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Abstract. Multivariate density estimation is an important problem that is frequently encountered in statistical

learning and signal processing. One of the most popular techniques is Parzen windowing, also referred to as

kernel density estimation. Gaussianization is a procedure that allows one to estimate multivariate densities

efficiently from the marginal densities of the individual random variables. In this paper, we present an optimal
density estimation scheme that combines the desirable properties of Parzen windowing and Gaussianization,

using minimum Kullback–Leibler divergence as the optimality criterion for selecting the kernel size in the

Parzen windowing step. The utility of the estimate is illustrated in classifier design, independent components

analysis, and Prices_ theorem.

Keywords: Gaussianization, multivariate density estimation, statistical signal processing

1. Introduction

In statistical signal processing and machine learning,

the problem of estimating the probability distribution

of the observed data is frequently encountered. Many

situations require this estimation to be carried out for

multidimensional data and given a finite set of

samples; the solutions are affected negatively by

increasing data dimensionality due to the curse of

dimensionality. As a course rule-of-thumb, the num-

ber of samples required to attain the same level of

accuracy in density and other forms of statistical

estimation as dimensionality n increases, the number

of samples should increase exponentially õNn, if N
is the number of sample required for the single-

dimensional case to achieve the desired accuracy.

The literature, therefore, extensively deals with the

fundamental problem of density estimation using

three main approaches: parametric, semiparametric,

and nonparametric. Traditionally, parametric ap-

proaches have been adopted widely, since combined

with Bayesian techniques (such as maximum likeli-

hood and maximum a posteriori) yield tractable and

sometimes useful solutions under the assumptions

made [1]. Advances in signal processing and ma-

chine learning require less restrictive assumptions,



thus parametric techniques become less desirable for a

broad application base. Consequently, semiparamet-

ric and nonparametric density estimation approaches

have become the focus of statistical learning.

Semiparametric density estimation techniques of-

fer solutions under less restrictive assumptions

regarding the data structures. The most commonly

used semiparametric method is the so-called mixture

model (although one could also argue that this is still

a parametric model). The mixture model approach

allows the designer to approximate the data as a two-

step mixture of parametric distributions, where each

parametric model is also associated with a prior

probability of being selected for data generation [2].

The Gaussian Mixture Model (GMM) has especially

attracted much attention and has been widely utilized

due to its asymptotic universal approximation capa-

bility that arises from the theory of radial basis

function networks. In mixture models, selecting the

appropriate number of components is still not a

trivial problem. Alternative semiparametric models

exploit series-expansion approaches such as Edge-

worth, or Gram–Charlier, where the unknown data

distribution is assumed to be sufficiently close to a

reference distribution (typically a Gaussian) and a

truncated series expansion is utilized to model the

data. For practical reasons, the series are usually

truncated at low orders and might not always provide

the desired flexibility to model a wide class of

distributions that one might encounter.

Nonparametric approaches, on the other hand, often

allow the designer to make the least restrictive

assumptions regarding the data distribution. Density

estimation techniques in this class include histogram

(the most crude one), nearest neighbor estimates

(better), and kernel density estimates (also known as

Parzen windowing) [1]. The variable-size kernel

estimates and weighted kernel estimates [1, 3] pro-

vide immense flexibility in modeling power with

desirable small-sample accuracy levels. Parzen win-

dowing is a generalization of the histogram tech-

nique, where smoother membership functions are

used instead of the rectangular volumes. Parzen

windowing asymptotically yields consistent esti-

mates, but the kernel size selection (similar to bin-

size selection) can become a challenging problem.

While maximum-likelihood like approaches can be

employed for tackling this difficulty, the sample

sparsity in high-dimensional situations might force

the kernels to be extremely large, creating a high bias

in the estimates. Furthermore, assuming variable and

full-covariance freedom for multidimensional kernel

density estimation might lead to an computationally

intractable ML optimization problem. Introducing

variable kernel-size further complicates computations

and makes the estimator even less desirable. In

general, density estimation in high-dimensional

spaces is an undesirable and challenging problem

and any simplifying procedures are likely to bring

both computational and performance improvements.

In this paper, we will exploit the fact that if the

joint distribution of the high-dimensional data is

Gaussian, then one only needs to estimate the mean

and covariance. To exploit this, in general, one needs

to nonlinearly transform the original data into a

Gaussian distributed data using an appropriate func-

tion. Furthermore, we will see that under some

circumstances, the nonlinear transformation can be

defined elementwise reducing the n-dimensional joint

Gaussianization problem to n 1-dimensional Gaussia-

nization problems. In the latter case, the individual

Gaussianizing functions for each dimensionality of

the original data are determined solely by the

marginal distribution of the data along the direction

of interest. This marginal distribution will be accu-

rately estimated nonparametrically using Parzen win-

dowing by minimizing the Kullback–Leibler

divergence (KLD) [4, 5] with respect to the true

marginal distribution of the data. Once the marginal

densities are estimated, they will be used to transform

the data to Gaussian, where joint statistics can be

simply determined by sample covariance estimation.

2. Gaussianization for Density Estimation

Given an n-dimensional random vector X with joint

probability density function (pdf) f(x), our goal is to

estimate this pdf nonparametrically such that the

KLD between the estimated distribution bff xð Þ and f(x)

is minimized; this is equivalent to nonparametric

maximum likelihood density estimation:

min
bff

DKL f bff
�

�

�

� �

� min
bff

Z

f xð Þ log
f xð Þ
bff xð Þ

dx �max
bff

Ef
bff Xð Þ
h i

ð1Þ
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Since KLD is invariant to monotonic (one-to-one)

transformations of the random vector X, the diver-

gence between f and bff is identical to the divergence

between g and bgg, where the latter are true and

estimated Gaussian densities of h(X). In general, the

joint-Gaussianization transform h(.) is a multi-input

multi-output function with a nondiagonal Jacobian.

However, in some cases, it is possible to obtain a

jointly Gaussian Y=h(X), where Yi=hi(Xi), i=1,...,n.

