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Abstract

We introduce a new graph cut for clustering which we call the Information Cut.
It is derived using Parzen windowing to estimate an information theoretic distance
measure between probability density functions. We propose to optimize the Infor-
mation Cut using a gradient descent-based approach. Our algorithm has several
advantages compared to many other graph-based methods in terms of determining
an appropriate affinity measure, computational complexity, memory requirements
and coping with different data scales. We show that our method may produce clus-
tering and image segmentation results comparable or better than the state-of-the
art graph-based methods.

Key words: Graph theoretic cut, information theory, Parzen window density
estimation, clustering, gradient descent optimization, annealing.

1 Introduction

In signal processing and data analysis, it is often desirable to partition, or cluster,
a data set into subsets. Several textbooks provide surveys of traditional clustering
techniques, see e.g. [1–3].

Recently, a new line of research in clustering has emerged. It is based on the notion
of a graph cut. A set of points, xl, l = 1, . . . , N , in an arbitrary data space can be
represented as a weighted undirected graph G. Each node in the graph corresponds
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to a data point. The edge formed between a pair of nodes, say l and l ′, is weighted
according to the similarity between the corresponding data points. The edge-weight
is denoted kll′ . The graph cut provides a measure of the cost of partitioning a graph
G into two subgraphs G1 and G2, and is defined as

Cut(G1,G2) =
N1,N2
∑

i,j=1

kij , (1)

where the index i = 1, . . . , N1, runs over the N1 nodes of subgraph G1 and the index
j = 1, . . . , N2, runs over the N2 nodes of subgraph G2. That is, the cut measures the
weight of the edges which have to be removed in order to create the two subgraphs.
Wu and Leahy [4] first proposed to minimize the cut -cost as a means for clustering
and image segmentation.

Shi and Malik [5] pointed out that the cut tends to produce a skewed data partition.
It will in fact be minimized if one node in the graph is isolated in one group, and all
the rest in the other group. They proposed the heuristically motivated Normalized
Cut (NC), defined as

NC(G1,G2) =
Cut(G1,G2)

Assoc(G1,G)
+

Cut(G1,G2)

Assoc(G2,G)
, (2)

where Assoc(G1,G) =
∑N1,N

i,l=1
kil and Assoc(G2,G) =

∑N2,N
j,l=1

kjl, i.e. the total connec-
tion from nodes in G1 (G2) to all nodes in the graph G. Shi and Malik optimized the
Normalized Cut based on the eigenvectors of the Laplacian matrix L = D−K. Here,
D is a diagonal matrix where the mth diagonal entry is given by dm =

∑N
l=1 kml.

The matrix K = kll′ , l = 1, . . . , N, l′ = 1, . . . , N, is called the affinity matrix.

Several other heuristically motivated cut normalizations have also been proposed,
such as the min-max cut [6], the typical cut [7] and the BCut [8]. When the opti-
mization is carried out based on the eigendecomposition (spectrum) of a matrix, the
methods are referred to as graph spectral clustering methods. Graph spectral clus-
tering methods have been promising compared to traditional clustering methods.
Other examples of spectral clustering methods can be found in [9–16].

The main problems associated with graph spectral clustering methods are the fol-
lowing. An appropriate affinity measure (edge-weight) must be selected. Often, this
corresponds to selecting the width of an exponential kernel function. There is no
widely accepted procedure to select this parameter, even though it heavily affects
the clustering result. Furthermore, the (N × N) matrix K needs to be stored in
memory, and possibly other matrices too. In addition, a matrix eigendecomposition
needs to be done. The computational complexity of computing an eigenvector of a
(N ×N) matrix is in the order of O(N 2). Hence, finding all the eigenvectors scales
as O(N3). Also, it is a concern that the various graph spectral cost functions are
based on heuristics, and lack a clear theoretical foundation.

