
T
raditional approaches to statistical and adaptive signal processing have exploited the
second order statistical properties of signals. This was motivated by the low complexi-
ty of the resulting algorithms and the existence of analytical solutions typically in the
form of eigendecompositions. Recent advances in computing capabilities and the
interest in new challenging signal processing problems that cannot be successfully

solved using traditional techniques have sparked an interest in information-theoretic signal pro-
cessing techniques. Adaptive nonlinear filters that process signals based on their information
content have become a major focus of interest. The design and analysis of such nonlinear infor-
mation processing systems is demonstrated in this article. Theoretical background on necessary
information theoretic concepts are provided, nonparametric sample estimators for these quanti-
ties are derived and discussed, the use of these estimators for various statistical signal processing
problems have been illustrated. These include data density modeling, system identification, blind
source separation, dimensionality reduction, image registration, and data clustering.

INTRODUCTION
Wiener and Kolmogorov’s framework of seeking optimal projections in spaces defined by stochastic
processes initiated modern optimal filtering and changed forever our thinking about signal processing
[37], [69]. The roots of adaptive model building go even further back to the 19th century, when mathe-
maticians and scientists started describing real data by linear relationships and correlations between
independent variables. The combination of the Gaussian assumption and second-order statistical crite-
ria withstood the test of time and led to mathematically convenient and analytically tractable optimal
solutions, which could be easily studied through conventional calculus, linear algebra,
and functional analysis. The most familiar examples are the mean-square-error
(MSE) in least-squares linear regression and output variance in principal compo-
nents analysis (PCA).
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The potential of optimal filtering
became fully realized with the advent of
digital computers, when the Wiener
solution could be solved analytically for
finite impulse response (FIR) filters
using least-square type algorithms.
Adaptive methodologies that search
for the optimal solution very effi-
ciently such as Widrow’s least-mean-
square (LMS) [50] could be
implemented in digital signal proces-
sors to perform optimally (in the
MSE sense) and in real time various
challenging signal processing tasks. A
curiosity at first, stochastic adaptive
algorithms (i.e., processing the incom-
ing data samples on a one-by-one basis)
have become pervasive in signal pro-
cessing and machine learning because
they can be applied to problems where
analytical solutions are unknown, as in

the case of nonlinear filters. A noteworthy
example is the backpropagation algorithm

from neural networks [25]. 
In adaptive systems research (which is

broadly used here to encompass traditional
adaptive filtering as well as neural networks

and various branches of machine learning),
the user must specify a parametric mapper (a

projector or a filter), which can be linear or
nonlinear, an adaptation algorithm for the

parameters (weights). and a criterion for optimal-
ity. The emphasis on second-order statistics as the

choice of optimality criterion is still prevalent
today. This is understandable because of three main
reasons: 1) the success of linear systems combined
with second-order statistics, due to the inevitable
Gaussianization effect of convolution, 2) the well-
established framework, and 3) the abundance of effi-
cient adaptive algorithms. However, DSP engineers
are addressing new problems of ever increasing diffi-
culty and seeking more and more often solutions that
involve nonlinear systems. Moreover, the criterion of
optimality should be closely scrutinized; after all, it
defines which statistical properties are being trans-
ferred from the measurements (input and/or
desired responses) into the parameters of the
model. With MSE, the optimal solutions obey
just a second-order statistical constraint, and

much broader and meaningful properties and
frameworks are often required. For
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instance, in blind separation of sources and blind deconvolution
of linear channels, the insufficiency of second-order statistics in
stationary environments have led to new approaches incorporat-
ing higher-order statistics into adaptation. Specifically, the field of
independent component analysis (ICA) has benefited greatly from
the use of information theoretic performance measures [33].

At the same time that Wiener was developing optimal signal
processing, Shannon was laying the foundations of information
theory to optimally design messages and systems to control sto-
chastic fluctuations (noise) in the transmission of data [53].
Information theory deals with the quantification of statistical
uncertainty in random processes and statistical dependencies
between multiple random processes. The two main statistical
descriptors proposed by information theory to design messages
and systems are entropy and divergence: entropy, a measure of
uncertainty of the random vector X with joint probability distri-
bution function (pdf) p(x), is a generalization of variance to
processes with non-Gaussian distributions, and is defined by
Shannon as [53], [10]

HS(x) = −
∫

p(x) log p(x)d x = −E [log p(x)]. (1)

As for divergence, a measure of statistical similarity, one can
think of it as a generalization of algebraic distance measures
(such as the Euclidean norm) to probability distribution spaces.
In general, the Kullback-Leibler divergence (KLD) between two
distributions p(x) and q (x) is defined as [10]

DKL(p; q) =
∫

p(x) log
p(x)
q (x)

d x. (2)

(The argument of a pdf is also used to denote the random vari-
able which this pdf describes. Expectations are with respect to
the random variable that is obvious from the context if not spec-
ified. Otherwise, a subscript shows the pdf with respect to which
the expectations are computed.) 

This is an asymmetric measure of distance (hence the term
divergence) of the probability distribution p to q. This measure
becomes zero if and only if p and q are identical distributions
(except possibly at a zero-measure set of isolated points) and is
positive otherwise.

In communications theory, it is more common to discuss
mutual information, which is a measure of statistical dependen-
cy and a generalization of correlation to arbitrary nonlinear func-
tional relationships between multiple processes with arbitrary
probability distributions. Mutual information is a special case of
KLD, when one measures the distance between the joint proba-
bility distribution and the product of the marginal distributions

IS(x; y) =
∫

p(x, y) log
p(x, y)

p(x)p(y)
d xd y. (3)

Unfortunately, these descriptors were never fully incorporat-
ed in the mainstream of optimal signal processing. The goal of
this article is exactly to outline the framework and the algo-
rithms needed to move from quadratic to information costs,
which lead to adaptive information filtering. 

There are important differences between the application of
information theory to communication systems and the reality of
adaptive signal processing and machine learning. First, adaptive
systems must handle continuous-valued random processes
rather than discrete-valued processes. Noting this fact, we will
focus our discussion in continuous random variables, described
by their pdf. Second, adaptation algorithms require smooth cost
functions; otherwise, the local search algorithms become diffi-
cult to apply. Third, the Gaussianity assumption so widespread
in communications is normally a poor descriptor for the data
statistics in machine learning and modern signal processing
applications, especially when nonlinear topologies are consid-
ered. This means that the analytic approach taken in informa-
tion theory must be modified with continuous and differentiable
nonparametric estimators of entropy and divergence. To meet
requirements two and three, we are convinced that Parzen win-
dow estimation [13] is a productive research direction. As we
will see, Parzen estimation has the added advantage of linking
information theory, adaptation, and kernel methods. 