We will refer to such distributions as marginally
Gaussianizable (i.e., employing appropriate mar-

ginal transformations achieves joint Gaussianiz-

tion). Specifically, the span of all Xi such that the

conditional distribution p(x|xi) is unimodal for all xi

will constitute a marginally Gaussianizable sub-

space. Also note that all distributions that satisfy the

linear instantaneous ICA model are marginally

Gaussianizable. To illustrate this, we present two

examples in Fig. 1; the distribution on the left is

marginally Gaussianizable, while the one on the

right is not, since the conditional distribution given

X2 is bimodal at some values of X2. The reason

for this is the following: marginal Gaussianizing

transformations are invertible function and geo-

metrically they correspond to a local nonlinear

stretching/squeezing operation, therefore the non-

convex nature of a conditional distribution as in

Fig. 1b cannot be convexified by such transfor-

mations and joint Gaussianization is not possible

through marginal operations. Nevertheless, the

marginal Gaussianization is still useful in many

cases, especially if combined with tools that can

generate localization of marginally Gaussianizable

components in the data such as local principle

component analysis (PCA), vector quantization, or

clustering. Each local component can be treated

under the presented framework to form a global

mixture density model.

2.1. Marginal Gaussianizing Transformations

Given an n-dimensional random vector X with joint

pdf f(x) that satisfies the convexity condition men-

tioned above, there exist infinitely many functions

h : <n ! <n such that Y=h(X) is jointly Gaussian.

We are particularly interested in the elementwise

Gaussianization of X. Suppose that the ith marginal

of X is distributed according to fi(xi), with a

corresponding cumulative distribution function (cdf)

Fi(xi). Let � (.) denote the cdf of a zero-mean unit-

variance single dimensional Gaussian variable:

� �ð Þ ¼
Z

�

�1

1
ffiffiffiffiffiffi

2�
p e��

2=2d� ð2Þ

According to the fundamental theorem of probability

[4], Yi ¼ ��1 Fi Xið Þð Þ is a zero-mean and unit-

variance Gaussian random variable. Consequently,

we consider the element-wise Gaussianizing func-

tions defined as hi �ð Þ ¼ ��1 Fi �ð Þð Þ. Combining

these marginal Gaussianizing functions for each

dimension of the data, we obtain the Gaussianizing

transformation h : <n ! <n. Note that after this

transformation (whose Jacobian is diagonal every-

where) we obtain a jointly Gaussian vector Y with

zero mean and covariance

S ¼ E YYT
� �

ð3Þ

(a) (b)

Figure 1. Consider two distributions uniform on the regions shown above. Horizontal and vertical axis correspond to X1 and X2,

respectively. The distribution in (a) is marginally Gaussianizable, while the one in (b) is not.
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Hence, if the marginal pdfs of X and the covariance

S are known (or estimated from samples), the joint

pdf of X can be obtained using the fundamental

theorem of probability as

f xð Þ ¼
gS h xð Þð Þ
rh�1 h xð Þð Þ
�

�

�

�

¼ gS h xð Þð Þ� rh xð Þj j

¼ gS h xð Þð Þ�
Y

n

i¼1

fi xið Þ
g1 hi xið Þð Þ ð4Þ

where gS denotes a zero-mean multivariate Gaussian

distribution with covariance S and g1 denotes a zero-

mean univariate Gaussian distribution with unit

variance.

The proposed joint density estimation is based on

Eq. (4). Density estimation is carried out using a set

of independent and identically distributed (iid)

samples {x1,...,xN} drawn from the joint density

f(x). In summary, the marginal distributions fi(.) are

to be approximated using single dimensional Parzen

window estimates. The estimated marginal pdfs are

denoted by bffi :ð Þ. While variable kernel-size and

weighted Parzen window estimates provide more

flexibility and better asymptotic convergence proper-

ties, in this paper, we will employ unweighted and

fixed-size kernel density estimates for simplicity. The

extension to other density estimation methods is trivial.

Since the marginal Gaussianizing functions hi(.)

require an accurate estimate of the marginal distri-

butions of the data, the kernel sizes in the Parzen

window estimates for each dimension must be

optimized. A suitable approach is to minimize the

KLD as in Eq. (1). This procedure will be described

in detail in the next section. From these estimates,

approximate Gaussianizing transformations bhhi :ð Þ can

be easily constructed. Assuming that these estimated

transformations convert the joint data distribution to

Gaussian, the covariance matrix is simply estimated

from the samples using

bSS ¼ 1

N

X
N

j¼1

byy jbyy
T
j ð5Þ

where byyj ¼ bhh xj

	 


.1 In this second phase of the pro-

cedure, we basically assume that the samples

{byy1; :::;byyN} are jointly Gaussian with zero-mean

and assign the sample covariance as the parameters

of the underlying Gaussian distribution. This is

equivalent to selecting the maximum likelihood

parameter estimates for the underlying Gaussian
density, which is also equivalently a minimum

KLD estimate. Overall, the proposed two-step

procedure for estimating the joint distribution of a

set of iid samples equivalently minimizes the KLD in

an approximate manner as illustrated in Fig. 2. The

KLD between the estimated and actual marginal

distributions is minimized to obtain an accurate

estimate of the true Gaussianizing transformation h.

This optimization is performed in a constrained

manner in the manifold of separable distributions in

the pdf space. However, due to estimation errors, an

imperfect transformation bhh is obtained. The

corresponding transformed distribution p
bSS

is pro-

jected optimally to the manifold of Gaussian distri-

butions to obtain g
bSS

, which is a better approximation

to gS, due to the Pythagorean Theorem for KLD [5].

The final density estimate is obtained by employing

the inverse transformation bhh�1 to g
bSS

. Clearly, as the

number of samples increase, the estimated joint

distribution will approach the true underlying data

distribution.

Kernel Density Estimation Parzen windowing is a

kernel-based density estimation method, where the

resulting estimate is continuous and differentiable

provided that the selected kernel is continuous and

differentiable [3, 6]. Given a set of iid scalar samples

{x1,...,xN} with true distribution f(x), the Parzen

window estimate for this distribution is

bff xð Þ ¼ 1

N

X
N

i¼1

K� x� xið Þ ð6Þ

In this expression, the kernel function K� :ð Þ is a

continuous and smooth, zero-mean pdf itself, typi-

cally a Gaussian. The parameter s controls the width
of the kernel and it is referred to as the kernel size.