In this paper, we introduce a new theoretically well-defined graph cut for clus-
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tering, named the Information Cut. The Information Cut is basically a Parzen
window-based estimator for the information theoretic Cauchy-Schwarz divergence
measure between probability density functions. We are faced with the task of as-
sigining cluster memberships to the data points such that the Information Cut is
minimized. We propose a gradient-based optimization strategy, as opposed to an
eigenvector-based approach. There are several advantages to our approach. We are
able to select an appropriate affinity measure (kernel size) based on data-driven
rules for optimal Parzen window density estimation. Furthermore, there is no need
to store the affinity matrix in the computer memory. And also, using a stochastic
sampling approach to gradient estimation, our resulting clustering algorithm has a
relatively moderate computational complexity of O(MN), M � N , at each itera-
tion cyclus. Here, M is the number of stochastically selected samples to be used in
the computation. The main disadvantage of a gradient-based approach for optimiz-
ing non-convex cost functions is the problem of convergence to a local minimum of
the cost function landscape. We incorporate a strategy to reduce this shortcoming
by allowing the kernel size to be annealed over time. The annealing procedure comes
with the benefit that is may help cope with clusters of significantly different scales,
by discovering large-scale data structures in the early stages of the algorithm, fol-
lowed by a “fine-tuning” as the kernel size decreases. We show experimentally that
we obtain clustering results which are comparable or better than the state-of-the
art graph spectral methods.

Of course, clustering based on information theoretic ideas is not new. However,
the coupling between graph-based clustering methods, Parzen windowing and in-
formation theory which we present in this paper is new. Our novel algorithm is a
substantial improvement over a related algorithm proposed by Gockay and Principe
[17], based on Renyi’s entropy. Their clustering technique was based on calculating
the cost function for all clustering possibilities, hence impractical for anything but
very small data sets. Other information theoretic methods include Watanabe [18],
who used a coalescence model and a cohesion method to aggregate and shrink the
data into desired clusters. Rose et al. [19] employed the robustness properties of
maximum entropy inference for vector quantization, and Hofmann and Buhmann
[20] applied the same criterion for pairwise clustering. Roberts et al. [21] proposed
a clustering method based on minimizing the partition entropy. Recently, Tishby
and Slonim [22] proposed the information bottleneck method.

The remainder of this paper is organized as follows. In section 2, the theory behind
the Information Cut is derived. In section, 3, a gradient descent-based optimization
strategy is outlined. We present some clustering results in section 4. Finally, we
make our concluding remarks in section 5 2 .

2 The connection between information theory and graph theory was first mentioned
in [23]. A previous version of the proposed clustering algorithm was introduced by
Jenssen et al. in [24].
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2 The Information Cut

The Cauchy-Schwarz divergence is given by [25]

DCS(p1, p2) = − log

∫

p1(x)p2(x)dx
√

∫

p2
1(x)dx

∫

p2
2(x)dx

. (3)

This is a symmetric measure, such that 0 ≤ DCS < ∞, where the minimum is
obtained if and only if p1(x) = p2(x). Since the logarithm is a monotonic function,
we may just as well focus on the argument of this function. If the “distance” between
the densities is large, the argument of this function will be small. Let us estimate
this quantity by replacing the actual pdfs by their Parzen window estimators. Let
xi, i = 1, . . . , N1, be data points drawn from the density p1(x), and let xj , j =
1, . . . , N2, be data points drawn from p2(x). Then, the Parzen window estimators
for these distributions are [26]

p̂1(x) =
1

N1

N1
∑

i=1

Wσ(x,xi), (4)

p̂2(x) = 1

N2

∑N2

j=1 Wσ(x,xj), where W is the Parzen window, or kernel. The Parzen
window must integrate to one, and is typically chosen to be a zero mean pdf itself,
such as the spherical Gaussian kernel. In that case,

Wσ(x,xl) =
1

(2πσ2)
d

2

exp

{

−||x− xl||2
2σ2

}

, (5)

where xl is some data point in the data set. Notice that the assumption of Gaussian
Parzen windows is not critical for the following derivation, as shown in Appendix
A.

According to the convolution theorem for Gaussian functions, the following relation
holds

∫

Wσ(x,xl)Wσ(x,xl′)dx = W√
2σ(xl,xl′). (6)

In the remainder of this paper, we denote W√
2σ(xl,xl′) by kll′ . Thus, when we

replace the actual densities in the argument of (3) by the Parzen window estimators,
and utilize (6), we obtain

∫

p̂1(x)p̂2(x)dx =
1

N1N2

N1,N2
∑

i,j=1

∫

Wσ(x,xi)Wσ(x,xj)dx
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=
1

N1N2

N1,N2
∑

i,j=1

kij . (7)

Notice that this expression can be related to the graph-cut, by relating the data
samples to nodes in a graph. Hence, we relate the samples corresponding to p1(x)
with a graph G1, and the samples corresponding to p2(x) with a graph G2.

