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Abstract

In this paper, a multiple discrete quasi-sliding mode (QSM) control scheme is proposed for a general class of nonlinear discrete time

systems with unknown dynamical equations, provided that input–output data is available for system identification. The self-organizing

map (SOM) is employed to divide the state space into local regions such that it associates the operating region where a local linear model

is the winner with a local quasi-sliding mode controller (QSMC). Switching of the controllers is done synchronously with the active local

linear model that tracks the different operating conditions. The simulation results show that the proposed controller outperforms

tracking the desired trajectory in noisy environments either with a global controller or simpler controllers based on multiple models.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The identification of unknown nonlinear dynamical
systems has received considerable attention in recent years
since it is an indispensable step towards controller design
for nonlinear systems [27]. Specifically, the concept of
multiple models with switching has been an area of interest
in control theory in order to simplify both the modeling
and the controller design [22,26]. Local modeling derives a
model based on neighboring samples in the operating
space. If a function f to be modeled is complicated, there is
no guarantee that any given global representation will
approximate f equally well across all space. In this case, the
dependence on representation can be reduced using local
approximation where the domain of f is divided into local
regions and a separate model is used for each region
[8,17,38,42].

In a number of local modeling applications, a self-
organizing map (SOM) has been utilized to divide the
operating regions into local regions [31,32,42]. The SOM is
e front matter r 2006 Elsevier B.V. All rights reserved.
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particularly appropriate for switching, because it converts
complex, nonlinear statistical relationships of high-dimen-
sional data into simple geometric relationships that
preserve the topology in the feature space [18]. Thus the
role of the SOM is to discover patterns in the high-
dimensional state space and divide it into a set of regions
represented by the weights of each processing element (PE).
Under some mild conditions, it has been shown that
multiple models can uniformly approximate any system on
a closed subset of the state space provided a sufficient
number of local models are given [38,42]. Generally,
control using multiple models is categorized in two
approaches: global model-based control using local models
and multiple model-based control with switching.
Global controller design with the aid of multiple models

has been extensively reported in the literature [9,14,21,34,36].
Gain scheduling has been perhaps the most common
systematic approach to control nonlinear systems in practice
due to simple design and tuning [28,33,37,43]. The multiple
model adaptive control approach differs from gain schedul-
ing mainly by the use of an estimator-based scheduling
algorithm used to weight the local controllers. Murray-Smith
and Hunt [21] utilized an extended RBF network where each
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1In most cases, we need to estimate the unknown parameters,

unmodeled dynamics and bounded disturbances. Also, it should be noted

that the SMC scheme works best when the plant is completely known.
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local model is a linear function of the input and they
reported great success for control problems. The overall
controller is designed based on the local models and a
validity function to guarantee smooth interpolation.
Similarly, Foss et al. [9] and Gawthrop and Ronco [14]
employed model predictive controllers and self-tuning
predictive controllers, respectively, using multiple models.
Palizban et al. [29] attempted to control nonlinear systems
with the linear quadratic optimal control technique using
multiple-linear models and provided the stability condition
for the closed loop system. Ishigame et al. [16] proposed the
sliding mode control scheme based on fuzzy modeling
composing a weighted average of linear systems to stabilize
an electric power system.

In contrast, Narendra et al. [26] proposed the multiple
model approach in the context of adaptive control with
switching where local model performance indices have been
used to select the local controller. Subsequently, Narendra
and Balakrishnan [23] proposed different switching and
tuning schemes for adaptive control that combines fixed
and adaptive models yielding a fast and accurate response.
Principe et al. [32] proposed a SOM-based local linear
modeling strategy and predictive multiple model switching
controller to control a wind tunnel and showed improved
performance with decreased control effort over both the
existing controller and an expert human-in-the-loop con-
trol. Later Narendra and Xiang [25] proved that the
adaptive control using multiple models is globally stable
and that the tracking error converges to zero in the
deterministic case. Diao and Passino [7] applied multiple
model-based adaptive schemes to the fault tolerant
engine control problem. A linear robust adaptive controller
and multiple nonlinear neural network-based adaptive
controllers were exploited by Chen and Narendra [4].
Thampi et al. [40,41] have also shown the applicability
of the multiple model approach based on the SOM for
flight control.

The control of nonlinear systems considered in this
paper has been an important research topic and many
approaches have been proposed. While classical control
techniques have produced many highly reliable and
effective control systems, great attention has been devoted
to the design of variable structure control systems (VSCS).
Variable structure systems (VSS) are a special class of
nonlinear systems characterized by a discontinuous control
action, which changes structure upon reaching a set of
switching hyperplanes. During the sliding mode, the VSCS
has invariance properties, yielding motion that is remark-
ably good in rejecting certain disturbances and parameter
variations [10,20,35,39].

