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Abstract. Principal components analysis is an important and well-studied subject in statistics and signal

processing. Several algorithms for solving this problem exist, and could be mostly grouped into one of the

following three approaches: adaptation based on Hebbian updates and deflation, optimization of a second order

statistical criterion (like reconstruction error or output variance), and fixed point update rules with deflation. In

this study, we propose an alternate approach that avoids deflation and gradient-search techniques. The proposed

method is an on-line procedure based on recursively updating the eigenvector and eigenvalue matrices with

every new sample such that the estimates approximately track their true values as would be calculated

analytically from the current sample estimate of the data covariance matrix. The perturbation technique is

theoretically shown to be applicable for recursive canonical correlation analysis, as well. The performance of

this algorithm is compared with that of a structurally similar matrix perturbation-based method and also with a

few other traditional methods like Sanger_s rule and APEX.
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1. Introduction

Principal component analysis (PCA) is a well-known

statistical technique that has been widely applied to

solve important signal-processing problems like

feature extraction, signal estimation, detection and

speech separation [1–4]. Many analytical techniques

exist, which can solve PCA once the entire input data

is known [5]. However, most of the analytical

methods require extensive matrix operations and

hence they are unsuited for real-time applications.

Further, in many applications such as direction of

arrival (DOA) tracking, adaptive subspace estima-

tion, etc., signal statistics change over time rendering



the block methods virtually unacceptable. In such

cases, fast, adaptive, on-line solutions are desirable.

Majority of the existing algorithms for PCA are

based on standard gradient procedures [2, 3, 6–9],

which are extremely slow converging, and their

performance heavily depends on step-sizes used. To

alleviate this, subspace methods have been explored

[10–12]. However, many of these subspace techni-

ques are computationally intensive. The recently

proposed fixed-point PCA algorithm [13] showed

fast convergence with little or no change in com-

plexity compared with gradient methods. However,

this method and most of the existing methods in

literature rely on using the standard deflation

technique, which brings in sequential convergence

of principal components that potentially reduces the

overall speed of convergence.

We recently explored a simultaneous principal

component extraction algorithm called SIPEX [14]

which reduced the gradient search only to the space

of orthonormal matrices by using Givens rotations.

Although SIPEX resulted in fast and simultaneous

convergence of all principal components, the algo-

rithm suffered from high computational complexity

due to the involved trigonometric function evalua-

tions. A recently proposed alternative approach

suggested iterating the eigenvector estimates using

a first order matrix perturbation formalism for the

sample covariance estimate with every new sample

obtained in real time [15]. However, the performance

(speed and accuracy) of this algorithm is hindered by

the general Toeplitz structure of the perturbed

covariance matrix. In this paper, we will present an

algorithm that undertakes a similar perturbation

approach, but in contrast, the covariance matrix will

be decomposed into its eigenvectors and eigenvalues

at all times, which will reduce the perturbation step

to be employed on the diagonal eigenvalue matrix.

This further restriction of structure, as expected,

alleviates the difficulties encountered in the opera-

tion of the previous first order perturbation algo-

rithm, resulting in a fast converging and accurate

subspace tracking algorithm.

This paper is organized as follows. First, we

present a brief definition of the PCA problem to

have a self-contained paper. Second, the proposed

recursive PCA algorithm (RPCA) is motivated,

derived, and extended to non-stationary and com-

plex-valued signal situations. The technique is also

illustrated on canonical correlation analysis, which is

a generalized eigenvector problem. Next, a set of

computer experiments is presented to demonstrate

the convergence speed and accuracy characteristics

of RPCA. Finally, we conclude the paper with

remarks and observations about the algorithm.