This pdf estimate is, in general, biased, since its

expected value is E bff xð Þ
h i

¼ f xð Þ*K� xð Þ, where *

denotes convolution. The bias can be asymptotically

reduced to zero by selecting a unimodal symmetric

kernel function (such as the Gaussian) and reducing

the kernel size monotonically with increasing number

of samples, so that the kernel asymptotically

approaches a Dirac-delta function. In the finite sample

case, the kernel size must be selected according to a
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trade-off between estimation bias and variance:

decreasing the kernel size increases the variance,

whereas increasing the kernel size increases the

bias. In particular, if the following are satisfied,

Parzen windowing asymptotically yields an unbi-

ased and consistent estimate: limN!1 � Nð Þ ¼ 0 and

limN!1 N� Nð Þ ¼ 1. To illustrate the effect of

kernel size on the estimated density, Parzen pdf

estimates of 50-sample sets of Laplacian and uni-

formly distributed samples with small and large

kernel sizes are shown in Fig. 3.2

For accurate density estimation, variable kernel

size methods are proposed in the statistics literature

[3]. However, for our purposes (i.e., adaptive

signal processing) such approaches to density

estimation are not feasible due to increased com-

putational complexity. The complexity of informa-

tion theoretic methods based on Parzen density

estimates are already O(N2) in batch operation mode

[7–12]. Assigning and optimizing a different kernel

size for each sample would make the algorithmic

complexity even higher.

Therefore, we will only consider the fixed kernel

size approach where the same kernel size is used

for each sample. This parameter can be optimized

based on various metrics, such as the integrated

square error (ISE) between the estimated and the

actual pdf, as discussed by Fukunaga [13]. In

actuality, the ISE approach is not practical, since

the actual pdf is unknown. However, certain approx-

imations exist. For a Gaussian kernel, Silverman

provides the following rule-of-thumb, which is based

on ISE and the assumption of a Gaussian underlying

density: s=1.06sXNj1/5, where sX denotes the sam-

ple variance of the data [14]. More advanced approx-

imations to the ISE solution are reviewed in [15].

Figure 2. This is an illustration of the proposed joint density estimation procedure. Optimization is carried out in two steps. The marginal

density estimates are determined by minimizing the KLD, which is equivalent to minimizing some form of divergence between the estimated

and actual Gaussianizing transformations, denoted by h and bhh. The divergence between the approximately Gaussianized distribution p
bSS

and the true Gaussianized distribution gS is approximately minimized by projecting p
bSS

to the manifold of Gaussian distributions using

KLD to obtain g
bSS

. This is possible due to the Pythagorean theorem for KLD.
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Maximum likelihood (ML) methods for kernel size

selection have also been investigated by researchers.

For example, Duin used the ML principle to select the

kernel size of a circularly symmetric Gaussian kernel

for joint density estimation with Parzen windowing

[16]. More recently, Schraudolph suggested opti-

mizing the full covariance matrix of the Gaussian

kernel using the ML approach [12]. In joint density

estimation, another option is to assume a separable

multidimensional kernel (whose covariance is diago-

nal in the case of Gaussian kernels). Then, one only

needs to optimize the size of each marginal kernel

using single dimensional samples corresponding to

the marginals of the joint density being estimated.

The latter approach has the desirable property that

the kernel functions used for marginal density

estimation uniquely determine the kernel function

that is used for joint density estimation, in addition

to the fact that the marginal of the estimated joint

density is identical to the estimated marginal density

using this type of separable kernels [10]. In this latter

approach, the joint density estimate becomes

bff xð Þ ¼ 1

N

X
N

i¼1

Y
n

k¼1

K�k
xk � xk

i

	 


ð7Þ
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Figure 3. Laplacian and uniform distributions estimated using Parzen windowing with Gaussian kernels (kernel size indicated in titles)

with 50 samples from each distribution.
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where xk denotes the kth entry of the vector x and the

multidimensional kernel is the product of uni-

dimensional kernels, all using appropriately selected

widths—referred to as product kernel-based Parzen

windowing.

In this paper, motivated by the graphical descrip-

tion of the method in Fig. 2, and the fact that

optimality of density estimates need to consider the

information geometry of certain manifolds in the pdf

space [17], we assume the minimum KLD criterion.

Recalling the equivalence between minimum KLD

and ML principles pointed out in Eq. (1), the ML

approach turns out to be optimal in an information

theoretic sense after all.

Maximum Likelihood Kernel Size Optimization
Here, we will focus on the optimization of the kernel

size in Parzen window density estimates for single-

dimensional variables. Consider the density estima-

tor given in Eq. (6). Our goal is to minimize the

KLD between the true and the estimated densities

f(x) and bff xð Þ. Equivalently we will maximize the log-

likelihood of the observed data, i.e.,EX log bff Xð Þ
h i

. The

expectation is approximated by the sample mean,

resulting in

J �ð Þ ¼ 1

N

X
N

j¼1

log bff xj

	 


ð8Þ

For Parzen windowing this becomes

J �ð Þ ¼ 1

N

X
N

j¼1

log
1

N

X
N

i¼1

K� xj � xi

	 


 !

ð9Þ

If a unimodal and symmetric kernel function (such

as Gaussian) is used, this criterion exhibits an

undesirable global maximum at the null kernel

size, since as s approaches zero, the kernel

approaches a Dirac-d function and the criterion

attains a value of infinity. To avoid this situation,

the criterion needs to be modified in accordance with

the leave-one-out technique. This yields

J �ð Þ ¼ 1

N

X
N

j¼1

log
1

N � 1

X
N

i¼1;i6¼j

K� xj � xi

	 


 !

ð10Þ

A similar approach for optimizing the kernel size was

previously proposed by Viola et al. [18], where the

available samples were partitioned to two disjoint

sets: {x1,..., xM} and {xM+1,..., xN}. While one set was

used in the density estimation, the other was used in

the sample mean. If desired, a generalized version of

Eq. (10) could be obtained along these lines using a

leave-M out strategy; however, this would increase

the computational complexity of evaluating the cost

function in a combinatorial way in proportion with M.

The kernel size can be optimized by maximizing Eq.

(10) using standard iterative procedures such as a

gradient ascent or an EM-like fixed-point algorithm.