However, sliding mode control systems (SMCS) that
were originally conceived for continuous-time systems may
not perform well—or may even lead the system to
instability—when direct digital implementation is at-
tempted. Thus, many researchers have either addressed
the limitations when direct implementation is done or have
proposed designs that take the sampling process into
account. Milosavljevic [20] was among the first researchers
to formally state that the sampling process limits the
existence of a true sliding mode. In light of this, definitions
of quasi-sliding mode (QSM) have been suggested and the
conditions for the existence of such modes have been
investigated. Sarpturk et al. [35] specifically addressed the
stability issue and gave necessary and sufficient conver-
gence and sliding conditions. Discrete sliding mode
tracking controller based on an input–output model in
the presence of modeling uncertainty and disturbances
have been considered earlier [3,5,11,19,30]. Furuta [11]
designed a discrete VSS type self-tuning controller using an
adaptive parameter estimator where the control input
included a linear feedback term and a switching term with
the equivalent control region. Lee and Oh [19] suggested a
modified discrete VSS type self-tuning controller and
improved the stability of the controller by modifying the
sector with separate gains and the equivalent control
algorithm. Recently, Chen et al. [5] proposed a discrete
robust adaptive QSM tracking controller for the input–
output system without knowing the upper and lower
bounds of the unknown parameters, which overcome the
unpractical assumptions of [11,19] since the bounds of the
unknown parameters can hardly ever be known in practice.
On the other hand, Gao et al. [12] presented an algorithm
that drives the system state to the vicinity of a switching
hyperplane in the state space, rather than to a sector of a
different shape [11]. They specified desired properties of the
controlled systems and proposed a reaching law-based
approach for designing the discrete-time sliding mode
control law. Later, modified quasi-sliding mode control
(QSMC) strategy with a reaching law approach was
proposed by Bartoszewicz [1] to guarantee better robust-
ness and improved performance.
Most of the VSCS proposed in the literature have been

developed mainly based on the state-space model with the
assumption that all state variables are measurable or on the
input–output model for a linear system. But in some
control problems, we are allowed to access only the input
and the output of the nonlinear plant. In this case, an
observer could be used to estimate the unmeasurable state
variables if the state equations are known. Otherwise, this
is not possible. This is where the multiple model-based
control framework can be very attractive for nonlinear
control problems since it is capable of not only utilizing
this robust control technique for nonlinear systems but also
applying it for unknown systems. Thus, it is the purpose of
this work to provide a new technique to design a sliding
mode control law for unknown discrete-time nonlinear
systems so that the amount of guesswork1 is reduced, while
attainable performance is increased. In this way, one of the
difficulties in designing a SMC (that requires the complete
knowledge of the plant to be controlled) can be removed as
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well as the problems that arise due to the uncertainties of
the plant model and measurement noise can be alleviated
by incorporating the robustness provided by the sliding
mode technique into the multiple modeling approach. In
addition, we examined the effect by the modeling error due
to the quantization of state space as well as by measure-
ment noise to the proposed multiple model-based sliding
mode control performance. It is shown that the switching
scheme does not create an issue to be considered in order to
guarantee BIBO stability of the overall system.

Simulation results using the proposed strategy for
identification and control of nonlinear systems are
presented to demonstrate the versatility of the algorithm.
Results show that the switching linear models are a
promising alternative for system identification when
compared with a single global model. The overall system
with the controller tracks the desired trajectory very well.
Additionally, it offers excellent robustness under noise
condition during the control process when compared
with a global nonlinear controller and other multiple
controller approaches.

2. Multiple model-based system identification

The idea of multiple modeling is to approximate a
nonlinear system with a set of relatively simple local models
valid in certain operating regions, such that the dynamic
space is decomposed in the appropriate switching among
very simple linear models. Multiple models are very
appealing for modeling complex nonlinear systems due to
the intrinsic simplicity, since we often cannot derive
appropriate models from first principles, and are not
capable of deriving accurate and complete equations for
input–state–output representations of the systems [8,22,38].
Moreover, when such physical knowledge of the system is
not available, models have to determine from a finite
number of measurements of the system’s inputs and
outputs. Hence here we will consider deriving multiple
models for the unknown nonlinear system-based solely on
input–output data.

Under the observability assumption, a discrete-time
nonlinear dynamic system, f, can be described by a Non-
linear Auto-Regressive with eXogenous input (NARX)
model that is an extension of the linear ARX model, and
represents the system by a nonlinear mapping of past
inputs and output terms to future outputs, that is

yk ¼ f ðyk�1; � � � ; yk�m; uk�1; � � � ; uk�nÞ. (1)

Here yk 2 Y � <p is the output vector and uk 2 U � <q is
the input vector. For simplicity, we will set p ¼ q ¼ 1. Let
the ðmþ nÞ-dimensional basis vector be

ck ¼ ½c
y
k;c

u
k� ¼ ½yk�1; � � � ; yk�m; uk�1; � � � ; uk�n�, (2)

where ck is in the set C ¼ Y m �Un. If the nonlinear
function f( � ) is invertible with respect to the input uk, then
a controller may be constructed by training an inverse
neural network. Unfortunately, most nonlinear functions
are not invertible, so the application of this approach is
limited. Also, when the environment of a system changes
abruptly, the original model (and hence the controller) is
no longer valid. In order to solve these difficulties, it is
tempting to use a methodology that decomposes the overall
modeling problem into a set of simpler local modeling
problems, each for a different operating region. On the
other hand, creating a set of models using the embedded
input–output vectors in Eq. (2) may cause serious problem
in the presence of large noise or outliers since the wrong
predictive model due to noise may cause poor control.
Hence, the selection of the right model is as important as
creating models and designing controllers.