2. Problem Definition

As pointed out earlier in the introduction, PCA is a

well-defined problem and has been extensively

studied in the literature. However, for the sake of

completeness, we will provide a brief definition of

the problem in this section. Without loss of gener-

ality, let us consider that x is a real-valued zero-

mean, n-dimensional random vector. We write its n
projections y1,...,yn as yj ¼ wT

j x, where wj_s are n-

dimensional unit–norm vectors, corresponding to the

projection of x. The first principal component

direction is defined as the solution to the following

constrained optimization problem, where R is the

input covariance matrix:

w1 ¼ arg max
w

wTRw subject to wTw ¼ 1 ð1Þ

By introducing additional constraints wherein the

subsequent components are enforced to be orthogo-

nal with the previously discovered ones, we define

the subsequent principal components as:

wj ¼ arg max
w

wTRw; s:t: wTw ¼ 1;wTwl

¼ 0; l < j ð2Þ

The overall solution to this problem turns out to be

the eigenvector matrix of the input covariance R. In

particular, the principal component directions are

given by the eigenvectors of R arranged according to

their corresponding eigenvalues (largest to smallest)

[5].

However, in many signal processing applications,

there are many instances when samples are acquired

one at a time and therefore the computations need to

be done, real time with just the available samples.

Specifically, the solution demands sample-by-sample

update rules for the covariance and its eigenvector

estimates. In such situation, it is not practical to
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update the input covariance estimate and solve a full

eigen decomposition problem per sample for an

analytical solution. A better alternative lies in

utilizing the recursive structure of the covariance

estimate to come up with a recursive formula for

estimating the eigenvectors. This will be described in

the next section.

3. Recursive PCA Description

Suppose, at time k, we have a sequence of n-

dimensional zero-mean wide-sense stationary input

vectors xk. The sample covariance estimate at time k
for the input vector is1

Rk ¼
1

k

Xk

i¼1

xix
T
i ¼

k � 1ð Þ
k

Rk�1 þ
1

k
xkxT

k ð3Þ

Let Rk ¼ QkLkQT
k and Rk�1 ¼ Qk�1Lk�1QT

k�1, where

Q and L denote the orthonormal eigenvector and

diagonal eigenvalue matrices, respectively. Also define

ak ¼ QT
k�1xk. Substituting these definitions in Eq. (3),

the recursive formula for the eigenvectors and eigen-

values can be written as:

Qk kLkð ÞQT
k ¼ Qk�1 k � 1ð ÞLk�1 þ akaT

k

� �
QT

k�1 ð4Þ

If we denote the eigen decomposition of the matrix

k � 1ð ÞLk�1 þ akaT
k

� �
, as VkDkVT

k , where V is

orthonormal and D is diagonal, Eq. (4) becomes

Qk kLkð ÞQT
k ¼ Qk�1VkDkVT

k QT
k�1 ð5Þ

It is easy to see from Eq. (5) that the recursive update

rules for the eigenvectors and the eigenvalues turn out

to be:

Qk ¼ Qk�1Vk

Lk ¼ Dk=k
ð6Þ

In spite of the fact that the matrix k � 1ð ÞLk�1þ½
akaT

k � has a special structure much simpler than that of

a general covariance matrix, determining the eigende-

composition VkDkVT
k analytically is difficult. As we

show in the next section, if k is large, the problem can

be solved in a much simpler way using a matrix

perturbation analysis approach.

3.1. Perturbation Analysis for Rank-One Update

Consider the matrix k � 1ð ÞLk�1 þ akaT
k

� �
; for large

k, this matrix becomes diagonally dominant and

therefore its eigenvalues will be close to (kj1)Lkj1

and also, its eigenvectors will also be close to

identity (i.e., the eigenvectors of the diagonal portion

of the sum).

