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Abstract—We develop a novel classifier in a kernel feature space
related to the eigenspectrum of the Laplacian data matrix. The
classification cost function measures the angle between class mean
vectors in the kernel feature space, and is derived from an infor-
mation theoretic divergence measure using Parzen windowing. The
classification rule is expressed in terms of a weighted kernel expan-
sion. The weighting associated with a data point is inversely pro-
portional to the probability density at that point, emphasizing the
least probable regions. No optimization is needed to determine the
weighting scheme, as opposed to the support vector machine. The
connection to Parzen windowing also provides a theoretical crite-
rion for kernel size selection, reducing the need for computation-
ally demanding cross-validation. We show that the new classifier
performs better than the Parzen window Bayes classifier, and in
many cases comparable to the support vector machine, at a com-
putationally lower cost.

Index Terms—Cauchy–Schwarz (CS) divergence, classification,
Laplacian matrix, Mercer kernel feature space, Parzen windowing.

I. INTRODUCTION

CLASSIFICATION of the data points which comprise a
data set is one of the fundamental problems in machine

learning and signal processing [1]–[3]. The classifier is normally
constructed based on a cost function and an available training
data set with known class labels. The goal is to appropriately
classify a test data set.

One intuitively appealing classification criterion is to con-
struct the classifier such that the probability of classification
errors is minimized. It is well known that the Bayes classifier
[1]–[3] is optimal with respect to minimum error probability.
The problem is that the Bayes classifier assumes a priori knowl-
edge of the class probability density functions (pdf’s). These
pdf’s are unfortunately unknown in practice.

One way to implement a suboptimal Bayes classifier is to re-
place the actual densities by Parzen window estimators [4], ob-
tained using the training data points. The Parzen window
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estimator does not assume any parametric model for the class
densities. It is expressed as a sum of equally weighted Parzen
windows, or kernels. In order to classify a test data set, these
sums, totally consisting of terms, have to be evaluated
for each test data point. This is a procedure having computa-
tional complexity in the order of

During the last decade, another kernel based classifier, known
as the support vector machine (SVM) [5]–[7], has received a
lot of attention. The SVM relies on a maximum margin regu-
larization criterion. The criterion is expressed solely in terms
of inner-products. The actual maximization of the margin takes
place in a so-called Mercer kernel feature space. The inner-prod-
ucts in this space can be computed based on the “kernel-trick,”
using a Mercer kernel function. The final form of the SVM
resembles the Parzen window Bayes classifier. However, the
maximum margin criterion leads to a weighting of the rele-
vance of the training data points in the construction of the clas-
sifier. This is in contrast to the Parzen window Bayes classi-
fier, where all data points are weighted equally. This weighting
property has been shown to lead to improved classification per-
formance. To obtain the relevant weighting, which determines
the support vectors, a convex optimization problem must
be solved. This procedure has a computational complexity in
the order . More efficient heuristically based opti-
mization methods do exist, such as e.g., sequential minimal op-
timization [8]. It is also not straightforward to select the two
SVM parameters, which are essential for the classifier perfor-
mance. These parameters are the kernel size, and a constant
which regulates the tradeoff between training data misclassifi-
cation and classifier regularization. It can be a computationally
demanding task to perform cross-validation over both these pa-
rameters, since the SVM optimization has to be performed for
each such pair. However, a desirable feature of the SVM opti-
mization is that is leads to a certain sparseness in the actual clas-
sification procedure, since the number of support vectors equals
the number of terms in the resulting kernel expansion. Hence,
the testing phase complexity is in the order .

In this paper, we propose a new classifier which does not
require the optimization phase associated with the SVM, but
which still produces classification results which in many cases
are comparable to the SVM. The new classifier is named the
Laplacian classifier. It is based on measuring angles between
class mean vectors in a Mercer kernel feature space, which may
be approximated by the eigenspectrum of the Laplacian data
matrix [9] (see Section II-B). The classification cost function
is derived from the Cauchy–Schwarz (CS) [10] information
theoretic divergence measure between pdf’s. Using Parzen
windowing for density estimation, the resulting classification
rule is expressed in terms of a weighted kernel expansion. The
weighting associated with a data point is inversely proportional
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to the probability density at that point, emphasizing the least
probable regions. No optimization is needed to determine the
weighting scheme, only the evaluation of sums of kernels.
This results in an procedure. The computational
complexity in the testing phase is given by ,
since the kernel expansion in this case consists of terms.
We discuss how the complexity may be further reduced. The
connection to Parzen windowing also provides a theoretical
criterion for kernel size selection, which we show reduces
the need for cross-validation. We show that the new classifier
performs better than the Parzen window Bayes classifier, and
in many cases comparable to the SVM, at a computationally
lower cost.