2.1. Determining the operating region

For the quantization of state space, a SOM is employed,
since it has the characteristic of being a local framework
that is able to limit the interference phenomenon and to
preserve the topology of the data using neighborhood links
between its PEs. It provides a codebook representation of
the plant dynamics and organizes the different dynamic
regions in topological neighborhoods. Thus we can create a
set of models that are local to the data in the Voronoi
tessellation created by the SOM. As the number of
dependent variables is increased, the process becomes
increasingly difficult to model accurately. Therefore models
that use only a few of the observed variables may be more
accurate than a model that uses all the observed variables.
In the proposed scheme, we let the SOM represent only the
current output and its past values to decide the winner that
represents the operating region, and create the models with
the control inputs as shown in Fig. 1 [6].
The SOM is trained to position the local models in the

embedded output space. Let cy
k ¼ ½yk�1; � � � ; yk�m� denote

the input vector for the SOM and wi, k denote the weight
vector of PE i. With each vector, cy

k, presented as the input
to the network, the Kohonen learning algorithm [18]
adaptively discretizes the continuous input space into a set
of N disjoint Voronoi cells. The response of a SOM to
input cy

k is determined by the reference vector wio of the PE
that produces the best match to the input:

io ¼ arg min
i
jcy

k � wi;kj
� �

. (3)



ARTICLE IN PRESS
J. Cho et al. / Neurocomputing 70 (2007) 960–974 963
Then the kth adaptation of the weights is done as
follows:

wi;kþ1 ¼ wi;k þ ZkLi;kðc
y
k � wi;kÞ; i ¼ io, (4)

where Zk is the learning rate and Li, k is a neighborhood
function. A typical choice for Li, k is Li;k ¼ expð�jjri �

rio jj2=2s2kÞ; where rio and ri designate the position of the
winning PE and the PE i on the output lattice space,
respectively, and sk is a time decaying parameter which
controls the effective adaptation coverage of Li, k. Each
new feature vector presented to the network will trigger a
response that is the average for those feature vectors closest
to it in the input data space.

2.2. Local linear modeling

After the operating regions are divided by the SOM the
underlying dynamics f in Eq. (1) is then approximated as

f � [
N

i¼1
fi, (5)

where N is the number of operating regions. Provided that
necessary smoothness conditions on f i : C! Y are
satisfied, a Taylor series expansion can be used around
the operating point [38,42]. The first-order approximation
about the system’s each operating point produces N local
predictive ARX models f 1; � � � ; f N of the plant are
described by

f iðckÞ �
Xm

j¼1

ai;jyk�j þ
Xn

j¼1

bi;juk�j ; i ¼ 1; � � � ;N, (6)

where ai, j and bi, j are the parameters of the ith model. The
parameters of each model is then obtained by directly
fitting the embedded output samples and corresponding
embedded control input samples in a least-square sense.

Each PE has an associated local model f~ai; ~big in Eq. (6)
that represents the approximation of the local dynamics.
The local model weights f~ai; ~big are computed directly from
the desired signal samples di, j and the input–output
samples by a least-square fit within a Voronoi region
centered at the current winning PE chosen from cy

k. The
size of the data samples in the region must be at least equal
to the (m+n)-dimensional basis vector. The design
procedure for this local model is as follows:
(1)
 Apply training data to the SOM and find the winning
PE corresponding to the input cy

k such that we have
winner–input pairs.
(2)
 Use the least-square fit to find the local linear model
coefficients for the winning PE, io, where desired output
vector dio;j 2 <

M as

dio;j ¼ ~aT
io
~b

T

io

h i cy
io;j

cu
io;j

" #
for 8j 2M, (7)

where ~y ¼ ½~aT
io
~b

T

io � is the sought linear model coeffi-
cients, M is the size of data involved in the winning PE
io. Specifically, the least-squares problem

Y ¼~yX (8)

is solved for ~y, where X 2 <ðmþnÞ�M is defined as a
matrix that contains each input vector associated with
the winning PE, and Y 2 <M is defined as a vector that
contains the target outputs.
(3)
 In testing, once the winning PE is determined the
corresponding local model is chosen from the list of
associated models. Apply the local model to obtain the
estimated output

~yk ¼ ~a
T
i�c

y
k þ

~biocu
k. (9)
Our proposed modeling methodology is summarized as
follows: first, the delayed version of input–output joint
space is decomposed into a set of operating regions that are
assumed to cover the full operating space. Next, for each
operating region we choose a simple linear ARX model to
capture the dynamics of the region. Consequently, a
nonlinear nonautonomous system is approximated by a
concatenation of local linear models.
We developed a set of local linear models for the plant

and switch them according to the measured output history.
Thus, once the right local linear model is determined, the
corresponding sliding mode controller can be designed
easily by choosing an appropriate coefficients vector of the
switching surface.