In this article, we will provide highlights of a methodology
to implement adaptive information filtering, which we named
information theoretic learning (ITL). ITL synergistically inte-
grates the general framework of information theory in the
design of new cost functions for adaptive systems, and it is
posed to play an expanding role in adaptive signal processing.
ITL does not only affect our understanding of optimal signal
processing but also influences the way we approach machine
learning, data compression, and adaptation as we will demon-
strate in the sequel. 

ADAPTIVE INFORMATION FILTERING
The conventional adaptive filtering framework (least squares
view) describes the optimal filtering problem as one of obtaining
the minimal error in the MSE sense between the desired
response z and the system output y:

J (w) = E
[
(z − y(w))2

]
. (4)

Effectively this corresponds to estimating the orthogonal projec-
tion (in an Euclidean fashion) of the desired response z in the
space spanned by the states of the system or, for FIR filters, the
space spanned by the input signal.

Alternatively, the problem of estimating the system param-
eters w can be framed as model-based inference, since it
relates measured data, uncertainty, and the functional descrip-
tion of the system and its parameters. The desired response z
can be thought of as being created by an unknown transforma-
tion of the input vector x. Therefore, the joint pdf p(x, z) fully
characterizes this relationship including any noise that exists
in the signal measurements. The job of the mapper is to con-
struct an output y, which is a parametric function of the input,
with parameter vector w, that will approximate the unknown
mapping. We can therefore think of the system output as an
estimator p̃w(x, z) of p(x, z); here the subscript w denotes the
dependency on the model parameters/weights. In probability
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spaces, the role of optimization is therefore to minimize the
KLD between these two distributions:

min
w

J (w) =
∫∫

p(x, z) log
p(x, z)
p̃w(x, z)

d xdz. (5)

It can be shown that if we write z = f (x) + e, where e is the
error and f (x) is the mapping function, minimizing the KLD is
equivalent to minimizing the entropy of the error [16]

min
w

HS(e) = −
∫

pw(e) log pw(e)de. (6)

In this formulation, f (x) is assumed to be a member of some
family of models such as a linear filter, a neural network, or a
parametric model derived from first physical principles. Its
parameters are summarized by the weight vector w, and the
model is simply fit to the input-output data (x, z) obtained from
the unknown system for system identification purposes. The
dependence of the error on w comes from this underlying
assumption. The output signal z is assumed to be generated by
an unknown system g(x), which may or may not belong to the
parametric family that f(.) comes from. Note that we have not
imposed any constrains of linearity on the mapper nor any spe-
cial conditions on the function f or on the pdfs of the input and
desired responses. This is the power of the adaptive information
filtering formulation. The issue of how to estimate all these
quantities in practical cases remains. Before addressing estima-
tion, we would like to expand on the generality of this result ver-
sus the conventional adaptive filtering formulation.

OPTIMIZATION IN THE ABSENCE OF DESIRED RESPONSE
Indeed, we can optimize the mapper even if no desired response
is available, by constraining in some way the statistics of its out-
put. An important case is ICA where one assumes a multi-input,
multi-output (MIMO) mapper and the goal is to create statisti-
cally independent outputs [33]. For a nonlinear MIMO system
z = f(x; w), the nonlinear ICA problem seeks to determine the
parameters w of f(.) such that the mutual information between
the components of z are minimized (preferably to zero)

min
w

I (z) =
∫

p(z) log
p(z)∏
d p(zd)

d z. (7)

OPTIMIZING FOR EXTREMES OF SYSTEM OUTPUT
An alternative is to simply maximize (or minimize) the entropy
of the output of the system (subject to some constraint on the
weight vector norm or the nonlinear topology), which leads to
an information theoretic factor analysis to discover interesting
structures in the high dimensional input data

min | max
w

H (z) = −
∫

p(z) log p(z)d z

subject to E [hi(z)] = αi i = 1, . . . , m. (8)

This formulation is useful in blind equalization, nonlinear
principal component analysis, ICA, and novelty filtering [26],
[27], [33].

MAXIMUM INFORMATION TRANSFER
An alternative optimization problem is to maximize the transfer
of information between the input and the output of the system.
This is called the principle of maximal information transfer and
is related to the channel capacity theorem and the information
bottleneck framework [56]. One could maximize the mutual
information between the original input data and the trans-
formed output data to preserve information maximally while
reducing noise. For transformations with bounded outputs, this
could be achieved by maximizing the joint output entropy as in
the InfoMax principle [3]

max
w

I (z, x) ≡ max
w

H (z) if range(f) is bounded. (9)

This formulation has also been suggested as a self-organization
principle in distributed systems.

FEATURE EXTRACTION
Suppose that the desired response is a discrete-valued indicator
label whose actual value is practically inconsequential (e.g.,
integer class labels as used in classification). In this case, one
important question is how to project the high-dimensional
input to a possibly nonlinear subspace, such that the discrim-
inability with respect to the labels is preserved. The problem can
be solved by maximizing the mutual information between the
projection z and the class labels c

max
w

I (z, c) = H (z) −
∑

c
pc H (z|c). (10)

This principle generalizes the concepts behind PCA and linear
discriminant analysis (LDA) for finding effective reduced-
dimensionality nonlinear feature projections.

CLUSTERING
Finally, assume that the goal of the mapper is to divide the input
data into a preselected number of structurally and/or statistical-
ly distinct groups (clusters). Here, the weights become the
assigned cluster membership values and the criterion is to
assign samples to a cluster such that the clusters are defined as
compactly and distinctly as possible, measured by cluster
entropy and divergence. In the case of two clusters, one could
use a symmetric KLD measure, for example

max
w

DKL(p1(x); p2(x)) + DKL(p2(x); p1(x)). (11)

We therefore conclude that entropy and divergence help
bridge the traditional gap between supervised and unsuper-
vised learning as well as provide a convenient framework that
allows the treatment of discrete, continuous, and mixed-type
random variables with the same type of tools. Adaptive infor-
mation filtering creates effectively a unifying principle for sys-
tem adaptation.

Finally, the adaptive information filtering framework bene-
fits from a differential geometry treatment to better understand
the issues and solutions to the extension of adaptive filtering
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theory to nonlinear systems and information theoretic cost
functions. In fact, probability distributions are differential
forms, and both the measurements and the parametric system
define manifolds in probability space. The Fisher information is
the natural metric in manifolds of probability distributions. In
every manifold, one can define the tangent space, and the cor-
responding cotangent space, that defines the projection back to
the real line so we have sufficient topological structure to solve
optimization problems. Therefore, the problem of nonlinear
adaptive filtering (parameter estimation) is one of finding the
closest distance (as measured by the information measure
used) in the system manifold to the measurement manifold, a
principle that is a direct generalization of the orthogonality
principle of linear adaptive filtering.