Alternatively, (semi-) Newton methods could be uti-

lized for faster convergence. Silverman_s rule-of-thumb

is a suitable initial estimate for the optimal kernel size.

We illustrate the utility of the kernel size optimi-

zation procedure described above by demonstrating

how the solution approximates the actual optimal

kernel size according to the minimum KLD measure.

For this purpose, we have performed a series of

Monte Carlo experiments to evaluate the value of the

proposed kernel size optimization procedure for

marginal density estimation. For generalized Gaussian

densities of order 1, 2, 3, and 5 (all set to be unit-

variance), using 20 independent experiments for each,

the optimal kernel size that minimizes Eq. (10) for a

range of sample sizes were determined.3 Since the true

distributions are known, for each case, the true

optimal kernel size values minimizing the actual

KLD were also numerically determined. Tables 1 and

2 summarize the results, which demonstrate that the

estimated kernel size values match their theoretical

values (within reasonable statistical variations).

2.2. Joint Gaussianizing Transformations

The marginal Gaussianizing transformations have

the drawback of being unsuitable for some situations

such as the example shown in Fig. 1. In general, a

Table 1. Average optimal Gaussian kernel sizes for unit-

variance generalized Gaussian distributions of order b for Parzen

estimates using N samples.

N=50 N=100 N=150 N=200

b=1 0.56 0.48 0.45 0.41

b=2 0.50 0.38 0.38 0.38

b=3 0.43 0.37 0.34 0.30

b=5 0.34 0.27 0.25 0.24
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joint Gaussianization procedure is necessary and a

neural network could be employed for this purpose.

Consider a multiplayer perceptron (MLP) for this

purpose. Given a random vector X, there exists an

MLP g(.) such that Y=g(X) is jointly Gaussian with

zero-mean and identity-covariance. This MLP could

be determined by optimizing its coefficients with

respect to a suitable criterion under a fixed-output-

covariance constraint. As it is well known, under the

fixed-covariance constraint, the Gaussian distribution

maximizes entropy [5]. Consequently, the weights of

the MLP are optimized according to the following:

max
w

HS Yð Þ subject to E Y½ � ¼ 0;E YYT
� �

¼ I ð11Þ

This is similar to the Infomax principle [19] where

the entropy at the output of a sigmoid nonlinearity is

maximized to estimate the joint entropy of a

distribution. Infomax, however, relies on the accu-

rate estimation of appropriate sigmoid nonlinearities

for the proper estimation of the joint distribution. In

many situations, these nonlinear functions may be

difficult to guess.

In Eq. (11), the entropy of the network output can

be estimated using Parzen windowing with multidi-

mensional kernels. If these kernels are selected to be

separable as in Eq. (7) (e.g., in the case of a

Gaussian kernel, with a diagonal kernel covariance

matrix) the maximum likelihood procedure de-

scribed in the previous section can be employed to

optimize the kernel size individually for each

dimension. If the topology is a 2-layer MLP, the

constraints can be incorporated by selecting the

linear second (output) layer weight matrix to satisfy

the constraints (i.e., as the whitening matrix of the

hidden layer outputs) after every update of the first

layer weight matrix. We will not study this possibil-

ity in detail here, since the focus of this paper is the

marginal Gaussianization case.

3. Applications

The Gaussianization procedure described above is

applicable to all problems where the solution can be

formalized based on the joint density estimate of the

data. In this section, we will present the following

applications: nonparametric classifier design, inde-

pendent component analysis, and extending Price_s
theorem.

3.1. MAP Classifier Design

In this experiment, we demonstrate the utility of the

proposed Gaussianization-based joint density estima-

tion scheme for classifier design. According to the

theory of Bayesian risk minimization for pattern

recognition, a classifier that selects the class for

which the a posteriori probability of the feature

vector sample is maximized asymptotically mini-

mizes the probability of classification error (denoted

by pe). That is, in a two-class scenario with class

priors {p1,p2} and conditional class distributions

{ f1(x), f2(x)}, the optimal strategy to minimize pe is

to select the class with larger {pi fi(x)}, i=1,2.

In practice, however, the class priors and the data

distributions have to be estimated from samples. In

the nonparametric framework we pursued in this

paper, one could use either the Gaussianization-

based estimate provided in Eq. (4) or the product-

kernel-based Parzen windowing method presented in

Eq. (7). Both methods could use the same KL-

optimized marginal density estimates with the

corresponding univariate kernels. The difference is

in the way they estimate the joint distribution using the

knowledge provided by the marginal density estimates.

At this point, we expect the former technique to be

more data-efficient than the latter, and the results we

will show next confirm this hypothesis.

A set of Monte Carlo simulations is designed as

follows. A finite number of training samples are

generated from two 2-dimensional class distributions,

which are both Laplacian. Specifically, we used equal-

prior identical distributions fi xð Þ ¼ c1e�c2 x�mik k1

whose means were selected as m1=[j1j1]T and

m2=[1 1]T. Due to symmetry, the optimal Bayesian

classifier has a linear boundary passing through the

origin and has a slope of j1 in the 2-dimensional

feature space.

For each of the training data set sizes of 50 to 250,

we conducted 100 Monte Carlo simulations. Three

Table 2. Average optimal Gaussian kernel sizes for unit-

variance generalized Gaussian distributions of order b for the true

KLD.

N=50 N=100 N=150 N=200

b=1 0.51 0.38 0.30 0.31

b=2 0.49 0.41 0.41 0.36

b=3 0.43 0.35 0.34 0.31

b=5 0.34 0.28 0.26 0.23
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classifiers are designed using each training data set:

Gaussianization-based, Product-kernel-based, and

True-Bayesian. All classifiers were tested on an

independent set of 100 samples (generated randomly

in each experiment). Average probability error plots of

these classifiers on the testing set are shown in Fig. 4a.

As expected, the True-Bayesian classifier yields the

lower bound, while the Gaussianization-based classifier

outperforms the Product-kernel-based classifier. These

results demonstrate that the Gaussianization-based joint

density estimation procedure is extracting the higher-

order statistical information about the joint distribution

more effectively than the product-kernel estimator.