3. Discrete-time QSMC for local linear models

Once we identify the plant using multiple models, it is
necessary to associate these models with corresponding
controllers. In doing so, controllers can be designed a priori
corresponding to each of the local models. In addition, if
the nonlinear system can be adequately described by a
linear model within a sufficiently small neighborhood of an
operating point, the corresponding controller is easily
designed through the linearized plant [22,26].

3.1. Structure of the controllers

As stated before, our principal objective is to determine a
control input, uk, which will result in the output, yk+1, of
the plant to track, with sufficient accuracy, a specified
sequence, dk+1. The system identification block has N

predictive models, denoted by ff ig
N
i¼1, in parallel. Corre-

sponding to each model fi, a controller Ci is designed such
that Ci achieves the control objective for fi. Therefore, at
every instant one of the models is selected and the
corresponding controller is used to control the actual
plant. The number of controllers is determined by only the
number of models since the control performance is very
dependent upon how well the models are built. As the
number of models is increased the models become
increasingly accurate to represent the dynamics of the
system. Very small modeling errors by large number of
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models definitely help one to build possibly a perfect set of
controllers.

As a result, the set of local linear models simplifies the
control design for a nonlinear plant. Instead of a global
neuro-controller as in other adaptive control schemes [24],
here a group of linear controllers associated with each
identified model is sufficient to take care of the system over
the whole operating region. In our proposed architecture,
once the current operating region is determined by the
SOM the associated controller is triggered so that the plant
tracks the desired signal shown in Fig. 2. Consequently, the
proposed control system can reach the set point fast, and
even if the controller corresponding to a neighboring local
model is used (due to selection errors), since nearby models
are ‘similar’ there is an extra flexibility to match the set
point with small error.

3.1. Control law for discrete-time QSMC

We adopted the reaching law approach proposed by Gao
et al. [12] to the design of a set of local controllers which
are ‘‘switched’’ as the system changes operating conditions.
And we extended it such that the control input at each
sampling instance is obtained by the local model selected
by the SOM while the switching surface is kept the same.
Also, their formulation was extended for input–output
models as well as for the trajectory tracking problem.

Now we discuss the design of the control law for local
linear models using the QSM control framework, where the
system states move in a neighborhood around the sliding
surface sk ¼ 0. The central advantage of the sliding mode
control strategy is that it is an effective robust control strategy
for incompletely modeled or uncertain systems. Thus, the
feature of the proposed control scheme is that the robustness
for disturbances can be obtained by the simple control logic
based on the linear model for each region. Another feature of
the strategy is that it guarantees convergence of the system
output to a vicinity of the predetermined, fixed plane in finite
time, specified a priori by the designer.

Consider one of the local single input–output models fi

of the plant f described by (6)

ykþ1 ¼ a1yk þ a2yk�1 þ � � � þ amyk�mþ1 þ b1uk þ b2uk�1

þ � � � þ bnuk�nþ1. ð10Þ
Equivalently, the input–output model of the plant in
Eq. (10) can be written as the state-space model2

~xkþ1 ¼ F~xk þ L1uk þ L2uk�1 þ � � � þ Lnuk�nþ1, (11)

where ~xk ¼ ½yk�mþ1; � � � ; yk�1; yk�
T � <m is the system state

vector which is available for measurement and F and
L1; � � � ;Ln have the following forms:

F ¼

0 1 0 0 � � � 0

0 0 1 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 � � � 1

am am�1 am�2 am�3 � � � a1

2
6666666664

3
7777777775
,

L1 ¼

0

0

..

.

0

b1

2
6666666664

3
7777777775
; L2 ¼

0

0

..

.

0

b2

2
6666666664

3
7777777775
; � � � ;Ln ¼

0

0

..

.

0

bn

2
6666666664

3
7777777775
.

Also defining the tracking error vector as

~ekþ1 ¼~rkþ1 � ~xkþ1, (12)

where the desired signal vector is ~rkþ1 ¼ ½dk�mþ2; � � � ;
dk; dkþ1�

T , the switching surface is defined in the space of
the tracking error vector given by

sk ¼ ~c
T~ek, (13)

where ~c ¼ ½c1; c2; � � � ; cm�
T . Then an equivalent control is

designed to satisfy the ideal QSM condition, skþ1 ¼ sk ¼ 0,
by

u
eq
k ¼ ð~c

TL1Þ
�1 ~cT

ð~rkþ1 � F~xkÞ �~c
TL2uk�1 � � � � �~c

TLnuk�nþ1

� �
(14)
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and the closed-loop system response of the ideal QSM
substituting (14) into with an equivalent control is given by

~xkþ1 ¼ I � L1ð~c
TL1Þ

�1~cT
� �

F~xk þ L1ð~c
TL1Þ

�1~cT~rkþ1.