Note that some other recent classifiers can also be expressed
in terms of weighted kernel expansions, even though the theo-
retical basis for these methods may be quite different. Kernel
Fisher discriminant analysis (KFDA) [11] for example, com-
putes the Fisher discriminant in a Mercer kernel induced fea-
ture space as the solution to an optimization problem. Another
example is Gaussian process classification (GPC) [12], which
solves an optimization problem based on Bayesian inference.
The idea here is to place a Gaussian process prior over the input
to a sigmoid function which approximates the class probabili-
ties given the data. We compare the Laplacian classifier perfor-
mance also to these two classifiers.

The remainder of this paper is organized as follows. In Sec-
tion II, we review the CS classification cost function. In Sec-
tion III, a new classification rule based on the CS cost function is
derived. Section V highlights some properties of the Laplacian
classifier. Some classification results are reported in Section VI.
We make our concluding remarks in Section VII.

II. CAUCHY–SCHWARZ COST FUNCTION

Initially, we focus the analysis on the two-class case. Con-
sider two data classes, and , corresponding to the proba-
bility density functions and . The classification cost
function we introduce in this paper is based on the CS diver-
gence measure between and , defined as [13]

(1)

where , . Here,
is the overall pdf of the data set (

and are the class priors). The CS measure is symmetric, and
. If , then .

The particular inner-product weighting by connects the
CS cost function to the Bayes probability of error, as will be
discussed next. It also connects the CS measure to the Laplacian
data matrix, as will be discussed subsequently.

A. Connection to the Bayes Probability of Error

Note that since the logarithm is a monotonic function, we may
just as well focus on the argument of the in (1), which we
may denote . Let two regions, and , in the data space
be defined. If a test data point , it will be assigned to .

If, on the other hand, , it will be assigned to . The re-
gions and must be determined such that a classification
cost is optimized. Let us assume that the two classes are rela-
tively well separated. Hence, for
and for . Considering now the three
terms which comprise , we have

a)

(2)

b)

(3)

c)

(4)

Finally, we obtain

(5)

This expression can be compared to the expression for the Bayes
probability or error, given by

(6)

Hence, it can be seen that . Therefore, in
this well separated situation, the CS classification cost function
is connected to the Bayes error probability. The regions and

which minimize also minimize . When the two classes
are not well separated, it seems as if the CS cost function em-
phasizes more to classify correctly the least probable class, even
though this may increase the error rate, as will be discussed in
a later section.

B. Laplacian Matrix and Kernel Space Representation

In this section we briefly review the connection between a
Parzen window-based estimator for the CS divergence and the
Laplacian data matrix, as noted in [13].

Express as

(7)

where and
. We are given a training data set ,

. This data set consists of , ,
the class one data points and , , the class
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two data points. Based on the data samples, define the Parzen
window-based estimators

(8)

Here, is the Parzen window. It is often (but not neces-
sarily) given by a unimodal Gaussian density, i.e.,

(9)

For simplicity, we assume the same kernel size is used in all
the Parzen estimators. It is easy to incorporate different kernel
sizes in the derivation.

Using these estimators, we have

(10)

where in the last step, the convolution theorem for Gaus-
sians has been employed. For any pair of data points in
the data set, say and , we define the matrix such
that element equals . Moreover, a ma-
trix is defined. Now, all

can be represented by
element of the matrix . The
matrix is known as the Laplacian matrix [9].

Note that each element of represents an inner-product in a
Mercer kernel feature space, since the Gaussian Parzen window
obeys the Mercer conditions [6], [7], [14]. Hence, each element
of the Laplacian matrix, , also represents an inner-product,
which we may denote

(11)

Thus

(12)

where and are the class mean vectors of the data after
the mapping to the Mercer kernel induced feature space. Here

, ,
where the nonlinear mapping is given by .

By performing an exactly similar analysis for and
, such a Parzen window estimate of can be ex-

pressed as

(13)

where LIC stands for Laplacian information cut because of a
connection to the graph cut [15]. Hence, the CS divergence mea-
sure turns out to correspond to a measure of the cosine of the
angle between class mean vectors in a kernel induced feature
space related to the Laplacian data matrix.