INFORMATION THEORETIC LEARNING
ITL is nothing but a set of algorithms to implement adaptive
information filtering. As typical in many optimal signal process-
ing and machine learning problems, the probability density
function of the data is unknown, and the Gaussianity assump-
tion is a stretch. The fundamental issue in ITL, therefore, is how
to estimate entropy and divergence directly from samples. As
stated earlier, the estimators have to be smooth and defined for
continuous random variables; smooth because they will be used
as cost functions to be searched by local algorithms, and contin-
uous because the problems of interest in optimal signal process-
ing and machine learning often are formulated for continuous
random variables (e.g., function approximation). Instead of uti-
lizing Shannon’s definition of information, we pursue Renyi’s
entropy definition for the reasons that will be apparent below.

RENYI’S DEFINITIONS
Following the postulate-based derivation of information theo-
ry, Renyi relaxed the additivity property of information (by
considering exponential additivity rather than linear additivi-
ty). These new set of postulates lead to the following general-
ized definitions of entropy and mutual information providing
the flexibility of a parametric family, while maintaining
Shannon’s definitions as the special case α = 1. (The defini-
tions of Renyi are discontinuous at α = 1, but using
L’Hopital’s Rule one can show that their limit as α → 1 is
equal to Shannon’s definitions for the corresponding quantity.)
The order-α entropy of X is defined as [48]

Hα(x) = 1
1 − α

log
∫

pα(x)d x

= 1
1 − α

log E [pα−1(x)]. (12)

Conditional entropy Hα(y|x) is defined similarly using the condi-
tional distribution p(y|x) and averaged over x. Notice that Renyi’s
entropy is related to the Lα-norm of the data distribution p(.).

Renyi’s definition of mutual information is based on the α-
divergence between two distributions p(x) and q(x), which con-
verges to KLD as α → 1 [48]

Dα(p; q) = 1
α − 1

log
∫

p(x)
(

p(x)
q (x)

)α−1

d x. (13)

Consequently, the order-α mutual information is

Iα(x ; y) = 1
α − 1

log
∫∫

p(x, y)
(

p(x, y)
p(x)q (y)

)α−1

d xd y. (14)

Generalization of mutual information to more than two argu-
ments is obtained in analogy with the Shannon case.

ALTERNATIVE DISTANCE MEASURES
Alternative measures of divergence between two pdfs are avail-
able in the literature. A well-known example is the Csiszar diver-
gence. For an arbitrary convex function h(.) such that h(1) = 0,
we define [11]

Dh(p; q) =
∫

p(x)h
(

q (x)
p(x)

)
d x. (15)

For the specific choice of h(.) = − log(.), (15) reduces to KLD.
The flexibility in selecting h(.) allows the use of certain a priori
information about the problem to be incorporated into the solu-
tion (such as suppressing the effects of tails to improve robust-
ness to outliers).

On the other hand, these classical information divergence
measures are asymmetric. Thus they are not distances, but it is
straightforward to define a distance from divergence by adding
two opposite-direction divergences to obtain symmetry.
Probability spaces have a Riemannian structure, so when the
pdfs are close to each other, one can naturally adopt formal dis-
tance measures from Euclidean space such as the Lβ -norm

Dβ(p; q) =
(∫

|p(x) − q (x)|β d x
)1/β

. (16)

Of these measures, Euclidean distance (β = 2) is especially inter-
esting due to its quadratic properties. We can also define an inner
product distance using the Cauchy-Schwartz inequality, to obtain

DCS(p; q) = −1
2

log

(∫
p(x)q (x)d x

)2

∫
p2(x)d x

∫
q2(x)d x

. (17)

Notice that the argument of the log(.) is always between [0,1],
since it is the cosine of the angle between the two distributions,
it can be considered as a Riemannian distance in the Hilbert
space. From these alternative distance measures, we can obtain
alternative mutual information measures as desired.

NONPARAMETRIC SAMPLE ESTIMATES
ITL requires the evaluation and optimization of performance
indices based on information theoretic concepts, such as
entropy and mutual information. Since in typical ITL applica-
tions the data distributions are not known, analytical evalua-
tion of these performance indices is not possible. These cost
functions must be evaluated using sample estimators. Sample
estimators for information theoretic quantities typically rely on
the plug-in density estimation principle. That is, using the
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available samples, one needs to obtain an estimate of the under-
lying probability distributions, which is in turn substituted into
the cost function. 

For illustration purposes and aiming for simplicity, we focus
on estimating the entropy of a random variable X from its scalar
samples {x1, . . . , xN}. There are three possible techniques one
can assume towards estimating the pdf of a random variable
from its independent and identically distributed (iid) samples:
parametric, semiparametric, and nonparametric. There are
many parametric and semiparametric approaches for entropy
estimation in the literature and a good review of entropy estima-
tion methods can be found in [1]. Here we focus on the non-
parametric estimators.

The most straightforward nonparametric approach in entropy
estimation is to consider a histogram approximation for the
underlying distribution. Fixed-bin histograms lack the flexibility
of sliding histograms, where the windows are placed on every
sample. A generalization of sliding histograms is obtained by
relaxing the rectangular window to assume smoother functional
forms in the form of continuous and differentiable (and prefer-
ably symmetric and unimodal) pdfs. This generalization is
referred to as kernel density estimation (KDE). Another general-
ization of histograms is obtained by letting the bin-size vary in
accordance with local data distribution. In the case of rectangu-
lar windows, this corresponds to nearest neighbor density esti-
mation [13], and for KDE this means variable kernel size [12],
[13]. The corresponding entropy estimates are presented below.

ENTROPY ESTIMATION BASED ON SAMPLE SPACING
Suppose that the ordered samples {x1 < x2 < · · · < xN} drawn
from q(x) are provided. We assume that the distribution support
is [x0, xN+1] and that the distribution is piecewise constant
[67], leading to the following approximation:

p(x) =




1/((x1 − x0)(N + 1)) x0 ≤ x < x1

1/((x2 − x1)(N + 1)) x1 ≤ x < x2
...

...

1/((xN+1 − xN)(N + 1)) xN ≤ x < xN+1.