In summary, the problem reduces to finding the

eigendecomposition of a matrix in the form (L+aaT),

i.e., a rank-one update on a diagonal matrix L, using

the following approximations: D¼LþPL and

V¼IþPv, where PL and PV are small perturbation

matrices. The eigenvalue perturbation matrix PL is

naturally diagonal. With these definitions, when VDVT

is expanded, we get

VDVT ¼ Iþ PVð Þ Lþ PLð Þ Iþ PVð ÞT

¼ Lþ LPT
V þ PL þ PLPT

V þ PVL

þ PVLPT
V þ PVPL þ PVPLPT

V

¼ Lþ PL þ DPT
V þ PVD

þ PVLPT
V þ PVPLPT

V ð7Þ

Assuming that the terms PVLPT
V and PVPLPT

V are

negligible, equating Eq. (7) to (L+aaT) yields,

aaT ¼ PL þ DPT
V þ PVD ð8Þ

Knowing that V is orthonormal and therefore

substituting V¼IþPv in VV
T
=I and assuming that

PVPT
V � 0, we have PV ¼ �PT

V.

Utilizing the fact that PL and D are diagonal, the

solution for the perturbation matrices are found from

Eq. (8) as follows:

�2
i ¼ i; ið Þthelement of PL

�i�j

lj þ �2
j � l2

i � �2
i

¼ i; jð Þthelement of PV; i 6¼ j

0 ¼ i; ið Þthelement of PV

)

ð9Þ

where li, lj are the diagonal elements of the eigen

value matrix (kj1)Lkj1.
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3.2. The Recursive PCA Algorithm

The RPCA algorithm is summarized in Table 1.

There are a few practical issues regarding the

operation of the algorithm, which will be addressed

in this subsection.

Selecting the memory depth parameter For station-

ary cases, we weight all the samples equally and

therefore set lk ¼ 1=k in Eq. (3). In a non-stationary

environment, a first-order dynamical forgetting strat-

egy could be employed by selecting a fixed decay

rate. Setting lk = l, in Eq. (3) would lead to:

Rk ¼ 1� lð ÞRk�1 þ lxkxT
k ð10Þ

where, lZ(0,1) is selected to be very small.

Considering that the average memory depth of this

recursion is 1/l samples, the selection of this

parameter presents a trade-off between tracking

capability and estimation variance.

Initializing the eigenvectors and the eigenvalues One

can simply initialize the estimated eigenvector to

identity (Q0=I) and the eigenvalues to the sample

variances of each input entry over N0 samples

(L0¼diag RN0
). We then start the iterations over the

samples k=1,..., N and set the memory depth parameter

to lk¼1= k � 1þ gð Þ. Effectively this corresponds to

the following biased (but asymptotically unbiased as

NYV) covariance estimate:

RN; biased ¼
N

N þ g
RN þ

g
N þ g

L0 ð11Þ

This initialization strategy is utilized in the

computer experiments that are presented in the

following sections.2 In the non-stationary case (i.e.,

lk=l), the same initialization strategy can be used

i.e., Q0=I and L0=diagRN0. The initialization bias is

not a problem, since its effect will diminish in

accordance with the forgetting time constant any-

way. Also, in order to guarantee the accuracy of the

first order perturbation approximation, we need to

choose the forgetting factor l such that (1jl)/l is

large. Typically, a forgetting factor l<10j2 will

yield accurate results.

The RPCA algorithm extends to complex-valued

signals easily: we employ PV ¼ �PH
V leading to

�i�
*
j =ðlj þ j�jj2 � li � �ij j2Þfor off-diagonal entries,

and PL is �ij j2 on the diagonal.

3.3. Recursive Canonical Correlation Analysis

The matrix perturbation analysis can be extended to

canonical correlation analysis (CCA) in order to obtain

a recursive on-line CCA algorithm similar to the

Recursive PCA algorithm. We start by briefly discus-

sing the CCA formulation. Given two vectors x1 and

x2, the goal of CCA is to find two projections w1 and

w2 such that the correlation coefficient of y1 ¼ wT
1 x1

and y2 ¼ wT
2 x2 is maximized. This is equivalent to

solving the following generalized eigenvector problem

AQ ¼ BQeLL, where Q is the generalized eigenvector

matrix and the largest eigenvector q1 ¼ wT
1 ;w

T
2

� �T
and

the matrices of interest are defined in terms of the auto-

and cross-covariance matrices of the data x1 and x2,

denoted by R11, R22, R12, and R21 [16]:

A ¼ 0 R12

R21 0

� �
B ¼ R11 0

0 R22

� �
ð12Þ

Adding BQ to both sides, and defining C ¼ Aþ B,

L ¼ eLþ I an equivalent problem is obtained:

CQ=BQL. Notice that C is the covariance of the

concatenated data vector x ¼ xT
1 ; x

T
2

� �T
, whereas B is

the concatenation of the individual covariance matrices.