C. Multiclass CS Measure

The CS divergence can easily be extended to more than two
classes, given by

(14)

where . In the Mercer kernel feature space, this
corresponds to a multiway Laplacian information cut, as follows

(15)

Thus, the measures the sum of pairwise cosines between
class mean vectors.

III. NEW CLASSIFICATION RULE

Based on the training data set, we may define the class
mean vectors, , corresponding to the classes

. We wish to classify a test data point to the class
which minimizes the CS classification cost function. This can
obviously be achieved by measuring the angle between
and each of the mean vectors, for then to assign the data point to
the class for which the angle is the smallest. This corresponds
to the following classification rule

(16)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 1, 2009 at 21:55 from IEEE Xplore.  Restrictions apply.



JENSSEN et al.: THE LAPLACIAN CLASSIFIER 3265

. Each may be evaluated as
follows:

(17)

In (17), and will be common for all
, . Therefore, we define the

test statistic , where

(18)

where the constant

(19)

The resulting classification rule therefore becomes
, .

We name the classifier we have derived the Laplacian clas-
sifier, because of the connection to the Laplacian matrix and its
eigenspectrum (see also Section V-A).

Observe that the constants in (18) induce a
weighting of the importance of , the kernel
function at . The weighting factor is inversely proportional
to the value of the overall pdf estimated at . Hence, a data
point for which the value is high, corresponds to a low
weighting of the corresponding kernel function. This implies
that training data points corresponding to regions of low proba-
bility density are given higher weights in the classifier design.
The constant acts as a normalization.

The Laplacian classifier weights are obtained without having
to solve any complex optimization problem, rather only the eval-
uation of sums of kernel functions is needed. Evaluating all
these sums is an procedure. However, further com-
plexity reduction is possible. Stochastic sampling ideas may be
employed, as advocated in a related setting in [16]. Using sto-
chastic sampling, only a subset of the training data points are
used in the Parzen window estimation procedure. This reduces
the training phase complexity to ,

. Another possibility is to evaluate the kernel expansions
with less computational complexity using the fast Gauss trans-
form [17], as demonstrated on a similar problem in [18]. This re-
duces the complexity to per data dimension, where

is the number of clusters used in the approximation and is

the truncation order. This may be important, especially for large
. This is an issue for further study in future work.

A. Connection to Parzen Window Bayes Classifier

The Laplacian classifier contains the Bayes classifier as a
special case, where the class densities are estimated using the
Parzen window technique. Recall the Parzen window Bayes
classifier

(20)

. Consider the case where no assumptions are made
about , such that , , and it is assumed that

. In that case, the Laplacian classifier reduces to
the Parzen window Bayes classifier.

IV. KERNEL SIZE SELECTION

The Laplacian classifier is explicitly derived using Parzen
windowing. Therefore, in theory an optimal way for selecting

for Parzen window density estimation would provide the ap-
propriate kernel size to be used in the classifier. Parzen kernel
size selection has been thoroughly studied in the statistics liter-
ature [19]–[21]. The optimal kernel size is usually selected so as
to minimize the mean integrated squared error (MISE) between

and the target density . It is easily shown [19]–[21]
that the MISE decomposes into a bias term and a variance term.
For a fixed sample size, the bias term is minimized by mini-
mizing the kernel size, while the variance term is minimized by
maximizing the kernel size. This is the inherent bias-variance
tradeoff in the Parzen window technique.

A simple formula for (suboptimal) MISE kernel-size selec-
tion is given by Silverman’s rule [19]

(21)

where , and are the diagonal elements
of the sample covariance matrix. We will use this rule as an
initial value for the kernel size.

V. PROPERTIES OF THE NEW CLASSIFIER

A. Measuring Angles in Kernel Space

We wish to illustrate by an example that a classification cost
function which is based on the angle between a test data point
in the kernel feature space and the class mean vectors makes
sense. In order to achieve this, we will in this example approxi-
mate the nonlinear data mapping from input space to the Mercer
kernel feature space. Such an approximation to may be ac-
complished using the largest eigenvalues and corresponding
eigenvectors of the matrix , as follows [22]–[24]:

(22)

where denotes the th element of the th eigenvector of
and is the corresponding eigenvalue, where .