(18)

Denoting the empirical cdf by P(x), for ordered statistics, it is
known that

E [P(xi+m) − P(xi)] = m
N + 1

, i = 1, . . . , N − m (19)

where the expectation is evaluated with respect to the joint data
distribution q(x1) . . . q(xN), assuming iid samples. Substituting
(18) in Renyi’s entropy and using the identity in (19), we obtain
the m-spacing estimator for Renyi’s entropy as

Hα(x) ≈ 1
1 − α

log
[

1
N − m

N−m∑
i=1

(
(N + 1)

m
(xi+m − xi)

)1−α
]

.

(20)

The spacing interval m is chosen to be a slower-than-linear
increasing function of N to guarantee asymptotic consistency
and efficiency. Typically, m = N1/2 is preferred in practice due
to its simplicity.

Using L’Hopital’s rule, we obtain the sample spacing esti-
mator for Shannon’s entropy, as expected [67]. A difficulty
with the sample spacing approach is its generalization to
higher dimensionalities. Computational issues as well as non-
smoothness of the resulting estimator hamper their useful-
ness in learning and adaptation.

Perhaps the most popular extension of sample-spacing esti-
mators to multidimensional random vectors is the one based
on the minimum spanning tree recently popularized by Hero
[29]. This estimator relies on the fact that the integral in
Renyi’s definition of entropy is related to the sum of the
lengths of the edges in the minimum spanning tree (this is the
tree—a graph that connects all data points without any
loops—that has minimum total length), with useful asymptot-
ic convergence guarantees. One drawback of this approach is
that it only applies to entropy orders of 0 < α < 1. Another
drawback is that finding the minimum spanning tree itself is a
computationally cumbersome task that is also prone to local
minima due to the heuristic selection of a neighborhood
search radius by the user.

Another generalization of sample spacing estimates to
multidimensional entropy estimation has relied on the L1-
norm as the distance measure between the samples instead of
the usual Euclidean norm [39]. This technique, in principle,
can be generalized to arbitrary norm definitions. The draw-
back of this method is its nondifferentiability, which renders
it next to useless for traditional iterative gradient-based adap-
tation. This approach essentially corresponds to extending
(18) to the multidimensional case as data-dependent, variable-
volume hyperrectangles. One could easily make this latter
approach differentiable through the use of smooth kernels
rather than rectangular volumes. Such modification will also
form the connection between the sample-spacing methods
and kernel based methods described next. 

PARZEN WINDOWING BASED ENTROPY ESTIMATION
Kernel density estimation, also referred to as Parzen window-
ing, is a well-understood and useful nonparametric technique
that can be employed for entropy estimation in the plug-in esti-
mation framework [1]. For a given set of iid samples
{x1, . . . , xN} drawn from q(x), the Parzen window estimate for
the distribution, assuming a fixed-size kernel function Kσ (ξ)

for simplicity, is given by

p(x) = 1
N

N∑
i =1

Kσ (x − xi). (21)

The kernel function and its size can be optimized in accordance
with the maximum likelihood (ML) principle [14], [51], or other
rules-of-thumb could be employed to obtain approximate opti-
mal parameter selections [12], [55].
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For a given kernel function, the Parzen window estimator
exhibits the following properties:

1) For fixed σ , E [p(x)] = limN→∞ p(x) = q (x)∗Kσ (x).
2) For fixed σ , limN→∞Var [p(x)] = 0.
3) If limN→∞σ(N) = 0 and limN→∞Nσ(N) = ∞, then
limN→∞ p(x) = q (x) in probability.

These conditions guarantee that for analytic probability distri-
bution functions, the Parzen window estimate is asymptotically
unbiased and consistent (using a suitable annealing rate for the
kernel size).

We will first treat the nonparametric estimation of Renyi’s
quadratic entropy (α = 2) with Parzen windows to stress a sur-
prising simplifying result. Substituting (21) in Renyi’s entropy
definition (12), we obtain the following nonparametric kernel
entropy estimator, letting H2(X) = − log V2(x) [45]:

V2(X) =
∫

p2(x)dx =
∫ (

1
N

N∑
i =1

Kσ (x − xi)

)2

dx

= 1
N2

N∑
j=1

N∑
i =1

K
σ
√

2(xj − xi) (22)

where V2(X) is called the quadratic information potential and
K is Gaussian. Note that the information potential for the con-
tinuous random variable can be exactly estimated by the dou-
ble sum over the samples due to the well now property of the
integral of product of Gaussians is still a Gaussian, but with
larger variance. The only approximation in the estimator of
(22) stems from the finite number of samples and the kernel
size. If we had followed the general plug-in strategy, the infor-
mation potential would be written as the expected value of
p(X), leading to an estimate identical to (22), but with kernel
size σ instead of σ

√
2. This means that the sample mean

approximation error in the plug-in estimator is exactly com-
pensated by utilizing a wider kernel.

The kernel estimator introduces another interesting inter-
pretation of the Renyi entropy of a random variable. Specifically,
suppose that a Mercer kernel (a finite-energy function that is
symmetric in its two arguments similar to a symmetric matrix)
with the following eigendecomposition is utilized [25]:

K(x − x ′) =
∞∑

k=1

λkϕk(x)ϕk(x ′) = ϕT(x)�ϕ(x′). (23)

In the literature, almost all work deals with positive semidefinite
kernels (i.e., Mercer kernels with nonnegative real eigenvalues
λk). The eigendecomposition in (23) illustrates that the kernel
calculation on the original data is equivalent to an inner prod-
uct calculation in the feature space defined by the eigenfunction
vector ϕ. This is in fact, the underlying principle of the well-
known support vector machine formalism. Substituting (23) in
(21), we observe that

p(x) = 1
N

N∑
i=1

ϕT(x)�ϕ(xi) = ϕT(x)�µϕ(x). (24)

That is, Parzen density estimation is equivalent to nonlinearly
transforming the data to a feature space through the eigenfunc-
tions of the kernel and taking the weighted inner product of the
evaluation point with the mean of the training samples. It is also
interesting to note that all of the transformed samples lie on a
hyperellipsoid (with axes determined by the eigenvalues) in the
feature space, since the norm of the transformed values is con-
stant: ϕT(x)�ϕ(x) = K(0), regardless of x.

Now consider Renyi’s quadratic entropy as estimated by (22)
and the spectral decomposition of the kernel function. (To avoid
too many parentheses, the arguments of log functions are not
enclosed. Products following a log operation have precedence.)