In order to test the hypothesis that this method will

avoid the so-called curse of dimensionality the

experiment is generalized to more than two dimensions

while maintaining the same symmetry conditions. A set

of 100 Monte Carlo simulations under similar training

and testing conditions are repeated for each data

dimensionality (using 100 training samples in every

case). The results summarized in Fig. 4b demonstrate

that the Gaussianization-based density is able to cope

with the increasing dimensionality of the features given

the same number of training samples, while the product-

kernel approach starts breaking down.

3.2. Independent Components Analysis

Independent components analysis (ICA) is now a

mature field with numerous approaches and algo-

rithms to solve the basic instantaneous linear mixture

case as well as a variety of extensions of these basic

principles to solve the more complicated problems

involving convolutive or nonlinear mixtures [20–22].

Due to the existence of a wide literature and

excellent survey papers [23, 24], in addition to the

books listed above, we shall not go into a detailed

literature survey. In this section, we will demonstrate

the utility of Gaussianization in ICA and establish its

relationship with nonlinear principal components

analysis (NPCA) [25]. We would like to stress that

the goal of this section is not to present yet another

ICA algorithm, but to demonstrate an interesting

selection of the nonlinearity in NPCA as this method

is applied to solving the linear ICA problem [26], as

well as to illustrate the applicability of Gaussianiza-

tion to nonlinear ICA (which will be called Homo-

morphic ICA) [27]. For the latter problem, certain

existence and uniqueness criteria have recently been

demonstrated by Hyvarinen and Pajunen [28]. Sev-

eral different techniques include minimum mutual

information [29], variational Bayesian learning [30],

symplectic transformations and nonparametric entro-

py estimates [31], higher order statistics [32],

temporal decorrelation [33], and kernel-based meth-

ods [34]. A review of the current state-of-the-art in

nonlinear ICA is provided recently by Jutten and

Karhunen [24].

Nonlinear ICA The nonlinear ICA problem is

described by a generative signal model that assumes

the observed signals, denoted by x, are a nonlinear
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Figure 4. Probability of error for the three classifiers on a test set of 100 samples averaged over 100 Monte Carlo runs for (a) different

sizes of training set with fixed dimensionality (b) different dimensionalities of training set using fixed number of training samples.
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instantaneous function of some unknown indepen-

dent source signals, denoted by s. In particular,

xk=h(sk), where k is the sample index. Let the

observation vector be n-dimensional, xk 2 <n. Then,

according to the existence results on nonlinear ICA,

it is always possible to construct a function

g : <n ! <n, such that the outputs y=g(x) are

mutually independent [28]. Furthermore, this sepa-

ration function is not unique. Clearly, there exist a

number of operations that one might employ to

change the distributions of these outputs individu-

ally without introducing mutual dependence; thus

an uncertainty regarding the independent compo-

nent densities exists. Furthermore, as will be

shown later, in accordance with the rotation

uncertainty reported in [28], the Homomorphic

ICA solution will separate the observation into

independent components, which are possibly a

related to the original sources by an unknown

rotation matrix. Also, by partitioning the variables

in y to disjoint sets and taking various nonlinear

combinations of the variables in these partitions, it is

possible to generate a random vector z 2 <m, where

m<n is the number of partitions. Thus, z=f(y)=f(g(x))

also has independent components. Hence it is, in

fact, possible to come up with infinitely many

separating solutions that result in a smaller number

of outputs than the inputs. A number of possible

regularization conditions have been proposed before

[28, 30] to ensure uniqueness and the actual

separation of the unknown sources.

Due to these uncertainties, we will consider the

problem of determining n independent components

from x 2 <n, which is a necessary condition for

independent source separation, but not sufficient. In

particular, the essence of the proposed solution is to

generate n independent Gaussian distributed outputs

and this can be achieved quite easily. Consider the

ideal case where an observation vector x 2 <n is

available and the marginal cumulative distribution

functions (cdf) of each observed signal is known. Let

x=[x1,...,xn]T and let Fd(.) denote the cdf of xd. Also

let �� :ð Þ denote the cdf of a zero-mean Gaussian

random variable with variance s2. According to

Section 2.1, zd has a zero-mean, unit-variance

Gaussian pdf: zd ¼ ��1
1 Fd xd

	 
	 


¼ gd xd
	 


. Combining

these random variables into a random vector

z=[z1,...,zn]T, we observe that the joint distribution of

z is also zero-mean Gaussian with covariance Sz. Now

consider the principal components of z. Let y=QTz,

where Q is the orthonormal eigenvector of Sz, such

that Sz=QDQT and D is the diagonal eigenvalue matrix.

Then the covariance of y is Sy=D. Hence, since z is

zero-mean jointly Gaussian, y is zero-mean and jointly

Gaussian with covariance D. It is well known that

uncorrelated Gaussian random variables are also

independent. Therefore, the components of y are

mutually independent.4 The overall scheme of the

proposed nonlinear ICA topology is illustrated in Fig. 5.

Certain conditions must be met by the nonlinear

mixing function for the separated outputs and the

original sources to have maximal mutual information.

In the most restrictive case, for the reconstruction of

independent components that are related to the original

sources by an invertible function, the mixing function

must be invertible, i.e., its Jacobian must be non-

singular when evaluated at any point in its input

space.5 The following theorem summarizes this fact.

Theorem 3.2.1. If the source distribution obeys the

convexity condition of Section 2.1, the mixing

nonlinearity is invertible, and the marginal probabil-

ity distributions of the observed vector are always

positive except possibly at a set of points whose

measure is zero, then, with probability one, there is a

one-to-one function between the source signals and

the independent components when the outputs are

constructed according to Homomorphic ICA rules.

Proof By the first two assumptions, the joint

mixture distribution obeys the convexity condition.

By construction the PCA matrix QT is invertible and

the Gaussianizing function g is monotonically in-

creasing in all principal directions with probability

one since the measure of the set on which its

Jacobian has zero eigenvalues is zero. Similarly,

due to the same reason, the probability of having

source signals in this zero-measure set is zero.

Therefore, with probability one, the Jacobian of the

overall nonlinear function from s to y is invertible.