Now we perform an exactly similar calculation for the two quantities in the de-
nominator of (3), yielding

∫

p̂2
1(x)dx = 1

N2
1

∑N1,N1

i,i′=1
kii′ and likewise

∫

p̂2
2(x)dx =

1

N2
2

∑N2,N2

j,j′=1
kjj′. Based on these expressions, we define the new graph partitioning

cost function which we call the Information Cut (IC), as

IC(G1,G2) =

∑N1,N2

i,j=1
kij

√

∑N1,N1

i,i′=1
kii′

∑N2,N2

j,j′=1
kjj′

. (8)

In graph theory, a quantity known as the volume of a graph is given by the sum
of all the edge-weights in the graph. Hence, V ol(G1) =

∑N1,N1

i,i′=1
kii′ and V ol(G2) =

∑N2,N2

j,j′=1
kjj′. Therefore, the Information Cut may also be written as

IC(G1,G2) =
Cut(G1,G2)

√

V ol(G1)V ol(G2)
. (9)

In order for the Information Cut to take a small value, there is a trade-off between
a small cut -value, and a large value for the product of the volumes. Hence, our
derivation has introduced a theoretically well-defined normalization which will pre-
vent the Information Cut from obtaining a minimum when one node is isolated
from the rest. In the case of partitioning a graph into more than two subgraphs, i.e.
subgraphs Gc, c = 1, . . . , C, we define the following multi-way cut

IC(G1, . . . ,GC) =
Cut(G1, . . . ,GC)
√

∏C
c=1 V ol(Gc)

. (10)

where Cut(G1, . . . ,GC) is the sum of all the edge-weights that need to be removed
in order to create C subgraphs.

2.1 Kernel Size Selection Based on Parzen Windowing

In order to derive the Information Cut, we have explicitly used the Parzen window
technique for density estimation. In fact, the Parzen window defines the affinity
measure kll′ between two graph nodes l and l′, given by (6). Parzen kernel size
selection has been thoroughly studied in the statistics literature [27–29]. The optimal
kernel size may be selected in order to minimize the asymptotic mean integrated

5



squared error (AMISE) between p̂(x) and the target density p(x). A rough estimate
of the AMISE optimal kernel size for d-dimensional data is given by Silverman’s
rule [27]

σAMISE = σX

[

4

(2d + 1)N

]
1

d+4

, (11)

where σ2
X = d−1

∑

i ΣXii
, and ΣXii

are the diagonal elements of the sample covari-
ance matrix. There are also other more advanced approaches to kernel size selection.
We use Silverman’s rule in our algorithm as an initial value.

3 Clustering by Information Cut Minimization using the Method

of Lagrange Multipliers

The cluster membership vectors mi, i = 1, . . . , N , are defined as C dimensional
binary vectors. Only the c’th element of any mi equals one, meaning that data
pattern xi is assigned to cluster c (crisp cluster memberships). We rewrite (8) as a
function of the memberships, obtaining

IC(m1, . . . ,mN ) =

1

2

∑N,N
i,j=1

(

1 −mT
i mj

)

kij
√

∏C
c=1

∑N,N
i,j=1

micmjckij

. (12)

Our goal in clustering is to assign memberships such that IC(m1, . . . ,mN ) is min-
imized, because this corresponds to the Cauchy-Schwarz divergence between the
corresponding Parzen window estimated pdfs being maximized.

We propose to solve this minimization problem by the method of Lagrange multi-
pliers [30]. Hence, we need to fuzzyfy the membership vectors (each data point may
be assigned to several clusters at the same time), similarly to the fuzzy C-means
algorithm [31]. .