H2(x) = − log
1

N 2

N∑
j=1

N∑
i =1

Kσ (xj − xi)

= − log
1

N 2

N∑
j=1

N∑
i =1

ϕT(xj)�ϕ(xi)

= − log µT
ϕ(x)�µϕ(x). (25)

Therefore, Renyi’s quadratic entropy can be estimated by a
moment of the distribution (just like the mean and variance
estimators), but in a transformed (kernel) space. With the spec-
tral decomposition substitution for the kernel, Renyi’s quadratic
entropy estimator becomes simply the log-norm-squared of the
mean vector of the feature space samples ϕ(xi).

Returning to the general definition of Renyi’s entropy and
approximating the expected value by the sample mean, we
obtain [17]

Hα(x) = 1
1 − α

log
1

Nα

N∑
j=1

(
N∑

i =1

Kσ (xj − xi)

)α−1

. (26)

As expected, using L’Hopital’s rule, the kernel estimator for
Shannon’s entropy could be obtained from (26) as well as by
employing the plug-in strategy directly on Shannon’s entropy
definition

HS (x) = − 1
N

N∑
j=1

log
1
N

N∑
i =1

Kσ (xj − xi). (27)

The kernel estimation technique illustrated above can be
utilized for nonparametrically estimating other information
theoretic quantities such as density divergence and conditional
entropy. In particular, it can be used to estimate the algebraic
norm between pdfs (16) and the Cauchy Schwartz distance
(CSD) (17), as well as Csiszar, KL, and α divergences.
Extension of the ideas to multidimensional distributions is
trivial and only requires utilizing a multidimensional kernel
function in Parzen windowing.

The kernel size (also referred to as bandwidth) is a parame-
ter that is introduced by the nonparametric estimation tech-
nique, and there exist effective methods of selecting an
appropriate value: 1) leave-one-out type maximum likelihood
solution [14], [51] and 2) smoothness-constraint based least-
squares fit solution [55].
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INFORMATION THEORETIC ALGORITHMS
In supervised training of a network with layers of weights, such
as multilayer perceptrons (MLPs), the output error is backprop-
agated through the layers to determine the gradient update rule
for each weight under the minimum mean squared error (MSE)
criterion. The conventional LMS algorithm is a special case of
backpropagation for a single layer network of linear processing
elements. Information theoretic learning, on the other hand,
utilizes entropic optimality criteria, which must be non- or
semi-parametrically estimated from the available samples, using
one of the methods mentioned earlier. 

ROLES OF INFORMATION FORCES IN LEARNING
Kernel approaches lend a useful characteristic to the associated
ITL algorithms that facilitate the generalization of the back-
propagation principle to information forces through an interest-
ing analogy with the interactions of physical particles. In
particular, the selected kernel function applied to the sample
behaves similar to the potential fields generated by particles in
Newtonian physics with an interaction law given by the shape of
the kernel, while their spatial gradients represent the informa-
tion forces. This property is best illustrated via the kernel esti-
mator for Renyi’s quadratic entropy given in (22). Consider the
quadratic information potential [45], [17]

V2(x) = 1
N2

N∑
J=1

N∑
i=1

Kσ (xj − xi)

= 1
N

N∑
j=i

(
1
N

N∑
i=1

Kσ (xj − xi)

)

= 1
N

N∑
j=1

V2(xj). (28)

Note that the information potential of the samples in the train-
ing, now called information particles {x1, . . . , xN} is the aver-
age of the information potentials experienced by individual
particles, denoted by V2(xj). Similarly, the information potential
experienced by particle xj is the average of contributions from
the other particles in the sample set. In particular, the contribu-
tion of xi to the potential of xj is determined by the kernel func-
tion utilized in Parzen windowing as V2(xj | xi) = Kσ (xj − xi).
Consequently, each particle exerts an information force to each
other evaluated by the gradient of the information potential
F2(xj | xi) = ∇Kσ (xj − xi), where ∇ denotes the gradient oper-
ation with respect to the kernel argument.

In analogy to adaptive signal processing algorithms where
system parameters are adapted by the gradient of the cost, in
ITL system parameters are adapted by information forces cre-
ated among the pairwise interactions in the sample set.
Indeed, in supervised learning if the error samples ej were
generated by an MLP with weights w, the gradient of the infor-
mation potential with respect to these weights would be [17]

∂ V2(e)
∂w

= 1
N2

∑
j

∑
i

F2(ej | ei)

(
∂ xi

∂w
− ∂ xj

∂w

)
. (29)

For the adaptation of an MLP, the principle of error backpropa-
gation can be extended to information force backpropagation by
simply substituting the injected error of the MSE cost with the
information force F(ei | ej) of ITL. More generally, for Renyi’s
order-α entropy, it can be shown that the information force
becomes Fα(xj) = (α − 1)pα−2(xj)F2(xj) , where p(xj) is the
Parzen density estimate of the sample xj. Thus, the order of the
entropy will emphasize the contributions of samples in dense
regions of the data (by increasing α) or sparse regions of the
data (by decreasing α). This is consistent with the Lα -norm
interpretation of Renyi’s entropy. In the recent literature on
learning algorithms, the L1-error-norm and ε-insensitive error
functions have been popular due to the weaknesses of the tradi-
tional MSE criterion, such as susceptibility to outliers. The uti-
lization of information theoretic criteria estimated using Parzen
windowing based nonparametric density estimation naturally
results in criteria that have a computational complexity of
O(N 2), where N is the number of samples in the training set
used for optimizing the models/filters, which compares unfavor-
able with the O(N) complexity of MSE based batch learning. 

STOCHASTIC INFORMATION GRADIENT
Stochastic gradients of cost functions are commonly used in
obtained online adaptation algorithms that optimize the weights
using samples one-by-one (typically as they arrive as a time-
series). The main idea behind stochastic gradients is that the
expectation operator in the statistical cost function can be
dropped to obtain a gradient update rule that on average follows
the batch gradient update direction.

For illustration, we focus our discussion on the stochastic
gradient of the order-α information potential. Approximating
the expectation by the most recent sample xk and utilizing a
small set of previously available samples for Parzen windowing,
the instantaneous cost is [19]

Vα(x) = E [pα−1(x)] ≈ p α−1(xk)

=
(

1
L

L∑
i =1

Kσ (xk − xk−i)

)α−1

. (30)

This results in the following stochastic gradient that is called
the stochastic information gradient (SIG):

SIG = (α − 1)p α−2(xk)

(
1
L

L∑
i =1

∇Kσ (xk − xk−i)

)
. (31)

Other approximations of the original information potential esti-
mator are possible [31]. The stochastic gradient reduces the
computational complexity of each gradient update significantly
from O(N 2) to O(L). By construction, the expected value of SIG
is equal to the batch gradient.