(15)

The system (15) can be viewed as a linear system with the
input ~rkþ1 and the output ~xkþ1. To get an insight into the
tracking capability of the system, (15) can be represented in
terms of the tracking error ek ¼ dk � yk by

ekþ1 ¼ �
cm�1

cm

ek �
cm�2

cm

ek�1 � � � � �
c1

cm

ek�mþ2. (16)

Note that by designing the switching surface such that
the roots of polynomial lm�1

þ ðcm�1=cmÞl
m�2
þ � � � þ

ðc1=cmÞ are inside of the unit circle, the error vanishes
and thus the condition ensures asymptotic convergence to
the desired output. An arbitrary positive scalar cm also
determines the time taken to reach the sliding surface and
can be adjusted to get a faster response.

For the SOM-based system identification, one needs to
quantify the effect of the modeling error that will occur due
to the quantization of state space induced by the SOM, and
also by the wrong selection of the winning model. Consider
model (10) in the presence of modeling error and
measurement noise. The predicted output becomes

ŷkþ1 ¼ â1ðyk þ �kÞ þ â2ðyk�1 þ �k�1Þ

þ � � � þ âmðyk�mþ1 þ �k�mþ1Þ þ b̂1uk þ b̂2uk�1

þ � � � þ b̂nuk�nþ1, ð17Þ

where a wrong local model ðâ1; â2; � � � ; âm; b̂1; b̂2; � � � ; b̂nÞ is
triggered by the SOM due to the noisy output measurement
yk þ �k. Then, when sk ¼ 0, the overall tracking error
response with an equivalent control is given by

ekþ1 ¼ �
cm�1

cm

ek �
cm�2

cm

ek�1 � � � � �
c1

cm

ek�mþ2

þ ða1 � â1Þðyk þ �kÞ þ � � �

þ ðam � âmÞ ðyk�mþ1 þ �k�mþ1Þ

þ ðb2 � b̂2Þuk�1 þ � � � þ ðbn � b̂nÞuk�nþ1. ð18Þ

For simplicity, consider the error dynamics (18) when
m ¼ 2. Defining model parameter error ~Dk ¼ ½a1 � â1; a2 �

â2; b1 � b̂1�
T and noise ~nk ¼ ½�k; �k�1; �k�2�

T

ekþ1 ¼ c̄ek þ
~D

T

k ð~zk þ~nkÞ, (19)

where ~zk ¼ ½yk; yk�1; uk�1�
T , c̄ ¼ c1=c2, and c̄ is chosen as

c̄o1. We assume that E½�2k� ¼ g and jj~Dkjj
2od wk � ŵkk k

2

where the norm wk � ŵkk k is the Euclidean distance
between the reference vector of the correct PE and that
of the neighboring PE selected by the perturbed output
measurements.3 Also, it is assumed that the noise ek is zero-
3The first assumption states that measurement noise has finite power.

The second assumption means model parameter error is bounded by the

distance in the state space.
mean and white. We have the following recursive formula
for the tracking mean squared error:

E½e2kþ1� ¼ E c̄2e2k þ 2c̄ek
~D

T

k ð~zk þ~nkÞ

h
þ~D

T

k ð~zk þ~nkÞð~zk þ~nkÞ
T~Dk

i
¼ c̄2E½e2k� þ

~D
T

k~zk~z
T
k
~Dk þ

~D
T

k E½~nk~n
T
k �
~Dk. ð20Þ

When we take the norm on each side in (20), the norm of
the tracking error power is represented by

E½e2kþ1�pc̄2E½e2k� þ jj
~Dkjj

2jj~zkjj
2 þ gjj~Dkjj

2, (21)

where the Cauchy inequality is used on the second term on
the right hand side. As k!1, using the earlier assump-
tions on noise and model error bounds, the following
bound on the steady-state tracking error power is obtained:

E½e21�o
d wk � ŵkk k

2

ð1� c̄2Þ
~zkk k

2
þ g

� �
. (22)

Note that the difference between the true model (winning
PE) and the neighboring model (wrong PE) assigned by
noisy input, d wk � ŵkk k