This kind of approximation have been used e.g., in spectral
clustering methods [25] and in Laplacian eigenmaps [26]. In
[27] this data mapping was utilized in a classifier procedure
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Fig. 1. Approximating a Mercer kernel feature space using the eigenspectrum
of the Laplacian matrix. The CS divergence, corresponding to the cosine of the
angle between cluster mean vectors in the kernel feature space, clearly makes
sense in this example. (a) Two-class ring-shaped data set. (b) Laplacian matrix
Kernel feature space mapping. (c) Kernel PCA feature space mapping.

based on the CS measure. Notice also that in the case where
no weighting is performed, i.e., , in (1), the map-
ping (22) reduces to the kernel principal component analysis
(kernel PCA) mapping, as derived in [28]. It can be shown that
in the “ideal case,” where the clusters are “infinitely” far apart,
the data mapping (22) results in point-clusters, mutually or-
thogonal to each other, situated on the first principal axes in
the kernel space. This would be the case both using the Lapla-
cian matrix, , and the kernel PCA matrix, . However, in
practice, the mapping (22) based on the Laplacian matrix is
different that the kernel PCA mapping.

Fig. 1(a) shows a two-class ring-shaped data set. This may be
considered the training data set available. Notice that the class
mean vectors for this data set are identical. Using (21) to deter-
mine the Parzen window width, , and hence the Mercer kernel
size, by (10), we construct the Laplacian matrix using
(11). By computing the eigenvalues and eigenvectors of , we
may approximate the mapping to the kernel feature space using
(22), obtaining the data set shown in Fig. 1(b). The data structure
in the kernel feature space is clearly different to the structure
in the original data space. The transformed data points, corre-
sponding to the two classes, are distributed along two lines ra-
dially from the origin, in different angular directions. It clearly
makes sense in this example to classify a test data point in the
kernel feature space to the class represented by the mean vector
closest to it, using an angular measure. However, the reader
should bear in mind that in this paper, we do not actually use
(22) in the training and testing phases of the Laplacian classifier.
Hence, no eigenvalue problem needs to be solved in our proce-
dure. For completeness, we also show in Fig. 1(c) the kernel
PCA mapping (based on the affinity matrix, i.e., no weighting)
obtained on this data set, using the same kernel size. The trans-
formed data points corresponding to the ring are those which
are concentrated near the origo, while the other data points cor-

Fig. 2. Illustrating the probability weighting scheme. (a) Parzen window pdf
estimate. (b) Weighting for ring-shaped data set. (c) The vectors corresponding
to the largest weights may be called “significance vectors.”

respond to the Gaussian cluster. A classification based on an
angluar measure is no longer appropriate. This shows that the
weighting property associated with the Laplacian matrix has a
significant effect on the mapping.

B. Probability Weighting Scheme

Using the same ring-shaped data set, we analyze the
weighting associated with each data point ,

. The data set is constructed such that the first
63 data points correspond to the ring, while the last 200 data
points correspond to the Gaussian class in the center. Fig. 2(a)
shows the Parzen window pdf estimate obtained using (21)
to determine the window width. Fig. 2(b) shows a plot of the
resulting weighting constants. The data points corresponding to
the ring experiences a higher weighting, since they are situated
in low probability density regions in the input space. The data
points comprising the dense Gaussian class experiences a low
weighting because of the high probability density in that region.
The most “important” data points in the classifier design are
those having high weights. These may be denoted “significance
vectors.” Fig. 2(c) shows the top one percent “significance vec-
tors” (marked by x), where also the class labels are indicated
(squares and circles). The “significance vectors” are in this case
evenly distributed in the low density regions in the input data
space.

Note that for many data sets, low values for the overall prob-
ability density function will correspond to class boundary re-
gions. It makes sense that training data points situated near class
boundaries should be emphasized more in the classifier design,
since test data points situated near the class boundaries are the
most difficult to classify correctly.

C. Robustness Against Outliers

We have argued that the Laplacian classifier assigns a weight
to each data point in the training set, which is inversely propor-
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tional to the value of the Parzen window estimated probability
density at that point. This raises the question of whether outliers
may dominate the classification, since they will be assigned very
high weights.