In contrast to the conventional stochastic algorithms like
LMS, which depend on the instantaneous sample only, SIG
relies on temporal differences of samples due to the pairwise
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nature of the kernel estimator for entropy. This results in an
interesting observation. For example in supervised linear filter
adaptation using minimum quadratic entropy, assuming a
Gaussian kernel, the SIG reduces to �ek�uk where u is the
input vector and e is the output error for the adaptive filter.
While the LMS update (ekuk) tries to decorrelate the error and
the input signals, the SIG tries to decorrelate the temporal dif-
ferences of these signals [19]. This observation leads to linear
adaptive filter learning algorithms based on temporal difference
statistics that are able to reduce (and even completely eliminate)
the bias introduced to the filter solution due to the power of
noise in these signals. The resulting algorithms, studied under
the error whitening and instrumental variables principles, are
not the subject of this review [46], [47].

IMPROVED FAST GAUSS TRANSFORM
Information theoretic learning algorithms based on kernel den-
sity estimation require the calculation of sums of Gaussian func-
tion evaluations between pairs of data vectors. Therefore, the
O(N 2) complexity of the information potential calculation is
circumvented (in low-dimensional data analysis situations) by
the fast Gauss transform (FGT) [24], [61], which decreases the
computational complexity of the batch learning algorithm to
O(Npn), where n is the data dimensionality and p is the order of
truncation for the Gram-Charlier polynomial series expansion
used in this approximation. The original FGT suffers from the
curse of dimensionality [15] because it was derived using the
fast multipole methodology [23], which was designed for parti-
cle interactions in astrophysics (3-D interactions). Exploiting
the differentiability of the Gaussian function leads to a more effi-
cient approximation [71], which we briefly describe below. For
simplicity, consider the spherical kernel case with the following
exponential (where we introduce an arbitrary expansion center
x∗ and the variables �y = y − x∗ and �x = x − x∗):

e−‖y−x‖2/ h2 = e−‖y‖2/ h2
e−‖x‖ 2/ h2

e2�y�x/ h2
. (32)

The first two exponentials can be evaluated at the data points
individually leading to a complexity of 2N. The last exponential
term can be expanded into multivariate Taylor series as

e2xy =
∑
a ≥ 0

2|a|

a!
xaya (33)

where the following multivariate notations are employed:
|ααα| = α1 + · · · + αn, ααα! = α1! . . . αn!, and xa = x α1

1 . . . x αn
n . If

the Taylor expansion in (33) is restricted to order p− 1, then
the number of terms is Combination (p+ n − 1, n), which is
substantially smaller than the original FGT with complexity pn.

ADAPTIVE MIXTURE MODELING BY
MINIMIZING DENSITY DIVERGENCE
Information-theoretic techniques have found widespread
application in adaptive optimization of mixture density mod-
els as well as self-organizing maps (SOMs) and other topo-

graphic maps. Most work in this field relies on Shannon’s def-
initions of entropy and mutual information as well as the
closely related KLD. This is not without reason; as shown in
the appendix, the traditional parametric ML and MAP density
estimates asymptotically converge to solutions that minimize
the KLD with respect to the true underlying data distribution
within the parametric family of densities selected. In the case
of a convex parametric family, this corresponds to determin-
ing the orthogonal projection of the underlying density onto
the convex set in accordance with the Pythagorean theorem
[10] of relative entropy and the information geometry of para-
metric statistical models.

MIXTURE MODEL-ORDER SELECTION
An important property of information theoretic divergence
measures, such as the KLD, is that they are invariant under
monotonic transformations of the corresponding random vari-
ables (including scale changes). This means that if the signals
of interest are passed through invertible nonlinear operations
(e.g., this is the case in homomorphic signal processing), intu-
itively and mathematically information is unchanged. The
information theoretic divergence measures adhere to this fact
and maintain the value regardless of the nonlinearities
employed, perhaps for preprocessing. In contrast, traditional
distance measures do not possess this invariance property.
Thus, information-theoretic measures are more suitable for
assessing information content compared to traditional distance
measures, such as the L2-norm of the error between two distri-
butions in the function space. Li and Barron point out this fact
to motivate their analysis on determining bounds for the
approximation errors of mixture density models utilizing the
KLD as their error metric [40].

THEOREM
Consider a family of mixture distributions with possibly infinite-
ly many components

pM(x) =
M∑

k=1

αkK(x ; θ). (34)

For an arbitrary distribution f(x), there exists an optimal M-
component mixture density approximation of the form (34) that
has an error bounded by

DKL( f; pM∗) ≤ DKL( f; p∞∗) + c2
f γ/M. (35)

where γ = 4(log (3e1/2) + sup θ1,θ2,x{log K (x ; θ1)/K (x ; θ2)}
and c2

f = ∫
f(x)p−2∞∗

∑∞
k=1 αkK2(x ; θ)dx.  �

This is a significant result showing that, as the number of
mixtures increase, the optimal estimate has a KLD that decreas-
es linearly with the number of components M regardless of the
choice of the kernel K, as long as this choice leads to finite γ
(e.g., Gaussian kernels). Furthermore, one can show that a
penalized entropy criterion (equivalent to maximum likelihood)
to select the order M that minimizes
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− 1
N

N∑
i−1

log pM(xi) + 2(Md log(N ABe) + 2 log(M + 1))

N
(36)

where d is the number of parameters in θ , A is the side length of
a cube in the θ-space that bounds the allowed values, and B is
the smallest value such that

sup
x

| log K (x ; θ) − log K (x ; θ ′)| ≤ B‖θ − θ ′‖1 (37)

will satisfy the following upper bound on the expected KLD-
based approximation error [40]:

E [DKL( f ; pM∗)] − DKL( f ; p∞∗) ≤γ 2 c2
f

M

+ 2γ Md log(N ABe)
N

+ 4 log(M + 1)

N
. (38)

The significance of this result can be summarized as follows.
The average KLD between the optimal model fit with M com-
ponents and the true density cannot be much greater (deter-
mined by the upper bound) than the KLD between the optimal
model fit with infinite components and the true density. These
results are similar to Akaike’s information criterion (AIC) and
the minimum description length (MDL) principle and provide
a statistically meaningful penalty function for model fitting to
select the optimal model order. In fact, there are recent results
by Stoica that connect model order selection to the minimiza-
tion of KLD [60].