Hence, there is a one-to-one relationship between

these two vectors. Í
Another possible scenario is that the mixing

nonlinearity is only locally invertible (i.e., its

Jacobian is invertible in a set S � <n). In this case,

if S is the support of the source distribution, one can

achieve maximum mutual information between the
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separated outputs and the original sources. It is well

known that the nonlinear ICA problem is ill-posed

and the original sources can be at most resolved up

to a rotation uncertainty with the independence

assumptions alone. That is, even if the mixing

function is invertible, one can arrive at independent

components that are not necessarily the separated

versions of the original sources. This can easily be

observed by examining the Homomorphic ICA

output. Suppose a set of independent components

are obtained from an observed vector x by y=QTg(x),

where g(.) consists of individual Gaussianizing

functions for each components of x and Q is the

orthonormal eigenvector that is the solution to the

PCA problem after Gaussianization. If the covariance

of y is L, by selecting an arbitrary orthonormal matrix

R, one can generate the output z=RLj1/2, which still

has independent components (since it is jointly

Gaussian with identity covariance matrix), however,

different choices of R result in different independent

components. In order to resolve this ambiguity, one

needs additional information about the sources or the

mixing process.

The principle can be applied to complex-valued

nonlinear mixtures as well. Consider the following

complex-signal-complex-mixture model: xr þ ixi ¼
hr sð Þþ ihr sð Þ, where s ¼ sr þ isi. The Gaussianizing

homomorphic transformations are denoted by gdr(.) and

gdi(.) for the real and imaginary parts of the dth

observed signal in x. The result of Gaussianization is

the complex Gaussian vector z ¼ zr þ izi, whose

covariance is Sz=QLQH. The separated outputs are

given by y=QHz. A theorem similar to the one above

can be proven for the complex-valued case as well.

Theorem 3.2.2 If the source distribution obeys the

convexity condition of Section 2.1, the marginal

probability distributions of the observed vector are

always positive except possibly at a set of points

whose measure is zero, and the function h sr; sið Þ ¼
hT

r sr; sið Þ hT
i sr; sið Þ

� �T
is invertible then, with proba-

bility one, the mutual information between the

original source vector s and the separated output

vector y is maximized.

Proof Note that, the output is explicitly given by yr þ
iyi ¼ QT

r � iQT
i

	 


gr hr sð Þð Þ þ igi hi sð Þð Þð Þ. We con-

struct the vectors y ¼ yT
r yT

i

� �

T and s ¼ sT
r sT

i

� �T
.

The Jacobian of y with respect to s is

@y

@s
¼ QT

r QT
i

�QT
i QT

r

� �

� rgr hr sð Þð Þ 0

0 rgi hi sð Þð Þ

� �

� @hr sð Þ=@sr @hr sð Þ=@si

@hi sð Þ=@sr @hi sð Þ=@si

� �

ð12Þ

This Jacobian is nonsingular at every possible value

of s if and only if the third term on the right hand side

of Eq. (12) is nonsingular for every value, since the

other two terms are nonsingular (the second term is

nonsingular with probability one as discussed in

Theorem 3.2.1). Thus with Homomorphic ICA, the

function from the original sources to the outputs is

invertible with probability one, which equivalently

means maximum mutual information between these

vector signals. Í
Linear ICA The linear ICA problem is described by a

generative signal model that assumes the observed

signals, denoted by x, and the sources, denoted by s,

are obtained by a square linear system of equations.

The sources are assumed to be statistically indepen-

dent. In summary, assuming an unknown mixing

matrix H, we have xk=Hsk where the subscript k is the

sample/time index. The linear ICA problem exhibits

permutation and scaling ambiguities, which cannot be

resolved by the independence assumption. For the

sake of simplicity in the following arguments, we will

assume that the marginal pdfs of the sources and the

mixtures are known and all are strictly positive valued

(to guarantee the invertibility of Gaussinizing trans-

formations). It is assumed without loss of generality

sk

h(.)

xk
g1(.)

gn(.)

zk

QT 

yk

Unknown
Nonlinear
Mixture

Homomorphic 
Gaussianizing

Transformation

Principal
Components

Analysis

Figure 5. A schematic diagram of the proposed homomorphic

independent components analysis topology.
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that the sources are already zero-mean. Consider the

topology shown in Fig. 6 as a solution to linear ICA.

The observed mixtures are first spatially whitened by

Wx to generate the whitened mixture vector x. Since

whitening reduces the mixing matrix to only a

coordinate rotation, without loss of generality, we

can always focus on mixing matrices that are

orthonormal. In this case, we assume that the mixing

matrix is R2=WxH. Since the marginal pdfs of the

mixtures are known, one can construct the Gaussian-

izing functions gi(.) according to the previous section

to obtain the Gaussianized mixtures xg. Whitening the

Gaussianized mixtures will yield zero-mean unit-

variance and uncorrelated signals z. Since z is jointly

Gaussian, uncorrelatedness corresponds to mutual

independence. However, considering the function

from the sources (s) to the Gaussianized mixtures

(xg) as a post-nonlinear mixture, we notice that

although by obtaining z we have obtained indepen-

dent components, due to the inherent rotation ambi-

guity of nonlinear mixtures in the ICA framework

[28], we have not yet achieved source separation.

Consequently, there is still an unknown orthonormal

matrix R1 that will transform z into Gaussianized

versions of the original sources. If the marginal source

pdfs are known, the inverse of the Gaussianizing

transformations for the sources could be obtained in

accordance with the previous section (denoted by hi(.)

in the figure), which would transform sg to the

original source distribution, thus yield the separated

source signals (at least their estimates).

In summary, given the whitened mixtures, their

marginal pdfs and the marginal pdfs of the sources (up

to permutation and scaling ambiguities in accordance

with the theory of linear ICA), it is possible to obtain

an estimate of the orthonormal mixing matrix R2 and

the sources s by training a constrained multilayer

perceptron (MLP) topology with first layer weights

given by R1 and second layer weights given by R2.

The nonlinear functions of the hidden layer process-

ing elements (PE) are determined by the inverse

Gaussianizing transformations of the source signals.

This MLP with square first and second layer weight

matrices would be trained according to the following

constrained optimization problem:

min
R1;R2

E x� R2hðR1zÞk k2
h i

subject to R1RT
1

¼ I;R2RT
2 ¼ I: ð13Þ

Constrained neural structures of this type have been

considered previously by Fiori [35]. Interested read-

ers are referred to his work and the references therein

to gain a detailed understanding of this subject.