In on-line operation, as the samples arrive, we

assume that the covariance matrices are updated

using the following update rule (with a time-varying

Table 1. The recursive PCA algorithm outline.

RPCA algorithm summary

1. Initialize Q0 and L0

2. At each time instant k do the following:

a. Get input sample xk

b. Set memory depth parameter lk

c. Calculate ak ¼ QT
k�1xk

d. Find perturbations PV and PL corresponding to

1� lkð ÞLk�1 þ lkakaT
k

e. Update eigenvector and eigenvalue matrices:

eQQk ¼ Qk�1 Iþ PVð Þ
eLLk ¼ 1� lkð ÞLk�1 þ PL

f. Normalize the norms of eigenvector estimates by Qk ¼ eQQkTk ,

where Tk is a diagonal matrix containing the inverses of the

norms of each column of eQQk

g. Correct eigenvalue estimates by Lk ¼ eLLkT�2
k , where T�2

k is a

diagonal matrix containing the squared norms of the columns

of eQQk
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forgetting factor as discussed in RPCA if the data is

stationary):

Ck ¼ 1� lð ÞCk�1 þ lxkxT
k

Bk ¼ 1� lð ÞBk�1 þ lUkUT
k

where Uk ¼
x1k 0

0 x2k

� � ð13Þ

For small l (i.e., after a large number of samples

have been processed in the stationary case), these

rank-one and rank-two updates of C and B will not

change the eigenvectors and the eigenvalues drasti-

cally. Therefore, similar to RPCA, we assume that

the following update rules for both matrices are

valid with PV and PL denoting the corresponding

perturbations:

Qk ¼ Qk�1 Iþ PVð ÞLk ¼ Lk�1 þ PL ð14Þ

At all time instants including time k, the eigenvector

equation must be satisfied by the eigenvector and

eigenvalue estimates: CkQk=BkQkLk. Substituting

Eqs. (13) and (14) into this equation and exploiting

the fact that the equation was satisfied at time instant

kj1, we obtain the following relationship after some

rearranging and cancellation of appropriate terms

(specifically higher order terms due to the small

perturbation assumption):

PVLk�1 þ PL

¼ lQT
k�1B�1

k

xkxT
k Qk�1

�UkUT
k Qk�1Lk�1

" #
ð15Þ

The inverse of Bk can be iteratively updated similar

to RLS, using the matrix inversion lemma [17].

Since the update at each time instant is of rank-two,

the update rule involves inverting a 2�2 matrix,

which is still computationally simple. After the

application of the inversion lemma on the update of

Bk given in Eq. (13), the update rule for its inverse is

obtained as:

B�1
k ¼

1

1� lð Þ B�1
k�1�

1

1� lð Þ2
B�1

k�1Uk
1

l
I2�2 þ UT

k B�1
k�1Uk

� ��1

UT
k B�1

k�1

2
6664

3
7775

ð16Þ

Substituting Eq. (16) into Eq. (15), the expression

for P ¼ PVLk�1 þ PL is obtained in terms of past

estimates of the eigenvectors, eigenvalues, and the

inverse data covariances (as in RLS). Knowing P is

not sufficient to determine both PV and PL., we need

to utilize the following constraint on the eigenvectors

as well: QTBQ=I. Defining Gk ¼ QT
k�1

Uk and

substituting Eq. (14) in this constraint as well as

the update rule for B from Eq. (13), after some

manipulations the following additional equation

restricting the construction of PV is obtained:

1� lð Þ PV þ PT
V

� 	
þ

l GkGT
k PV þ PT

VGkGT
k

� 	
¼ l GkGT

k � I
� 	

" #
ð17Þ

Substituting the fact PV ¼ L�1
k�1 P� PLð Þ in Eq. (17),

we obtain the following expression from which the

diagonal matrix PL can be determined:

2 1� lð ÞDþ TkDþ DTk ¼ S

D ¼ L�1
k�1PL

Tk ¼ GkGT
kX

¼ 1� lð Þ L�1
k�1Pþ PTL�1

k�1

� 	
þ

l TkL�1
k�1Pþ PTL�1

k�1Tk

� 	
� l Tk � Ið Þ

2
4

3
5

ð18Þ

The iterative steps followed by the perturbation-

based recursive CCA algorithm can be summarized

as follow: Obtain new data, update Bk according to

Eq. (16), calculate P using Eq. (15), solve for D and

from that PL using Eq. (18). Finally evaluate

PV ¼ L�1
k�1 P� PLð Þ. Once PV and PL are calculated,

the eigenvectors and eigenvalues are updated according

to Eq. (14). Both matrices can be initialized

appropriately in many ways (similar to those

discussed in the RPCA section). The forgetting factor

can be made time-varying to utilize all data samples for

stationary signals, and the perturbation approximation

errors can be made arbitrarily small by selecting

smaller values for l at the cost of longer convergence

time.

4. Numerical Experiments

In this section, we perform simulations to demon-

strate the capability of our proposed technique to find

an on-line PCA solution. As we noted earlier, there

already exists a rich literature on estimating PCA
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solution. Therefore, we avoid an exhaustive compar-

ison of the proposed method with all the existing

algorithms. Instead, we present a comparison with a

structurally similar algorithm (which is also based on

first order matrix perturbations) [15]. Without going

into explicit numerical results, we also comment on

the performances of traditional benchmark algorithms

like Sanger_s rule and APEX in similar setups.

4.1. Convergence Speed Analysis

In the first experimental setup, the goal is to

investigate the convergence speed and accuracy of

the proposed RPCA algorithm. Note that theoretical-

ly the covariance estimator in Eq. (3) converges at a

rate of 1/k in terms of estimation variance for each

entry, while it is always unbiased. In practice, the

initial covariance estimate is arbitrarily selected and

this leads to a biased estimate as shown in Eq. (11).

The bias introduced by this initialization also decays

at the rate of 1/k. Thus, the RPCA algorithm is

expected to converge to the true eigendecomposition

at a rate of 1/k in the case of stationary signals. In the

case of nonstationary signals, a constant forgetting

factor is introduced in Eq. (10). The expected value

of this estimator converges to the true covariance

exponentially as (1jl)k. The variances of the

estimated R matrix entries never converge to zero,

since this recursion has an exponential memory.

However, it decays exponentially at the same rate as

the bias to its final value, the fourth order joint

moment matrix: E[(RjE[R])(RjE[R])T]Y
E[xxTxxT]. The actual convergence rate depends on

the actual data distribution, but as an example, for

Gaussian x, this final value would be on the order of

the square of the covariance of x.

Consider that n-dimensional random vectors are

drawn from a normal distribution with an arbitrary

covariance matrix. In particular, the theoretical

covariance matrix of the data is given by AAT,

where A is an n�n real-valued matrix whose entries

are drawn from a zero-mean unit-variance Gaussian

distribution. This process results in a wide range of

eigenspreads (as shown in Fig. 1), therefore the

convergence results shown here encompass such

effects.