Another information-theoretic model order penalization
technique for mixture models is the normalized entropy criteri-
on (NEC) [7]. For the mixture density model given in (34), the
log-likelihood function, which is a finite sample approximation
of the KLD optimality criterion as discussed in the appendix, can
be broken into two parts as follows:

L∗(M) =
N∑

i =1

log
M∑

k=1

αk∗K(xi ; θk∗) = C∗(M) + H∗(M) (39)

where the subscript “∗” denotes these are the optimal values
according to ML and

tik = αk∗K(xi ; θk∗)
M∑

k=1
αk∗K(xi ; θk∗)

C∗(M) =
M∑

k=1

N∑
i =1

tik log (αk∗K(xi ; θk∗))

H∗(M) = −
M∑

k=1

N∑
i =1

tik log tik. (40)

The NEC is then defined as shown in (41) for M > 1. Then, the
number of components in the mixture can be selected as the min-
imizer of NEC (M) if NEC (M∗) ≤ 1 and M = 1 otherwise [4]

NEC (M) = H∗(M)

C∗(M) − C∗(1)
, M > 1. (41)

In contrast to the penalized entropy method, the NEC method
tries to make sure that a model fit achieves both large data like-
lihood and a balanced usage of the components (as measured by
the normalized entropy) in the mixture model.

LEARNING TOPOGRAPHIC MAPS
From an ITL perspective, nonparametric modeling of data dis-
tributions while preserving the topography (i.e., neighborhood
relations) of the sample set has drawn more attention.
Specifically, it is possible to formulate the learning procedure of
a self-organizing topographic map from an entropy maximiza-
tion perspective. Consider a mixture model

y =
M∑

i =1

K
(

x; wi, σ
2
i

)
(42)

in a d-dimensional data space, where the value of the mixture
model is considered to be an equally weighted combination of
M processing element (PE) outputs with activation functions
defined by the kernel function K(.). Each kernel function is
represented by its center location wi in the data space and for
simplicity, we assume circularly symmetric kernels with width
parameter σi (from a neural network perspective, this corre-
sponds to the imposition that the PEs’ receptive fields are cir-
cularly symmetric).

The parameters of the kernels (i.e., the component locations
and widths) can be optimized by maximizing the joint entropy
of the PE outputs, which according to (8), is given by [66]

HS(y) =
M∑

i =1

HS(yi) − IS(y). (43)

Assuming that the kernel monotonically decays as a function of
the Euclidean distance to the center (such as Gaussian), the out-
put entropy of an individual PE can be estimated utilizing the
probability distribution of the Euclidean distance of a sample to
the center of the receptive field of the neuron [66]. Denoting the
pdf of the radius by pr(r), we have

pyi(yi) = pr(r)/|∂yi/∂ r |, (44)

which leads to

HS(yi) = HS(r) +
∫ ∞

0
pr(r)|∂yi/∂ r |dr. (45)

The minimization of (43) is then achieved by utilizing |∂yi/∂ r |
as a stochastic approximation to the marginal entropy part of
the criterion. Introducing neighborhood functions (e.g., radial
basis functions with certain bandwidth as in SOMs) in the
weight updates to preserve topology results in the following rule
for the centers and the kernel width:

�wi = ηw�(i, i∗, σ�)(x − wi)/σ
2
i

�σi = ησ �(i, i∗, σ�)
(
||x − wi||2 − dσ 2

i

)
/
(

dσ 3
i

)
(46)
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where � is a neighborhood function and i∗ is the index of the
center nearest to the current sample x. The neighborhood
functions help preserve the topology by making sure that near-
by components respond to nearby data points, thus compo-
nents neighboring each other also represent samples that are
near each other in the data space. This observation shows that
the SOM [36] could be interpreted as approximating the ITL
rule in (43) assuming a fixed kernel size. The kernel size allows
the objective assessment of
the likelihood of a particular
sample being represented by a
specific component (PE).
Provided that the kernel func-
tion has infinite support, every
sample will be represented by
contributions from every cen-
ter at various levels (as in Gaussian mixtures). However, the
degree of confidence that one has in the quantization of a sam-
ple vector to a center will be measured by the ratio of the con-
tribution from the nearest PE to the contributions of the other
PEs in the network.

Another possible criterion that naturally arises from informa-
tion theory is density divergence [40]. Although any valid density
divergence measure that we have defined earlier could be
employed for the purpose of probability density modeling, we will
focus on the KLD for illustrative purposes. Consider iid data
being drawn from a distribution q(x). Suppose that a topograph-
ic map of the form (42) is utilized. We will rename the output of
the network as p(x) to emphasize that it is, in fact, an approxima-
tion of the pdf q(x). Now, we can optimize the centers and the
width of the kernels to minimize the following KLD criterion:

DKL(p; q) =
∫

p(x) log
p(x)
q (x)

d x

=
∫

p(x) log p(x)d x −
∫

p(x) log q (x)d x

∼= 1
M

M∑
i =1

log
1
M

M∑
j=1

K(wi − w j ;�w)

− 1
M

M∑
i =1

log
1
N

N∑
j=1

K(wi − x j ;�x). (47)

Here the mixture components are centered at wi and have
bandwidths defined by the covariance matrices (diagonal for
simplicity) �w in the multidimensional data space.
Similarly, the data is represented by a Parzen window densi-
ty estimate with kernels centered at each data point and with
kernel sizes determined by covariance matrices �x . The data
representation and mixture diversity issues are automatical-
ly and naturally addressed by this criterion, since the first
term essentially maximizes the entropy of the component
centers (i.e., diversity), while the second term guarantees
accurate data representation by manipulating the centers to
the actual data samples drawn from the underlying distribu-
tion. An important advantage of this framework has been

shown to be the guaranteed global optimization via kernel
annealing [17]. The kernel size initially starts from a very
large value to result in a smooth criterion (similar to convo-
lution smoothing in global optimization literature), where
the resolution of data representation is extremely coarse.
The kernel size is allowed to decrease gradually (similar to
the temperature in stochastic annealing), while increasing
the resolution and data representation capabilities.

The principles presented
above under topographic map
optimization according to ITL
principles can be easily com-
bined with the information the-
oretic mixture model order
selection procedures such as
the NEC. This marriage of

information theoretic order selection and ITL will result in glob-
ally optimal and robust mixture models, assuming that the ker-
nel function is appropriately selected.