This technique is, in fact, a special case based on

mutual information of the nonlinear PCA approach for

solving linear ICA using properly selected nonlinear

projection functions. Various choices of these func-

tions correspond to different ICA criteria ranging from

kurtosis to maximum likelihood (ML) [20]. In the most

general sense, the NPCA problem is compactly

defined by the following optimization problem:

min
W

E x�WfðWTxÞ
�

�

�

�

2
h i

ð14Þ

where f(.) is an elementwise function (i.e., with a

diagonal Jacobian at every point) that is selected a
priori. For the special case of f(z)=z, this optimization

problem reduces to the linear bottleneck topology,

which is utilized by Xu to obtain the LMSER algorithm

for linear PCA [36]. Returning to the topology in Fig.

6, under the assumptions of invertibility (which is

satisfied if and only if the source pdfs are strictly

greater than zero6) we observe that z=Wzg(x) and

x=R2s, therefore, the cost function in Eq. (13) is

E R2s� R2h R1Wzg R2sð Þð Þk k2
h i

. Being orthonormal,

R2 does not affect the Euclidean norm, and the cost

becomes E s� h R1Wzg R2sð Þð Þk k2
h i

. In the ICA

setting, s is approximated by its estimate, the

separated outputs y, which is the output of the h(.)

stage of Fig. 1. In the same setting, assuming

whitened mixtures, NPCA would optimize

min
W

E y� f yð Þk k2
h i

ð15Þ

where y=wx, in accordance with Eq. (14) [20]. A

direct comparison of Eq. (15) and the expression

Figure 6. Schematic diagram of the proposed homomorphic

linear ICA topology.
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given above that is equivalent to Eq. (13) yields

f yð Þ ¼ h R1Wzg R2yð Þð Þ. In summary, the homomor-

phic linear ICA approach tries to determine a

nonlinear subspace projection of the separated outputs

such that the projections become independent. While

an arbitrary selection of the nonlinear projection

functions would not necessarily imply independence

of the separated outputs, the proposed approach

specifically exploits homomorphic Gaussianizing

transformations of the signals such that orthogonality

(uncorelatedness of zero-mean signals) is equivalent

to mutual independence.

3.3. Extending Price_s Theorem to Non-Gaussian
Input Distributions

In nonlinear information processing, Price_s theorem

plays an important role [37]. It allows calculating the

expected value of a nonlinear function of jointly

Gaussian input random variables by facilitating the

construction of a set of ordinary or partial differential

equations relating the sought quantity to the correla-

tion coefficients between pairs of input variables.

While the original theorem deals with the class of

separable nonlinear functions, several extensions to

Price_s theorem have been proposed to generalize the

theorem. Specifically, while Price_s original theorem

dealt with separable functions on multiple input

arguments, McMahon provided a generalization to

bivariate jointly Gaussian inputs processed by non-

linear functions that are not necessarily separable

[38]. Pawula extended McMahon_s result to arbitrary

number of input arguments [39]. While the original

theorem and these extensions relied on the use of

Laplace transforms, which introduced restrictive

existence conditions for the integrals, the condition

on the nonlinear function for the existence of the

expectation was relaxed by Papoulis in the bivariate

case [40]. Papoulis_ idea was also utilized later by

Brown in determining the most general form of

Price_s theorem to date including its converse

statement with a weak convergence condition on

the nonlinearity involved [41]. Recently, Price_s
theorem was also generalized for functions of any

number of jointly Gaussian complex random varia-

bles [42]. Price_s theorem and almost all of its

extensions deal with the problem of information

processing by nonlinear memoryless systems acting

on jointly Gaussian inputs (with the exception of

McGraw and Wagner_s extension of the result to

elliptically symmetric distributions [43], which is a

special case of marginally Gaussianizable distribu-

tions that we will discuss here. Since nonlinear

systems with finite-memory can be regarded as

memoryless provided that the input vector definition

is extended to encompass all past input values within

the memory depth, the application of Price_s theorem

to finite-memory systems such as finite impulse

response (FIR) filters and time-delay neural networks

(TDNN) is trivial. All one needs to do is to modify

the input vector and the associated covariance matrix

by considering the temporal correlations in the input

signal. In this section, we will extend Price_s
theorem such that nonlinear finite-memory informa-

tion processing systems acting on stationary inputs

with arbitrary probability distributions can be ana-

lyzed. For simplicity, only the case of real-valued

signals will be considered here. Extensions of the

idea presented here to complex signals can be easily

accomplished following the same general principles

and utilizing previously derived results on complex

valued Gaussian inputs [42] and complex homomor-

phic ICA mentioned above. For completeness, we

first present Brown_s extension of Price_s theorem.

Theorem 3.3.1 Assume that X is a random vector

with components X1,...,Xn. Without loss of general-

ity, suppose that E[Xi]=0 and E[Xi
2]=1 for i=1,...,n.

Let rij be the correlation coefficient between Xi and

Xj, i.e., rij=E[XiXj], where imj. Suppose the joint

probability density function (pdf) of X is pX(x,r),

where r denotes dependency of the joint distribution

on the inter-variable correlations. The pdf pX(x,r) is

Gaussian if and only if the condition

@EX f Xð Þ½ �
@�ij

¼ EX

@2f Xð Þ
@Xi@Xj

� �

ð16Þ

holds identically for all real valued functions f(X)

defined on the n-dimensional Euclidean space having

bounded continuous second partial derivatives with

respect to its arguments Xi.

Proof Please see [41]. Í

Now, we extend Price_s theorem to non-Gaussian

inputs. Consider a memoryless nonlinear system

g(Z), where the input vector Z has an arbitrary joint

distribution pZ(.). In the case of a causal nonlinear
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system with known finite memory depth, all we need

to do is to define a new input vector consisting of all

past inputs upto the memory depth of the system.