2, is typically small, since neighbor-
ing SOM PEs represent neighboring regions in the dynamic
space. Also, it should be noted that the error can still be
very large if we choose c̄ as close as 1. In contrast, by
choosing c̄ as small as possible, the closed-loop system may
have very fast transient response, possibly too large
unexpected overshoot. Thus we should be careful for
determining c̄ so as not to have large error. This problem
will be discussed later in simulation results. If c̄ is set to
small enough it then follows that the error by choosing
appropriate design parameters mentioned above will be
bounded for a given modeling uncertainty and measure-
ment noise bounded by g. Moreover, this shows that the
switching scheme does not create an issue to be considered
in order to guarantee BIBO stability of the overall system.
Gao et al. [12] proposed a reaching law-based approach,

which directly specifies the dynamics of the switching
surface for designing the discrete-time sliding mode control
law. For a discrete-time system described by (11), the
reaching law for the discrete-time sliding mode control is

skþ1 � sk ¼ �aTsk � bTsgnðskÞ; a40; b40; 1� aT40,

(23)

where T40 is the sampling period. The state reaches the
switching surface at a constant rate �bT and the term �aT

forces the state to approach the switching surfaces faster
when sk is large. The inequality for T guarantees that
starting from any initial state, the trajectory will move
monotonically towards the switching surface and cross it in
finite time. The reaching law (23) always satisfies the
reaching condition such that the discrete VSC system
designed using the reaching law approach is always stable
with a stable ideal QSM [12]. Then the control law is
derived by comparing

skþ1 � sk ¼ ~c
T~ekþ1 �~c

T~ek
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Fig. 3. Parameter selection to design multiple models: (a) Lipschitz index for determining the embedding dimension (b) Identification performance vs.

network dimension on independently generated test data for choosing the size of a map.
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with the reaching law (23), which yields

uk ¼ ~cTL1

� ��1
~cT rkþ1 �~c

TF~xk �~c
TL2uk

�
� � � � �~cTLnuk�nþ1 þ ðaT � 1Þsk þ bTsgnðskÞ

�
. ð24Þ

One advantage of this scheme is its simplicity and fast
convergence to get the desired response. Another advan-
tage is that the dynamic space is decomposed in the
appropriate switching among very simple linear models,
which leads to accurate modeling and control. A possible
disadvantage of the proposed approach is that the over-
all stability may not be guaranteed due to the switching
among models if the models are quite different from
each other.

4. Simulation results

To examine the effectiveness of the proposed controller
design methodology, discrete-time systems have been
considered assuming the following: the only state available
for measurements is yk ¼ x

ð1Þ
k and the nonlinear function f

is completely unknown. By assuming that the function f is
unknown, we confront a worst case (least prior knowledge)
control design. Our objective is to design multiple sliding
mode controller for unknown nonlinear plants that
guarantees global stability and forces the output, yk, to
asymptotically track the desired signal, i.e., jyk � dkj ! 0,
as k!1 without any a priori knowledge of the plant.

Example 1. Biological reactor

In the bioreactor model, the microorganisms grow by
consuming the substrate. At low concentrations, both
microorganisms and substrate are assumed to be present
[13]. Denoting by x(1) and x(2) the concentrations of
microorganisms and substrate, respectively, we get the
following discrete-time model by Euler discretization with
sampling time 0.5 s:

x
ð1Þ
kþ1 ¼ x

ð1Þ
k þ 0:5

x
ð1Þ
k x
ð2Þ
k

x
ð1Þ
k þ x

ð2Þ
k

� 0:5ukx
ð1Þ
k ,

x
ð2Þ
kþ1 ¼ x

ð2Þ
k � 0:5

x
ð1Þ
k x
ð2Þ
k

x
ð1Þ
k þ x

ð2Þ
k

� 0:5ukx
ð2Þ
k þ 0:05uk,

yk ¼ x
ð1Þ
k þ zk, ð25Þ

where the control uk is the output flow rate that is
uniformly distributed between 0 and 1 and zk is the
measurement noise that is bounded by jzkjp0:0004.
Suppose that there is no a priori knowledge of the system,
but we assume that we have available input–output data
samples. We chose the model as

~yk ¼ f ðyk�1; yk�2; uk�1; uk�2Þ (26)

in accordance with Lipschitz index [15]. The theory states
that the best embedding dimension is obtained when the
index stops decreasing. However, as shown in Fig. 3(a), the
index keeps decreasing, and thus we chose the number of
inputs and outputs as the point where the index decreased
the most.
First a SOM is trained with ðyk�1; yk�2Þ over 6000

samples with the time decaying parameters, Zk ¼ 0:1=ð1þ
0:003 kÞ and sk ¼ ð

ffiffiffiffiffi
N
p

=2Þ=ð1þ 0:003 kÞ in Eq. (4), where N

is the number of PEs. After training square SOMs with
various sizes on the input vector ðyk�1; yk�2Þ, local linear
models are constructed from the embedded output (used
for training) and the embedded control input correspond-
ing each PE. The created models are tested by a newly
created sequence of 400 samples for various sizes of the
SOM. Based on generalization error shown in Fig. 3(b) the
network dimension was chosen as 14� 14. The model
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Fig. 4. System identification of nonlinear plant: (a) by multiple models (b) by a global model. The dashed line is the plant output, and the solid line is the

output from the plant model.