Let mi ∈ [0, 1]d, i = 1, . . . , N . Now we define the following constrained optimization
problem:

min
m1,...,mN

IC(m1, . . . ,mN ), (13)

subject to mT
j 1 − 1 = 0, j = 1, . . . , N , where 1 is a C-dimensional vector whose

elements are all one. Hence, a data pattern is allowed to have a certain degree of
membership to any cluster, but the constraint ensures that the sum of the member-
ships adds up to one.
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Now, we make a change of variables, and derive a fixed-point, gradient-based, learn-
ing rule for clustering. Let mic = v2

ic, c = 1, . . . , C. Consider

min
v1,...,vN

IC(v1, . . . ,vN ), (14)

subject to vT
j vj − 1 = 0, j = 1, . . . , N . The constraints in (14) are equivalent to

the constraints in (13). The optimization problem, (14), amounts to adapting the
vectors vi, i = 1, . . . , N , such that

∂IC

∂vi
=

(

∂IC

∂mi

T ∂mi

∂vi

)T

= Γ
∂IC

∂mi
→ 0, (15)

where Γ = diag(2
√

mi1, . . . , 2
√

miC). Notice that if all of the diagonal elements
2
√

mic, c = 1, . . . , C, are positive, ∂IC
∂vi

→ 0 implies that ∂IC
∂mi

→ 0. We force all
the elements of the membership vectors mi, i = 1, . . . , N, to always be positive, by
adding a small positive constant ε (e.g. ε ∼ 0.05) to all the elements during each
membership update. See Appendix B for the derivation of ∂IC

∂mi
.

The necessary conditions that the solution of (14) must obey, are commonly gener-
ated by constructing the Lagrange function [30], given by

L = IC(v1, . . . ,vN ) +
N
∑

j=1

λj

(

v
T
j vj − 1

)

, (16)

where λj, j = 1, . . . , N , are the Lagrange multipliers. The necessary conditions for
the extremum of L, which also corresponds to the solution of the original problem,
(14), are given by

∂L

∂vi
=

∂IC

∂vi
+

N
∑

k=1

λk

∂

∂vi

(

v
T
k vk − 1

)

= 0, (17)

∂L

∂λj
=v

T
j vj − 1 = 0, (18)

for i = 1, . . . , N and j = 1, . . . , N . From (17) we derive the following fixed-point
adaption rule for the vector vi as follows

∂IC

∂vi

+ 2λivi = 0 ⇒ v
+

i = − 1

2λi

∂IC

∂vi

, (19)

i = 1, . . . , N , and where v
+

i denotes the updated vector.

We solve for the Lagrange multipliers, λi, i = 1, . . . , N , by evaluating the constraints
given by (18) as follows
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v
+T
i v

+

i − 1 = 0,

⇒
(

− 1

2λi

∂IC

∂vi

)T (

− 1

2λi

∂IC

∂vi

)

− 1 = 0,

⇒ λi =
1

2

√

∂IC

∂vi

T ∂IC

∂vi

. (20)

After convergence of the algorithm, or after a predetermined number of iterations,
we designate the maximum value of the elements of each membership vector mi, i =
1, . . . , N , to one, and the rest to zero.

Notice that the gradient-based optimization technique we have derived does not need
for the affinity matrix to be pre-computed and stored in the computer memory.

3.1 Membership Initialization

We initialize the membership vectors randomly according to a uniform distribution.
Better initialization schemes may be derived, although in our experiments, this ran-
dom initialization yields good results. One may also use the output of a different
clustering algorithm, such as C-means [32], as the initial cluster memberships. How-
ever, this may initialize the algorithm in a local minima, and we have observed that
it does not always perform well.

3.2 Kernel Size Annealing

We show experimentally that in our algorithm the convergence problem can to a
certain degree be remedied, by allowing the size of the kernel to be annealed over
an interval of values around the optimal value. The effect of using a “large” kernel
size in the Parzen estimator, is that the pdf estimate will be an over-smoothed
version of the actual pdf. Hence, the Information Cut using a “large” kernel is
likely to be a smooth function of the memberships, as opposed to using a “small”
kernel. The approach taken, is to let the algorithm iterate toward the minimum
of the over-smoothed cost function, while continuously decreasing the kernel size,
hence leading the algorithm toward the actual global minimum. As opposed to most
graph-based clustering algorithms, the annealing procedure therefore has the effect
that the affinity measure will not be fixed, but will start out large, and decrease
towards a small value.