Suppose that the Gaussianizing transformations for

Zi are known to be hi(.). Notice that this procedure

does not require the knowledge of the full joint pdf

pZ(.), but only the marginal pdfs pi(.). In accordance

with Price_s theorem, we are interested in evaluating

the following:

EZ g Zð Þ½ � ¼
Z

g zð ÞpZ zð Þdz ð17Þ

Using marginal Gaussianization, with a change of

variables we observe that

EZ g Zð Þ½ � ¼
R

g h�1 xð Þ
	 


pZ h�1 xð Þ
	 


jrh�1 xð Þ
�

�dx

¼
Z

g h�1 xð Þ
	 
 pZ h�1 xð Þ

	 


rh h�1 xð Þ
	 
�

�

�

�

dx

¼
Z

g h�1 xð Þ
	 


G x;Sð Þdx

¼ EX g h�1 Xð Þ
	 
� �

:

ð18Þ

In Eq. (18), we assumed h(.) is invertible. Defining

f(X)=g(hj1(X)), where X is jointly Gaussian, we can

employ Theorem 3.3.1 immediately. Thus, for

arbitrary functions of inputs with arbitrary

distributions that obey the convexity condition, we

obtain the following theorem.

Theorem 3.3.2 Assume that Z is a random vector

with components Z1,...,Zn. Suppose that the marginal

Gaussianizing function h(.) for Z is known. Let

X=h(Z) be the corresponding jointly Gaussian

random vector with distribution G(x,S). If h(.) is

invertible then

@EZ g Zð Þ½ �
@�ij

¼
@EX g h�1 Xð Þ

	 
� �

@�ij

¼ EX

@2g h�1 Xð Þ
	 


@Xi@Xj

� �

¼ EX

gij h�1 Xð Þ
	 


h0i h�1
i Xið Þ

	 


h0j h�1
j Xj

	 


� �

2

4

3

5

ð19Þ

for all real valued functions g : <n ! <n with

bounded continuous second partial derivatives,

gij zð Þ ¼ @2g zð Þ



@zi@zj

	 


, such that

g Zð Þj < Ae

P

k

h�
k

Zkð Þ
for some 0 < � < 2;A > 0

�

�

�

�

�

ð20Þ

Conversely, for given invertible hi(.), i=1,...,n, if

the equality in Eq. (19) is satisfied for all g(.) as

described above, then X is jointly Gaussian with pdf

G(x,S). Thus, the joint distribution of Z is given by

pZ zð Þ ¼ G h zð Þ;Sð Þ
rh�1 h zð Þð Þ
�

�

�

�

¼ G h zð Þ;Sð Þ rh zð Þj j: ð21Þ

Proof Given the conditions stated in the theorem,

the derivation in Eq. (19) is easily obtained using Eq.

(18) in the first equation, Eq. (16) in the second

equation, and chain rule of differentiation in the third

equation. The existence condition in Eq. (20) is also

obtained easily by an invertible change of variables

from the relaxed existence condition for EX[f(X)]

pointed out by Papoulis [40], which is

f Xð Þj j < Ae

P

k

X�
k

for some 0 < � < 2;A > 0 ð22Þ

The proof of the converse statement follows directly

from the converse statement of Theorem 3.3.1 using

the fundamental theorem of probability and the

invertibility of h(.). Í
4. Conclusion

Nonparametric multivariate density estimation is an

important and very difficult ill-posed problem that

has fundamental consequences in statistical signal

processing and machine learning. Here we proposed a

joint density estimation methodology that combines

the Gaussianization principle with Parzen windowing.

The former effectively concentrates all higher-order

statistical information in the data to second-order

statistics. The latter is a simple, yet useful density

estimation technique based on the use of smooth

kernel functions, especially in univariate density

estimation. Here, the kernel size in Parzen windowing

is optimized using the minimum KLD principle.
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The proposed density estimation method, which

approximately minimizes the KLD by a two-step

procedure, is shown to be more data efficient than

Parzen windowing with a structured multidimensional

kernel. It is also demonstrated that the curse of

dimensionality is beaten (at least to the extent

investigated here) by the proposed method. The

practical and theoretical utility of the Gaussianization

procedure is illustrated in MAP classifier design,

linear and nonlinear ICA, and extending Price_s
theorem to arbitrary distributions.

Finally, note that although we have imposed the

constraint of a fixed kernel size with Parzen window-

ing for the estimation of marginal distributions here,

the overall estimation philosophy could be utilized

with any (and possibly more advanced) univariate

density estimation techniques. Our concern in mak-

ing this selection was simple and tractable applica-

bility to adaptive signal processing and machine

learning, rather than obtaining the best density

estimate.
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Notes

1. Note that the true distribution of the (approximately) Gaussian-

ized samples has a mean of zero. Therefore, the unbiased

sample covariance estimate should be as given in Eq. (5),

without a correction term due to data dimensionality in the

denominator.

2. The generalized Gaussian density family is described by

G� xð Þ ¼ C1 exp �C2 xj j�
� �

, where C1 and C2 are positive

constants and b is the order of the distribution. Laplacian and

uniform distributions are special cases corresponding to b=1

and b=V.

3. To minimize Eq. (10), first the samples of the scalar random

variable under consideration are normalized to unit variance.

Then gradient descent is employed starting from a reasonable

initial condition, which is in the interval [0.5,1] for most

unimodal data distributions.

4. After developing this principle for nonlinear ICA, it came to

the authors_ attention that the importance of Gaussianization

for breaking the curse of dimensionality was independently

recognized earlier by Chen et al. [44].

5. Notice that for a broad class of nonlinear mixtures, the

condition that at most one source can have a Gaussian

distribution is not necessary, as the nonlinear mixture will not

preserve the Gaussianity. The commonly considered post-

nonlinear mixtures are easily excluded from this group. In

fact, to the best knowledge of authors, there is no result

available in the literature about the general conditions that the

nonlinear mixture should satisfy for the non-Gaussianity

condition to be lifted. Clearly, when applying the Homomor-

phic ICA principle to linear source separation using ICA, the

non-Gaussianity conditions must still hold.

6. In the case of zero probability densities, the Gaussianizing

functions will not be invertible in general, since locally at these

points the Jacobian might become singular. However, since the

probability of occurrence of such points is also zero for the

same reason, for the given signal-mixture case global invert-

ibility is not necessary. However, it is assumed for simplicity.
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