Assume that class consists of data points plus an outlier.
For simplicity, we denote the weighting for data point , i.e.,

, by . Also, we denote the kernel
by for any and . Let be the outlier, and let
denote its weight. The test statistic, (18), for class , with the
outlier appended, is thus given by

(23)

The normalizing constant is expressed by the denominator
of this expression. Let . We note that

is independent of the test data point . If we assume that
all the training data point weights , are ap-
proximately similar, we may approximate the ’s by the con-
stant . The quantity , and since

, we have

(24)

Hence, if the outlier weight is very high, will have a limited
effect on the normalizing constant associated with class .

Let . If the test data point is close to , such
that will be large, then consequently will attain a large
value. Hence, will be large, and the test data point will prob-
ably be assigned to class . This makes sense. However, if is
truly an outlier, is more likely to be situated near the training
data points. Hence, the proximity measure will be com-
parable to the proximities , , comprising

. These all have small values.

Thus, by approximating these proximities by a constant , we
obtain

(25)

which is a small value.
These derivations show that an outlier, or a few outliers,

will not dominate the Laplacian classifier, despite high outlier
weights. The larger the distance from the outlier of class to
the training data set comprising that class, the smaller effect
it will have on the normalizing constant . A test data point
close to the outlier will produce a high value for the test statistic

. But the value for will not be much affected by the outlier
if the test data point is located in the proximity of the training
data points.

These theoretical results are supported by our experimental
experience. A simple example is included for illustration pur-
poses. Fig. 3(a) shows a training data set. This is the exact same

Fig. 3. Illustrating robustness against outliers. The outlier appended to the out-
ermost ring does not dominate the Laplacian classifier performance. (a) Training
data set with outlier. (b) Test data set correctly classified.

Fig. 4. Data set consisting of two Gaussian classes. (a) Training data ser to for
two-Gaussians case. (b) Test data set for two-Gaussians case.

data set as shown in Fig. 2(c), only that in this case an outlier
is appended to the outermost ring. The top one percent “signif-
icance vectors” [see Fig. 2(c)] includes the outlier. The weight
assigned to each data point, except the outlier, are exactly the
same as those weights shown in Fig. 2(b). However, the outlier
weight is very large; . Fig. 3(b) shows the classifi-
cation result for a test data set generated in a similar manner as
the training data set. The classification is not dominated by the
outlier. The same result is obtained also if the outlier belonged
to the Gaussian class in the middle instead. Other classification
experiments seem to support this result.

D. Emphasizing Least Probable Class

In Section II-A we showed that when the classes are relatively
well separated, the CS cost function has a connection to the
Bayes error probability. Thus, in such a situation the Laplacian
classifier minimizes the probability of error.

Consider now a data set where the classes are not well sepa-
rated, rather they have significant overlap. Fig. 4(a) shows such
a data set. Both classes originates from Gaussian distributions.
These distributions have the same spherical covariance struc-
ture with unit variance. The mean vector in the input space of
class one is . The mean vector of the second class
is . The training data is constructed such
that class one is represented by 100 data points, compared to
only 5 data points from class two. Hence, , while

. Based on this data set, the new classifier is trained.
For comparison, we construct a Parzen window Bayes classifier
and also train a SVM. Recall that the Bayes classifier is in theory
optimal with respect to the probability of error. The test data set
is drawn from the same distributions as the training data set. It
consists of 200 data points from class one, and 10 data points
from class two. This data set is shown in Fig. 4(b), with the true
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Fig. 5. SVM and Laplacian classifier result on the data set consisting of two
Gaussian classes. (a) Parzen window Bayes Classifier. (b) Support vector ma-
chine classifier. (c) Laplacian classifier.

TABLE I
CONFUSION MATRIX FOR PARZEN WINDOW BAYES CLASSIFIER

TABLE II
CONFUSION MATRIX FOR SUPPORT VECTOR MACHINE

TABLE III
CONFUSION MATRIX FOR LAPLACIAN CLASSIFIER

labels indicated. Because of the overlap, classification errors are
unavoidable. The classification results we show subsequently in
Fig. 5(a)–(c) should be compared to Fig. 4(b), as it represents
the “ground-truth” in this example.

We use (21) to determine the kernel size. The classification
result using the Parzen window Bayes classifier is shown in
Fig. 5(a). Although it misclassifies only 9 data points, it only
classifies correctly one single class two data point. This is to
be expected, since the Bayes classifier will sacrifice the least
probable class in order to achieve a low classification error. The
confusion matrix summarizing this result is shown in Table I.

Fig. 5(b) shows the result obtained using a SVM. The confu-
sion matrix is shown in Table II. The SVM classifies correctly
3 class two data points, and in fact obtains more errors overall
than the Parzen window Bayes classifier.