3.3 Reducing Complexity

The computation of all the gradients ∂IC
∂mi

, i = 1, . . . , N , is an O(N 2) procedure at
each iteration. Thus, it is important to reduce the complexity of the algorithm. The
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expression for the gradient ∂IC
∂mi

is derived in Appendix B. Note that we can calculate
all quantities of interest in (24), by determining (25), for ∀i. To reduce complexity,
we estimate (25) by stochastically sampling the membership space, and utilize M
randomly selected membership vectors, and corresponding data points, to compute
−∑M

m=1 mmkim as an approximation to (25). Hence, the overall complexity of the
algorithm is reduced to O(MN) for each iteration. We will show that we obtain
very good clustering results, even for very small M , e.g. M = 0.2N .

4 Clustering Experiments

In this section we report some clustering experiments using the proposed Informa-
tion Cut clustering method. In all experiments, we determine the Information Cut
scale parameter using (11), and the number of stochastically selected membership
vectors for gradient computation is determined by M = 0.2N .

We compare with the Normalized Cut algorithm [5], which is considered by many
authors to be a state-of-the-art graph-based clustering method. In [5], the Normal-
ized Cut scale parameter was recommended to be in the order of 10 − 20% of the
total range of the Euclidean distances between the feature vectors. We use 15% in
our experiments 3 .

We manually select the number of clusters to be discovered. This is of course a
shortcoming compared to a fully automatic clustering procedure, but it is commonly
the case in most graph-based clustering algorithms.

We also normalize the variance in each feature vector dimension to one in all exper-
iments (for both algorithms) to avoid problems in case the data scales are signifi-
cantly different for each feature. We do this since both methods assume a spherical
affinity measure.

4.1 Demonstrating the Annealing Property

Figure 1 (a) shows a two-dimensional data set consisting of 550 data points. We
provide the number of clusters, C = 4, as an input parameter to both algorithms.
The Parzen window size used in the Information Cut algorithm is determined to
be σ = 0.12 by (11). This means that the effective kernel size used to calculate
affinities between data points (nodes) is equal to σ̃ =

√
2σ = 0.17 by (6). Figure

1 (b) shows a typical result obtained by the Information Cut algorithm. By visual
inspection, it clearly makes sense, meaning that the cluster structure underlying
the data set seems to have been discovered. Figure 1 (c) shows a typical result
obtained by the Normalized Cut algorithm. It is significantly different from the

3 The Matlab code we use is downloaded from Jianbo Shi’s web-page
http://www.cis.upenn.edu/∼jshi/GraphTutorial/.
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(a) Two-dimensional data set (b) Information Cut

(c) Normalized Cut

Fig. 1. Original data set shown in (a). Typical (70% of the trials) Information Cut
clustering result shown in (b). Typical Normalized Cut clustering result shown in
(c).

results obtained by the Information Cut algorithm, and seems to fail to discover
the cluster structure. For this particular data set, the scale parameter used in the
Normalized Cut algorithm is determined to be σNC = 0.18. This means that the
edge-weights (affinities) between nodes are roughly the same for both methods.
Hence, the significantly different clustering results observed must be a consequence
of 1) different clustering cost functions, 2) different optimization techniques, or both.

In the experiment, we had the Information Cut algorithm iterate over 200 iterations.
Using a fixed kernel size σ = 0.12, the result shown in Fig. 1 (b) was obtained in 70%
of the 50 clustering trials. In the remaining trials, the algorithm did not converge to
a reasonable solution, but rather a solution like the one obtained by the Normalized
Cut algorithm. This illustrates the problem of using gradient descent to optimize
non-convex cost functions, i.e. convergence to a local minimum. Figure 2 (a) shows a
plot where we monitor the value of the Information Cut over the 200 iterations. The
plot shows that in many cases (70%) the algorithm converges quickly (oftentimes
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(a) Kernel fixed
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(b) Kernel annealed

Fig. 2. (a) Using a fixed kernel size, the algorithm does not always converge to the
global optimum. The algorithm does not produce satisfying results in 30% of the
trials in this case. (b) By annealing the kernel size, the algorithm converges in all
trials.

in less than 20 iterations) to a low value. These trials correspond to the clustering
result shown in Fig. 1 (b). But sometimes, the algorithm converges to a high value.