Fig. 5. Set-point tracking performance of the Bio-reactor for different

sliding surface.
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performance shown in Fig. 3(b) achieves the smallest
normalized root mean squared error (NRMSE) at this
value.4 Plant modeling performance with 196 multiple-
linear models was compared with those by means of a
conventional Time Delay Neural Network (TDNN), which
was trained by Backpropagation algorithm with the
constant learning rate of 0.001 for 3000 iterations on the
same number of inputs and outputs as in local linear
modeling, adopted as a global nonlinear model in Fig. 4.
As we can see, the multiple models are very good
approximation of the plant. The best result with the
proposed method was a NRMSE of 1.4e-3 while with the
TDNN5 obtained a NRMSE of 4.4e-3. This result shows
that the proposed multiple-linear modeling scheme outper-
forms the nonlinear global modeling paradigm.

Using the created multiple models, we design the sliding
hyperplane in the controller by choosing arbitrary c1 and
c2. Fig. 5 illustrates the effect of these parameters on the
proposed control scheme under different noise levels. In
most cases, as we place the pole (c1/c2) of (16) closer to the
origin inside the unit circle, the controller showed better
tracking performance. For instance, from the plot, we can
say that the pole should be chosen as less than 0.5 to have
the robustness against noise whose level is 25 dB of SNR

since the error changes very slowly above 0.5. Thus the
switching surface was chosen as sk ¼ ½1;�10� ½ek�1; ek�

T in
order to get small error and short enough transient time
as well.

Fig. 6 shows the plant responses of the closed-loop
controlled system by the proposed method choosing the
4Identification performance was evaluated by normalized root mean

squared error (NRMSE).
5The number of PEs in the hidden layer of the TDNN is chosen as

7� 20 Monte-Carlo simulations varying the size of the hidden layer.
switching surface with ~c ¼ ½1;�10�T . The tracking objec-
tive was to make the output yk follow a desired reference
signal generated by the control input uk ¼ 0:2 for
20pkp50 and uk ¼ 0:5 otherwise. Also the behavior of
the control input, the sliding surface evolution converging
to zero, and the unmeasured state x(2) are presented in
Fig. 6 where it can be seen that the controller performs
impressively. From these results, it can be inferred that the
closed-loop signals are bounded for this class of nonlinear
systems even though the dynamics are not known a priori
to the controller.
Additionally, we compared the performance of the

proposed Multiple QSMC (MQSMC) for tracking a
desired reference signal with that of the TDNN Controller



ARTICLE IN PRESS

Fig. 6. Reference signal tracking performance by the MQSMC.

Table 1

Comparison of control performance for an arbitrary trajectory tracking

Controller NRMSE

TDNNC 9.3e-3

MQSMC 6.0e-3
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(TDNNC) trained through the TDNN model [44] shown
previously, since a global nonlinear inverse controller, e.g.,
TDNNC, have been often utilized to control complex
plants. The optimal number of PEs in the hidden layer of
TDNNC was chosen as 10. Although it looks the proposed
control scheme is too complicated for practical implemen-
tations it is very easy to implement since the local
controller is selected from the lookup table as the system
changes operating conditions and produce the control
input by simple additions and multiplications. Also the
implementation is much easier than fitting a global
parametric model, such as a neural network and since
each local piece of the model is linear, practical controller
design techniques that have been developed for linear
systems can be employed for each piece.

In Table 1 we show that multiple controllers demon-
strate superior performance compared to a single global
nonlinear controller for an arbitrary trajectory-tracking
problem. In addition, we performed experiments for
sinusoidal signal tracking by the TDNNC and the
MQSMC. Fig. 7 shows the result of controlling the
Microorganism population x(1). As can be seen in Fig. 7,
the MQSMC converges faster to the desired signal than the
TDNNC and exhibits reduced settling time.

Example 2. Discrete-time nonlinear system

Consider the following nonlinear discrete-time plant [2]:

x
ð1Þ
kþ1 ¼ x

ð2Þ
k ,

x
ð2Þ
kþ1 ¼ �

3

16

x
ð1Þ
k

pþ ðx
ð2Þ
k Þ

2

" #
þ x

ð2Þ
k þ uk,

yk ¼ x
ð1Þ
k þ zk, ð27Þ
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Fig. 7. Square-wave and sinusoidal signal tracking: (a) by the MQSMC (b) by the AIC.

Fig. 8. Parameter selection to design multiple models: (a) Lipschitz index for determining the embedding dimension, (b) identification performance vs.

network dimension on independently generated test data for choosing the size of a map.

6The number of PEs in the hidden layer of the TDNN is chosen as

20� 20 Monte-Carlo simulations varying the size of the hidden layer.
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where p ¼ 1, uk is the input and zk is an external
disturbance. In Eq. (27), we consider a SISO model,
assuming that only the output is available for measure-
ment. The input is excited with an input signal that is
uniformly distributed in �0:5pup0:5. The model was
assumed to be a second order in input and output (26)
again based on Fig. 8(a).

