G-Shape

For the examples presented above, one can argue that GVF
snake would obtain similar results with properly chosen param-
eters. This argument is generally true, if the suitable values of
these parameter are known or can be derived from the image in
the preprocessing stage. Still, these parameters control the shape
priors of the snake globally, whereas the nonparametric snake is
learning the shape parameters from the image, which inherently
defines varying shape parameters throughout the image. In this
G-shaped example, a 64 64 pixel-square G-shaped image cor-
rupted with noise and missing edges is utilized to compare the
performances of the nonparametric snake and the GVF snake.
Results are presented in Fig. 6.

The main adverse implication of defining global smoothness
parameters for the snake become most apparent in this example
where a major concavity requires local high curvatures while
a missing edge at a smooth portion of the boundary causes the
globally highly curve snake to penetrate inwards due to an at-
traction by a spurious edge. The nonparametric snake does not
suffer from this issue due to the possibility of selecting variable-
bandwidth KDE for edge distributions, thus achieving better
noise robustness, providing smooth connections along missing
edge portions while allowing the propagation of the snake into
concavities.
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Fig. 7. U-shape buried in different types and levels of noise. (a) Gaussian noise
p = N(0; 5). (b) Gaussian noise p = N(0; 10). (c) Gaussian noise
p = N(0;15). (d) Laplace noise p = 5L(0;1). (e) Laplace noise
p = 10L(0;1). (f) Laplace noise p = 15L(0;1).

TABLE II

Specifically, for this example, we used anisotropic Gaussian
kernels whose covariances for each edge pixel is given by

, where is the covariance of nearest
neighbor points in the binary edge map, and is a global
scaling constant, optimized using leave-one-out maximum
likelihood criterion. The hierarchical fixed-point algorithm of
Table I is used with parameters and ).

D. Continuous Edge Maps With Different Noise Distributions

In this section, we present the effect of a noisy continuous
edge map on the performance of the nonparametric snake.
Results for Gaussian and Laplace distributed intensity noise
for three different SNR levels are shown. A variable-band-
width KDE with anisotropic Gaussian kernel functions as
described above are utilized. Fig. 7 presents sample images
for the U-shape buried in noise for different noise types and
levels. Table II provides a quantitative analysis of performance
utilizing the precision ( ) and recall ( ) values for each noise
type and SNR, averaged over ten Monte Carlo runs, as well as
the run-time of the complete algorithm until convergence on
a typical desktop computer. If there is no major concavity in
the boundary, there is no significant difference in running time.
However, for this particular example, missing edges make it
more difficult to progress into concavities and overall running
time increases due to more reinitializations as described in
Table I.

IV. CONCLUSION

In the original snake formulation, the required parameters can
only be set empirically, that is, the algorithm is run a number of
times until a satisfactory performance is reached. This draw-
back can be overcome by defining both energy functions in
the same domain, and we propose a nonparametric approach
that exploits the underlying edge probability density. In this
paper, we present a nonparametric approach to the active con-
tour problem. We design the algorithm such that it first exploits
the edge field without considering the shape. This enables the
proposed nonparametric snake to define local shape priors. The

formulation based on kernel density estimation presents a con-
venient parameter selection framework and outlier robustness.

Our future work will include a formulation that is similar to
snakes in practice, but allows multiple segments controlled by
an adjustable granularity level. For images containing multiple
complex boundaries, initializing the nonparametric snake sam-
ples to every pixel of the image and clustering the points that
belong to the same boundary after convergence might prove to
be more efficient than the re-initialization procedure proposed
in this paper.
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