Figure 2 (b) shows the value of the Information Cut over 50 clustering trials, where
the algorithm operates in annealing mode. This means that the kernel size initially
has a relatively large value, which is decreased with each iteration. In this particular
experiment we anneal the kernel size linearly from a starting value given by σstart =
2σ to a final value given by σstop = 0.5σ over 200 iterations. In this case, the
algorithm always converges to a low value for the Information Cut, corresponding
to the clustering result shown in Fig. 1 (b). Hence, the global minimum is obtained in
every single trial. The drawback is of course that several free parameters now must
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Fig. 3. Clustering result (error percentage compared to the result shown in Fig. 1
(b)) obtained by the Information Cut algorithm over a range of kernel sizes. The
“optimal” kernel size, σ = 0.12 by (11), lies in the middle of the range corresponding
to a low error percentage.

be chosen. Recall that the Information Cut algorithm in fixed kernel mode has no
free parameters for the user to choose (except the number of clusters). In annealing
mode, the annealing scheme must be chosen. Hence, an upper limit for the kernel
size must be selected, a lower limit, and the decay rate. If these parameters are not
chosen wisely, it may be that the algorithm does not always converge to the global
minimum. In general, though, we may expect that the probability of convergence to
a local minimum is decreased by incorporating kernel annealing in the Information
Cut algorithm.

Experimentally, we have observed that σstart = 2σ and σstop = 0.5σ, with a step size
∆σ = (σstart − σstop)/200, seem to be a robust choice. In practice, the algorithm
should be executed a few times, and then the clustering result corresponding to
the lowest Information Cut value should be chosen. We also propose to stop the
algorithm when the change in the cost function from one iteration to the next is
negligible. For example, one may stop the algorithm when the change in the cost
function is less than one percent from one iteration to the next.

In the next experiment, we wish to illustrate the effect of the Parzen window size
on the clustering results, still using the data set shown in Figure 1 (a). Recall that
by (11), σ = 0.12 for this data set. Figure 3 shows the error percentage using
the Information Cut algorithm for a range of kernel sizes. Here, we have used the
clustering result shown in Fig. 1 (b) as the “ground truth.” The plot is created by
running the algorithm three times for each kernel size, and then picking the best
of these trials based on the value of the Information Cut (operating in fixed kernel
mode). For σ < 0.05, the error percentage is very high. In the range 0.11 < σ < 0.16
the error percentage is very low, before it rises again. Note that the kernel size
determined by (11) is in the middle of this range. In the range σ > 0.25, the
error percentage is very high again. On average, the algorithm stops after about 25
iterations.
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(b) Information Cut

Fig. 4. Clustering of data set with different cluster data scales.

4.2 Non-Linear Clusters with Different Data Scales

The annealing procedure comes with a positive side-effect when it comes to coping
with clusters of significantly different data scales. In Fig. 4 (a), we show the result
obtained by the Normalized Cut algorithm on a data set consisting of three clusters
of different data scales. The Normalized Cut algorithm uses a fixed kernel size to
determine node affinites, and the clustering result clearly suffers from this property.
In fact, the Normalized Cut algorithm did not obtain satisfying results, even when
manually tuning the kernel size. The result obtained by the Information Cut algo-
rithm in annealing mode is shown in Fig. 4 (b). The three clusters have all been
revealed, even though they have significantly different scales, and are separated by
highly non-linear cluster boundaries.
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4.3 Pendigits Data Set

This data set was created for pen-based handwritten digit recognition, and is ex-
tracted from the UCI repository [33]. The data set is 16-dimensional. All attributes
are integers in the range [0, 100]. From the test data, we extract the data vectors
corresponding to the digits 0, 1 and 2. These classes consist of 363, 364 and 364
data patterns, respectively. We specify C = 3 as an input parameter to the algo-
rithm. The clustering results are compared to the known data labels (unknown to
the algorithm). The Normalized Cut algorithm obtaines 73.4% correct clustering
on this data set. The Information Cut kernel size is automatically determined to
be σ = 0.63. Operating in annealing mode, using M = 0.2N samples for stochastic
approximation, the Information Cut algorithm obtaines 84.4% correct clustering. A
clear improvement compared to the Normalized Cut method.

One this data set, we investigate more closely the effect of the stochastic sampling
approach. The following table shows the Information Cut result (best out of five
trials) obtained for a range of M .