After quantization of the embedded output space, a set
of models was built with the input–output data samples
for each PE. For testing, independently generated 400
data samples were used changing the size of the map. The
best size of the map was determined as 8� 8 since
the performance did not improve much after 64 PEs (see
Fig. 8b). Thus plant identification with 64 multiple models
(8� 8) was tested in the absence of sensor noise as well as
in the presence of sensor noise (SNR ¼ 20 dB) with the
plant input signal being uniformly distributed. Results of
system identification are shown in Fig. 9. As we can see, the
models provide a very good approximation of the plant
visually based on the error curves, even when sensor noise
exists. Also the proposed multiple modeling scheme was
compared with a TDNN again with 5000 samples and a
constant learning rate, 0.005. The best modeling result with
the proposed method was a NRMSE of around 6.0e-4
while with the TDNN6 one obtained a NRMSE of
about 6.3e-3. When the testing data are perturbed by
noise (SNR ¼ 20 dB), the performances were a NRMSE of
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Fig. 9. System identification of nonlinear plant: (a) in the absence of disturbance (b) in the presence of disturbance. The dashed line is the plant output,

and the solid line is the output from the plant model.

Fig. 10. Performance of square-wave tracking in the absence of disturbance.

J. Cho et al. / Neurocomputing 70 (2007) 960–974970
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Fig. 11. Sinusoidal trajectory tracking behavior by the MQSMC: (a) in the absence of sensor noise (b) in the absence of sensor noise (c) under parameter

variations.

7The TDNN controller was trained by back-propagating an error

through the TDNN model taught by 20 hidden PEs and the number of

hidden PEs in the controller was chosen as 40.
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1.4e-274.3e-4 and 1.6e-274.7e-4, respectively. From this
observation, it should be pointed out that the multiple
modeling strategy has more noise-immunity feature than
global models.

Fig. 10 shows the plant responses of the closed loop
control system using the proposed MQSMC choosing the
switching surface as sk ¼ ½1;�2�½ek�1; ek�

T . The trajectories
are seen to converge to the desired values of [�1.5 �1.0
�0.5 0.5 1.0 1.5]. The figure also shows control input, the
sliding surface, and the winner activities switched auto-
matically by the SOM. It can be easily seen that the
MQSMC guarantees the convergence of the system to
the quasi-sliding-mode band around the sliding hyperplane
~cT~ek ¼ 0. Furthermore, we tested the closed loop system
for tracking a sinusoidal signal under the noisy environ-
ment and parameter variations. Once again, the multiple
controller networks perfectly track the desired command
except for a transient time of few time steps, as shown in
Fig. 11, even if not only the measurement is corrupted by
zero-mean random noise with 20 dB of SNR but the
parameter, p, varies from 0.5 to 1.5 after 100 iterations.
Next, the robustness of the MQSMC scheme was

compared with that of the Multiple Inverse Control
(MIC) network proposed in [6], as well as with that of
the TDNNC built based on the TDNN model.7 The
standard deviation of the error between the plant output
and the desired output versus the standard deviation of the
noise is shown in Fig. 12. It is evident that the proposed
approach performs best in terms of insensitivity to
disturbances. The MIC structure showed the best perfor-
mance only in the noise-free environment. It should be
noted that the MIC began to become less robust than the
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TDNNC at the point where the standard deviation of the
noise is over 0.03. From this examination we can conclude
that the MIC can be robust against noise up to certain
level. However, wrong selection of the winner, as the
amount of noise is increased, can be devastating for the
controller that is designed based on the predicted model.
Overall, we conclude that the proposed MQSMC approach
is the most robust design technique among the three
methods considered. This is evident from Fig. 12, where we
observe that on average the tracking error of MQSMC
increases at a lower rate than that of the MIC and the
TDNNC.

5. Conclusion

In this paper, the MQSMC strategy has been proposed
for a general class of nonlinear unknown discrete-time
systems via SOM, which divides the state space into a set of
operating regions. Contrary to what is assumed in the field
of sliding mode controller design, the plant dynamics under
control are assumed to be unknown. This is a challenge in
the conventional design framework with the ambiguities
introduced by the noise on the measured quantities. Thus,
we have taken the concept of self-organization in the
embedded output space extended with multiple models, so
that a local controller is employed for each region. The
problems that arise due to the uncertainties of the plant
model and measurement noise are alleviated by incorpor-
ating the robustness provided by the sliding mode
technique into the multiple modeling approach. The
simulation results show that the algorithm proposed is
able to compensate deficiencies caused by the imperfect
observations of the state variables and complex plant
dynamics, driving the tracking error vector to the sliding
manifold and keeping it on the manifold. In addition, the
proposed method shows better robustness against noise,
faster transient response, and better steady-state accuracy
of the controlled system by switching local controllers
astutely through the SOM, than other neural network-
based alternatives.
In addition, it has been shown that the multiple sliding
mode control scheme guarantees BIBO stability of the
overall system. However, a possible disadvantage of the
proposed approach is that the overall stability may not be
guaranteed due to the switching among models if the
models are quite different each other. Further studies,
therefore, will be necessary to investigate the stability
conditions for such a switched control systems to achieve
better control performance.
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