Specifically, the results of the 3-dimensional case

study are presented here, where the data is generated

by 3-dimensional normal distributions with random-

ly selected covariance matrices. A total of 1,000

simulations (Monte Carlo runs) are carried out for

each of the three target eigenvector estimation

accuracies (measured in terms of degrees between

the estimated and actual eigenvectors): 10-, 5-, and

2-. The convergence time is measured in terms of

number of iterations it takes the algorithm to

converge to the target eigenvector accuracy in all

eigenvectors (not just the principal component). The

histograms of convergence times (up to 10,000

samples) for these three target accuracies are shown

in Fig. 2, where everything above 10,000 is also

lumped into the last bin. In these Monte Carlo runs,

the initial eigenvector estimates were set to the

identity matrix and the randomly selected data

covariance matrices were forced to have eigenvec-

tors such that all the initial eigenvector estimation

errors were at least 25-. The initial g value was set to

400 and the decay time constant was selected to be

50 samples. Values in this range were found to work

best in terms of final accuracy and convergence

speed in extensive Monte Carlo runs.

It is expected that there are some cases, especially

those with high eigenspreads, which require a very

large number of samples to achieve very accurate

eigenvector estimations, especially for the minor

components. The number of iterations required for

convergence to a certain accuracy level is also

expected to increase with the dimensionality of the

problem. For example, in the 3-dimensional case,
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Figure 1. Distribution of eigenspread values for AA
T, where

A3�3 is generated to have Gaussian distributed random entries.
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about 2% of the simulations failed to converge

within 10- in 10,000 on-line iterations, whereas this

ratio is about 17% for five dimensions. The failure to

converge within the given number of iterations is

observed for eigenspreads over 5�104.

In a similar setup, Sanger_s rule achieves a mean

convergence speed of 8,400 iterations with a stan-

dard deviation of 2,600 iterations. This results in an

average eigenvector direction error of about 9- with

a standard deviation of 8-. APEX on the other hand

converges rarely to within 10-. Its average eigenvec-

tor direction error is about 30- with a standard

deviation of 15-.

4.2. Comparison with First Order Perturbation PCA

The first order perturbation PCA algorithm [15] is

structurally similar to the RPCA algorithm presented

here. The main difference is the nature of the

perturbed matrix: the former works on a perturbation

approximation for the complete covariance matrix,

whereas the latter considers the perturbation of a

diagonal matrix. We expect this structural restriction

to improve performance in terms of overall algo-

rithm performance. To test this hypothesis, an

experimental setup similar to the one in Section 4.1

is utilized. This time, however, the data is generated

by a colored time-series using a time-delay line

(making the procedure a temporal PCA case study).

Gaussian white noise is colored using a two-pole

filter whose poles are selected from a random

uniform distribution on the interval (0,1). A set of

15 Monte Carlo simulations was run on 3-dimen-

sional data generated according to this procedure.

The two parameters of the first order perturbation

method were set to e=10j3/6.5 and d=10j2. The

parameters of RPCA were set to g0=300 and t=100.

The average eigenvector direction estimation

convergence curves are shown in Fig. 3.

Often, signal subspace tracking is necessary in

signal processing applications dealing with nonsta-

tionary signals. To illustrate the performance of

RPCA for such cases, a piecewise stationary colored

noise sequence is generated by filtering white

Gaussian noise with single-pole filters with the

following poles: 0.5, 0.7, 0.3, 0.9 (in order of

appearance). The forgetting factor is set to a constant

l=10j3. The two parameters of the first order

perturbation method were again set to e=10j3/6.5

and d=10j2. The results of 30 Monte Carlo runs

were averaged to obtain Fig. 4.

4.3. Direction of Arrival Estimation

Applicability of RPCA, as a subspace method to

estimate the directions of arrival in sensor arrays is

presented here. In Fig. 5, a sample run from a

computer simulation of DOA according to the

experimental setup described in [14] is presented to
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Figure 2. The convergence time histograms for RPCA in the

3-dimensional case for three different target accuracy levels.

Figure 3. The average eigenvector direction estimation errors

versus iterations are shown for the first order perturbation method

(thin dotted lines) and for RPCA (thick solid lines).
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illustrate the performance of the complex-valued

RPCA algorithm. To provide a benchmark (and an

upper limit in convergence speed, we also performed

this simulation using Matlab_s eig function several

times on the sample covariance estimate. The latter

typically converged to the final accuracy demon-

strated here within 10–20 samples. The RPCA

estimates on the other hand take a few hundred

samples due to the transient in the g value. The

difference is that, while the typical DOA algorithm

converts the complex PCA problem into a structured

PCA problem with double the number of dimen-

sions, the RPCA algorithm works directly with the

complex-valued input vectors to solve the original

complex PCA problem.