M 0.1N 0.2N 0.3N 0.4N 0.5N

% 83.5 84.4 84.7 85.3 84.1

M 0.6N 0.7N 0.8N 0.9N 1N

% 84.5 83.8 84.7 85.3 85.0

(21)

We conclude that the stochastic sampling approach is very effective in terms of
computational complexity, at virtually no cost in performance.

4.4 Wine Data Set

The wine data set, extracted from the UCI repository, is a well-known benchmark
data set. It consists of 178 instances. Each instance has 13 attributes corresponding
to chemical properties of three types of wine. The classes consist of 71, 59 and
48 data points, respectively. The normalized cut algorithm performs very well on
this data set, obtaining 96.6% correct clustering. The Information Cut algorithm
performs consistently equally good or better, obtaining 97.2% correct clustering,
operating in annealing mode, with M = 0.2N .

4.5 Baseball Player Image

In the following, we perform three image segmentation experiments. The Normal-
ized Cut algorithm was presented as an image segmentation method in [5]. We
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perform these experiments to show that the Information Cut algorithm may obtain
comparable results also using images.

The (147 × 221) grayscale baseball player image is shown in Fig. 5 (a). It has
previously been used to demonstrate the Normalized Cut algorithm in [5]. For each
pixel location, we generate three features. One feature is the pixel intensity, and
the other two features consist of the pixel location in the two-dimensional plane.
There are thus a total of 32487 feature vectors. This is a huge data set. On a
Pentium III 1GHz, 512 MBRAM computer, we did not have the capacity even to
create the affinity matrix. In fact, in order to be able to execute the Normalized Cut
algorithm, we had to randomly select only 1/8 of the pixels to use in the clustering,
the rest is classified relative to the clustered feature vectors according to a nearest
neighbor rule. To make the algorithms comparable, we used the same subset for
the Information Cut algorithm. For the remaining image segmentation experiment,
we also ranomly select a subset of the pixels for clustering, and classify the rest
accordingly.

Figure 5 (b) show the result obtained by the Information Cut algorithm when par-
titioning the image into nine segments. Figure 5 (c) show the result obtained by the
Normalized Cut algorithm for nine segments. Both methods perform a reasonable
segmentation. Some differences are also observed.

4.6 Northern-Norwegian Boat Image

Figure 6 (a) shows the grayscale version of a (246 × 246) color image of an old
traditional-style northern-norwegian boat. In this case, the feature vectors are five-
dimensional, i.e. consisting of the rgb-values and the pixel coordinates. Figure 6
(b) and (c) shows a segmentation into nine parts, using the Information Cut and
Normalized Cut algorithm, respectively. The results obtained by the two methods
differ in this case. Especially when it comes to the ocean surface, it may seem as
if the Information Cut algorithm is more sensitive to the inclusion of the pixel
coordinates in the feature vectors. The Normalized Cut algorithm produces some
very small clusters which are almost invisible in the segmentation.

4.7 Texture Segmentation

Figure 7 (a) shows a (256× 256) textured image. It consists of five distinct regions,
each with specific characteristics. We use the method proposed by Jain and Far-
rokhnia [34] to produce feature vectors corresponding to pixel locations. Basically,
the input image is filtered through a bank of 20 dyadic Gabor filters, producing a
20-dimensional data set. The filtered images will have large energy in regions having
a texture characteristic “tuned” to a certain filter.

The result obtained by the Information Cut algorithm is shown in Fig. 7 (b). The
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(a) Original (147 × 221) (b) Information Cut, 9 segments

(c) Normalized Cut, 9 segments

Fig. 5. Segmentation of the baseball player image.

five segments clearly correspond to the different textured regions in the input image,
with some inaccuracies on the texture boundaries (texture boundaries indicated by
the white lines). The Information Cut misclassifies 3.0% of the pixels. The result
obtained by the Normalized Cut algorithm is shown in Fig. 7 (c). It also obtaines a
reasonable result, but not as good as the Information Cut. It misclassifies 5.1% of
the pixels.