The Laplacian classifier obtains the result shown in Fig. 5(c),
corresponding to the confusion matrix shown in Table III. The
result is significantly different from the results obtained by the
two previous classifiers. It classifies correctly 9 of the class two

TABLE IV
CONFUSION MATRIX FOR PARZEN WINDOW BAYES CLASSIFIER ON

ECHOCARDIOGRAM DATA

TABLE V
CONFUSION MATRIX FOR LAPLACIAN CLASSIFIER ON ECHOCARDIOGRAM DATA

data points. However, the penalty is 38 erroneously classified
class one data points. Clearly, the Laplacian classifier empha-
sizes more to classify correctly the least probable class. This
property may be useful in many applications, and should be
further studied in future work. Note that a similar effect may
be generated in the Bayes classifier, and probably in the SVM
also, by weighting the importance of the different classes. This
requires the user to determine the relative importance of the
classes.

As an example of the different emphasis between the Parzen
window Bayes classifier and the Laplacian classifier, we con-
sider an echocardiogram data set, obtained from the UCI repos-
itory [29]. Each exemplar contains information collected from
patients who have had a recent heart attack. The problem is to
determine if the patient will survive for one year following their
heart attack. We have generated a training data set consisting of
10 data points. Three of these correspond to surviving patients.
There are eight features, corresponding to age and various mea-
surements of the heart condition. The classes have considerable
overlap. The test data set consist of 42 data points. In this case,
the confusion matrix based on the Parzen window Bayes clas-
sifier is shown in Table IV. The confusion matrix based on the
Laplacian classifier is shown in Table V. The number of errors
committed by the two classifiers are almost the same, but the
confusion matrices are different. Again, the Laplacian classifier
emphasizes more to classify correctly the least probable class.

VI. MORE CLASSIFICATION RESULTS

In this section, we report some classification results on 11
different well-known data sets, using the Laplacian classifier.

First, we consider four of the Rätsch data sets used in [30]:
(2, 400, 4800), (5, 140, 75), (18, 1300,

1010), and (20, 400, 4600), where the numbers in
parenthesis are the dimensionality, the size of the training data
set and the size of the test data set, respectively. There are be-
tween 20 and 100 realizations of each data set. The data sets
have zero mean and unit standard deviation for each feature. We
present results using a kernel size given by ,
where is obtained using (21), but also a kernel size given
by , obtained using three-fold cross-validation over a range
of kernel sizes. We compare with the SVM results presented in
[30]. In that paper, the SVM was trained using five-fold cross-
validation on both SVM parameters and . The results are
summarized in Table VI (mean correct classification rate in per-
cent and corresponding standard deviation).

Perhaps surprisingly, the simpler Laplacian classifier obtains
results which are comparable and even better in some cases than
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TABLE VI
CLASSIFICATION OF RÄTSCH DATA

TABLE VII
CLASSIFICATION OF UCI REPOSITORY DATA

the much more complex SVM classifier. Note also that the clas-
sification results obtained using (21) to determine the classi-
fier kernel size is quite close to the best results obtained after
cross-validation. This indicates that is close to

. Hence, instead of performing cross-validation over a wide
range of kernel sizes, this result may show that can be used
as a starting point in the cross-validation procedure, close to the
desirable solution. This may be important from a computational
complexity perspective.

For additional comparison, we also provide the KFDA classi-
fication results reported in [11], on the same four data sets. The
rates for KFDA are , ,

, and . Hence, the
Laplacian classifier performs comparably also to this classifier.
We note that the Parzen window Bayes classifier performs con-
sistently worse than both the Laplacian classifier, the SVM and
the KFDA. For example, for it obtains a best (cross-val-
idation) classification rate of , while for it
obtains .

Next, we focus on some data sets extracted from the UCI [29]
repository: (13, 178), (4, 150), (34, 351),
Wisconsin breast-cancer (9, 683), (8, 768), and Pen
-based handwritten digit recognition (16, 1091), where the num-
bers in parenthesis indicate the dimensionality and the size of
the data set. The Pen data set is based on the integers 0, 1, and
2. The standard deviation of these data sets are also normalized
to one for each feature, since the classifiers use spherical kernel
functions. In this case, over 100 trials, we randomly split the data
sets into two halves, one for training and the other for testing.
Table VII shows the classification results for the Laplacian clas-
sifier and the SVM.1 We have used three-fold cross-validation.