4.4. An Example with 20 Dimensions

To demonstrate the applicability to higher dimen-

sional situations, an example with 20 dimensions is

presented here. In high dimensional situations, the

PCA algorithms generally struggle to converge

because the interplay between two competing

structural properties of the eigenspace. In particular,

these two characteristics are the eigenspread

(maxli/minli) and the distribution of ratios of

consecutive eigenvalues (ln/lnj1,...,l2/l1) when they

are ordered from largest to smallest (where ln>...>l1

are the ordered eigenvalues). It is always desirable to

have reasonably low or moderate eigen spreads in

order to avoid the problem slow convergence, which

mainly occurs due to the scarcity of samples repre-

senting the minor components. In small dimensional

problems, this is typically the dominant issue that

controls the convergence speeds of PCA algorithms.

Figure 4. The average eigenvector director estimation errors

versus iterations for the first order perturbation method (thin dotted

lines) and for the RPCA (thick solid lines) in a piecewise

stationary situation are shown. The eigenstructure of the input

abruptly changes every 5,000 samples.

Figure 5. Direction of arrival estimation using complex-valued

RPCA in a 3-source 6-sensor case.
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(using RPCA) and their corresponding true eigenvectors in a 20-

dimensional PCA problem is shown versus on-line iterations.
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On the other hand, as the dimensionality increases,

while very large eigenspreads are still undesirable

due to the same reason, smaller and previously

acceptable eigenspread values too become undesir-

able because consecutive eigenvalues approach each

other. This causes the discriminability of the

eigenvectors corresponding to these eigenvalues

diminish as their ratio approaches unity. Therefore,

the trade-off between small and large eigenspreads

becomes significantly difficult. Ideally, the ratios

between consecutive eigenvalues must be identical

for equal discriminability of all subspace compo-

nents. Variations from this uniformity will result in

faster convergence in some eigenvectors, while

others will suffer from almost spherical subspaces

indiscriminability.

In Fig. 6, the convergence of the 20 estimated

eigenvectors to their corresponding true values is

illustrated in terms of the angle between them (in

degrees) versus the number of on-line iterations.

The data is generated by a 20-dimensional jointly

Gaussian distribution with zero-mean, and a co-

variance matrix with eigenvalues equal to the

powers (from 0 to 19) of 1.5 and eigenvectors

selected randomly (corresponding to an eigen-

spread of 1.519$2,217). This result is typical of

higher dimensional cases where major components

converge relatively fast and minor components take

much longer (in terms of samples and iterations) to

reach the same level of accuracy.

5. Conclusions

In this paper, a novel perturbation-based fixed-point

algorithm for subspace tracking is presented. The

fast tracking capability is enabled by the recursive

nature of the complete eigenvector matrix updates.

The proposed algorithm facilitates real-time im-

plementation since the recursions are based on

well-structured matrix multiplications that are the

consequences of the rank-one perturbation updates

exploited in the derivation of the algorithm.

Extension of this technique to CCA analysis

resulted in obtaining an on-line recursive CCA

algorithm. Performance comparisons with tradi-

tional algorithms, as well as a structurally similar

perturbation-based approach demonstrated the

advantages of the recursive PCA algorithm in

terms of convergence speed and accuracy.
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Notes

1. In practice, if the samples are not generated by a zero-mean

process, a running sample mean estimator could be employed

to compensate for this fact. Then this biased estimator can be

replaced by the unbiased version and the following derivations

can be modified accordingly.

2. A further modification that might be installed is to use a time-

varying g value. In the experiments, we used an exponentially

decaying profile for g,g=g0exp(jk/t). This forces the covari-

ance estimation bias to diminish even faster.
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