5 Conclusions

We have derived an interesting connection between a particular information the-
oretic divergence measure, namely the Cauchy-Schwarz divergence, and the graph
theoretic cut. The key component in this derivation is the Parzen window technique
for probability density estimation. The new graph theoretic cost function, named
the Information Cut, provides a theoretically well-founded normalization to the tra-
ditional cut -cost. This connection between information theory and graph theory can
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(a) Original (246 × 246) (b) Information Cut, 9 segments

(c) Normalized Cut, 9 segments

Fig. 6. Segmentation of old traditional-style northern-norwegian boat image.

not be obtained for other divergence measures, such as the Kullback-Leibler, or the
Chernoff divergences.

A new algorithm for clustering and image segmentation based on minimizing the
Information Cut with respect to cluster membership variables has been derived. It
has been shown that the resulting algorithm may perform comparable or better than
the state-of-the art graph-based method, namely the Normalized Cut technique.
Moreover, we have argued that our optimization approach has benefits with respect
to computational complexity and memory requirements. We have shown that our
strategy for dealing with the problem of convergence to a local minimum, namely
kernel annealing, may also have the positive side-effect that we are better able to
handle different cluster data scales.

Importantly, in this paper, two domains of research has been coupled, i.e. graph-
based clustering and non-parametric density estimation in terms of Parzen win-
dowing. Consequently, it was observed that the Parzen window width directly de-
termines the affinity measure used to calculate edge-weights in the graph. It is
well-known that it is crucial for any graph-based method to determine this pa-
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(a) Original (256 × 256) (b) Information Cut, 5 segments

(c) Normalized Cut, 5 segments

Fig. 7. Segmentation of a textured image consisting of five distinct regions.

rameter appropriately, but few data-driven methods exist. We used the simplest
approach for data-driven kernel size selection, namely Silverman’s rule. However,
more advanced techniques can easily be incorporated. Hence, we may study the
statistics literature in non-parametric density estimation, in order to gain new tools
for computing edge-weights in the graph. In future work we will investigate whether
local and anisotropic Parzen windows used to calculate graph affinities may further
improve the clustering and image segmentation results. Another possibility is to use
the k nearest neighbors density estimation technique. We will also investigate the
use of the fast Gauss transform [35] to speed up the Parzen window density esti-
mation, and hence speed up the clustering algorithm. Another issue which should
be studied is the annealing scheme. It may be possible to connect the annealing
parameter to the local curvature of the cost function at each iteration step, thus
making the annealing scheme user independent.
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Appendix

A.

Eq. (3) can be rewritten as

DCS = − log
Ep1

{p2(x)}
√

Ep1
{p1(x)}Ep2

{p2(x)}
, (22)

where Ep{·} denotes the expectation operator with respect to the density p. Using
the sample mean to estimate the expectations, we obtain Ep1

{p2(x)} ≈ 1

N1

∑N1

i=1
p2(xi)

= 1

N1

∑N1

i=1
1

N2

∑N2

j=1
W (xi,xj) = 1

N1N2

∑N1,N2

i,j=1
W (xi,xj), where W is some (non-

Gaussian) Parzen window. In a similar manner, Ep1
{p1(x)} ≈ 1

N1N1

∑N1,N1

i,i′=1
W (xi,xi′)

and Ep2
{p2(x)} ≈ 1

N2N2

∑N2,N2

j,j′=1
W (xj ,xj′), such that we obtain

IC(G1,G2) =

∑N1,N2

i,j=1
kij

√

∑N1,N1

i,i′=1
kii′

∑N2,N2

j,j′=1
kjj′

, (23)

where we have defined W (xl,xl′) = kll′ .

B.

Let IC = U
V

, where U = 1

2

∑N,N
i,j=1

(

1 −mT
i mj

)

kij, V =
√

∏C
c=1 vc and vc =

∑N,N
i,j=1 micmjckij. Hence

∂IC

∂mi
=

V ∂U
∂mi

− U ∂V
∂mi

V 2
(24)

∂U

∂mi

=−
N
∑

j=1

mjkij , (25)
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∂V

∂mi
=

1

2

C
∑

c′=1

√

√

√

√

√

∏C
c6=c′

c=1

vc

vc′

∂vc′

∂mi
, (26)

where
∂v

c′

∂mi
=
[

0 . . . 2
∑N

j=1 mjc′kij . . . 0
]T

. Thus, only element number c′ of this
vector is nonzero.
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