Using cross-validation (on two parameters in the SVM case),
the SVM obtains slightly better results than the Laplacian
classifier. The results are very sensitive to the tradeoff between
training data misclassification and classifier regularization,
regulated by the constant , so cross-validation over both SVM
parameters are required. It should be noted that the results
obtained by the Laplacian classifier are quite close to those
obtained by the SVM, without requiring an optimization proce-
dure, and only performing cross-validation over one parameter.

1SVM software downloaded from [31] and [32].

Note also that the results obtained using are comparable
to the cross-validation results for the Laplacian classifier. A
kernel size given by does in general not produce very
good results using the SVM. For completeness, we list the
kernel sizes used for the different data sets ( , Laplacian
classifier , SVM ) as (1.0, 2.3, 3.0), (0.7, 0.4,
3.0), (1.1, 1.4, 2.5), (0.7, 1.1, 10), (0.7, 1.1,
10), and (0.8, 0.3, 3.0).

We also provide the (best) results reported in [33] for some
of the data sets in Table VII, using a Gaussian process classi-
fier.2 These are (correct classification in percent) 92.0 ,
96.8 , and 77.4 . Hence, the Laplacian classifier
performs comparably also to a Gaussian process classifier. The
Parzen window Bayes classifier consistently performs worse
than the other classifiers. For example the classification rate for
Ionos is and for it is .

We also conduct an experiment on the 10-class USPS data set.
3 The USPS data set consists of normalized handwritten digits,
automatically scanned from envelopes by the U.S. Postal Ser-
vice [34]. The original scanned digits are binary and of different
sizes and orientations; the images here have been deslanted and
size normalized, resulting in (16 16) grayscale images. The
images are represented by 256-dimensional vectors of grayscale
values. There are 7291 training observations and 2007 test ob-
servations. This data set is known to be notoriously difficult. We
obtain 94% classification accuracy using the Laplacian classi-
fier. In [35], 96% accuracy was reported using the SVM.

VII. CONCLUSION

We have derived a novel classifier which operates in a Mercer
kernel feature space defined by the eigenspectrum of the Lapla-
cian data matrix. In that space, the classification rule is based
on comparing angles between test data points and class mean
vectors. The classification cost function is derived from the CS
divergence between pdf’s, in combination with Parzen window
density estimation.

The classification rule is expressed in terms of a weighted
kernel expansion. The weighting associated with each data point
is inversely proportional to the probability density function at
that point, emphasizing the least probable regions. No optimiza-
tion is needed to determine the weighting constants. The con-
nection to Parzen windowing provides a theoretical criterion for
kernel size selection. It has been shown that provides a
good starting point for the kernel size cross-validation proce-
dure.

The Laplacian classifier may be a useful alternative to the
SVM, especially for large data sets, where the computation-
ally complex SVM optimization and cross-validation is unde-
sirable. The Laplacian classifier has a lower theoretical com-
putational complexity in the training phase than the SVM. We
have also discussed possibilities for further complexity reduc-
tion using heuristics, such as stochastic sampling and the use
of the fast Gauss transform. The Laplacian classifier is there-
fore a much simpler classifier than the SVM, but which still

2Note that there may be some differences in preprocessing for the data used
in [33], compared to this paper.

3Downloaded from http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
data.html
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produces comparable classification results in many cases. How-
ever, the SVM has the desirable property that its computational
complexity in the testing phase depends on the number of sup-
port vectors, i.e., it exhibits a sparseness property. We believe
a similar effect may be produced in the Laplacian classifier, by
keeping only the largest “significance vectors” for each class
in the kernel expansion comprising the classifier. For example,
in preliminary experiments, we have obtained promising results
by keeping only the 10%–20% largest weights for each class
in (18), hence reducing the testing phase computational com-
plexity significantly. This is, however, an issue which needs fur-
ther attention in future work.

The Laplacian classifier has been shown to minimize the
Bayes error probability for relatively well-separated data
classes. For data classes which experience a high degree of
overlap, the Laplacian classifier seems to have the interesting
property that it emphasizes to classify correctly the least prob-
able class, as opposed to the Parzen window Bayes classifier.
This may come at the cost of a higher error rate. We consider
this as an interesting property, which may be useful in cases
where one class is underrepresented compared to the others, for
example in some types of medical research.
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