SYSTEM IDENTIFICATION USING 
THE MINIMUM ERROR ENTROPY CRITERION
System identification refers to the problem of optimally deter-
mining the parameters of a preselected model to represent the
functional relationship between an input variable and an out-
put variable. The case where the output variable takes discrete
labels (whose actual values are inconsequential in the domain
of pattern recognition) is not considered relevant in this dis-
cussion. Specifically, when the output variable takes continu-
ous values, the traditional optimality criterion to optimize the
parameters (or the weights) of the model is least squares, or
equivalently the MSE [25]. The adaptive filtering and neural
network theories deal with the learning of linear and nonlinear
(and perhaps dynamical) relationships between these input
and output variables. In supervised learning, the error is
defined as the difference between the desired output corre-
sponding to a particular input sample and the output of the
adaptive system. While MSE has been traditionally the most
extensively utilized criterion, various extensions to other even
moments of the output error (such as the L1-norm error and
least-mean-fourth-power) as well as the ε-insensitive error
function that stems from the support vector theory have also
been investigated [50], [57].

The use of minimum error entropy (MEE) criterion as an
alternative to MSE in supervised parametric model training
(e.g., neural networks) has been studied by the authors [16],
[17]. While the main advantage of MEE over MSE has been
shown to be better generalization from the same training data
[16], an unexpected gain was due to the specific nonparametric
entropy estimator utilized in the process: namely kernel-
density-plug-in estimate. It was observed that the kernel size
acts as a smoothing parameter that could be annealed from an
initial large value to a small optimal value to avoid the local
minima of the optimization process, in a manner similar to
stochastic annealing. An equivalence to the deterministic global
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optimization scheme called convolution smoothing was con-
jectured based on these observations [17], and this global opti-
mization through kernel-annealing procedure have been so far
successfully used in many other applications involving opti-
mality criteria estimated through kernels.

Given a training set with data pairs (xk, dk) and a neural net-
work or other parametric model topology g(x; w), for the cur-
rent weights w, the training error is ek = dk -g(xk; w). Using
these samples of error in criterion (26), the weights are opti-
mized using gradient descent to optimize the error entropy. For
example, if error entropy is to be minimized, the gradient with
respect to the weights is

∂ Hα(e)
∂w

=
N∑

j=1

N∑
i =1

Fα(ej |ei)

(1 − α)N2 Vα(e)

(
∂ ej

∂w
− ∂ ei

∂w

)
. (48)

Thus, while the information force and potential of order α [45],
[18] determine the contribution of each sample to the gradient
via their pairwise interactions with all other samples, the topol-
ogy determines the specific direction for weight updates.

A simple but effective demonstration of the superiority of
MEE over MSE can be achieved by training a time-delay neural
network (TDNN) to perform single-step prediction of the
Mackey-Glass chaotic time series [16]. Two identical TDNN
topologies are trained with MSE and MEE criteria using the
same 200-sample training data set and are tested on the same
10,000-sample set independently generated from the same
MG30 chaotic attractor. When the performances of these two
TDNNs are compared on the test data, the superior generaliza-
tion capability of the MEE-trained network is obvious from the
output errors. Furthermore, the TDNN trained with MEE learns
a better approximation of the probability density function of the
MG30 attractor as seen in Figure 1.

This density-matching property is not surprising; in fact, it
is expected since minimizing error entropy is shown to be the-
oretically equivalent to minimizing the divergence between
the conditional distributions of the desired output given the
input and the network output given the input [16].
Furthermore, the relationship between minimum KLD and
maximum likelihood principles discussed earlier illustrate that
minimum entropy is also related to maximum likelihood. A
recent formal result demonstrates that: 1) MEE training using
the kernel density estimate is equivalent to the so-called non-
parametric maximum likelihood in statistics and 2) MEE pos-
sesses certain desirable asymptotic qualities, such as outlier
rejection [70]. Wolsztynski et al. demonstrate that utilizing
MEE (with Shannon’s definition) in the nonlinear parametric
regression setting, where the noise distributions are unknown,
is asymptotically equivalent to the employing the ML princi-
ple, thus possesses the related unbiasedness and efficiency
properties in terms of parameter estimation. Although their
analysis is restricted to the case where the true underlying
model is part of the nonlinear parametric topology being opti-
mized, the theoretical conclusions can be extended to situa-
tions where this is not the case simply by incorporating the

residual error due to the topology’s incapacity to the unknown
error distribution.

Experiments conducted to illustrate the outlier rejection
capabilities of MEE versus that of MSE involved generating
synthetic data using an exponential function corrupted by
white Laplacian noise: d = ae−bx + n. The parameters (a, b)
are estimated using MEE and MSE with 100 training samples
plus 40 outlier samples with distribution G(10, 4).The residual
error distributions (made symmetric by creating a data set
consisting of e and −e samples) for MEE and MSE optimal
solutions are shown in Figure 2. Clearly, MEE does a very good
job in ignoring the outliers, while the MSE estimate is cor-
rupted significantly.

It is not unreasonable to expect similar outlier rejection
capabilities from other orders of Renyi’s entropy in supervised
training. In fact, due to the additional flexibility offered by the
entropy order parameter α, it might be even possible to obtain
better outlier rejection properties for other orders of entropy.
This is clearly seen from the order-α information force expres-
sion in (32). Certainly, one can manipulate this parameter to
emphasize sparse/dense regions of the data distribution as
desired and to improve performance over Shannon’s entropy
definition.

INDEPENDENT COMPONENTS
ANALYSIS VIA MINIMUM MUTUAL INFORMATION
Independent components analysis (ICA) is a generalization of
the PCA concept that strengthens the uncorrelated-compo-
nents condition to mutual independence. It has flourished in
the context of blind source separation [33], however, recently
it has increasingly found many other applications areas in
data analysis, visualization, and dimensionality reduction
[22], [64]. The problem of ICA is itself mathematically inter-
esting and has branched out from the original and simplest
linear instantaneous square mixture setting to nonlinear,

[FIG1] Probability densities of MG30 test series (solid) and its
predictions by MEE-TDNN (dash-dot) and MSE-TDNN (dotted).
Reprinted with permission from [52].
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convolutive, and nonsquare mixtures. For illustration pur-
poses, we will restrict our discussion to the simplest case of
square linear mixtures.

Various statistical criteria have been proposed and investigat-
ed to solve the ICA problem, including cumulants, negentropy,
and joint output entropy [33]; the mutual information between
the so-called separated outputs has been recognized as the
“canonical contrast function” for ICA [6]. Not surprisingly, many
of these higher-order statistical, criteria-based algorithms have
been eventually shown to correspond to minimizing various
approximations of output mutual information [33]. Most notably,
the widely employed kurtosis-based separation algorithms can be
shown to be a course approximation to mutual information
when the entropy approximation is obtained by assuming that
the data distribution is given by a reference Gaussian distribution
multiplied by a fourth-order polynomial (a truncated polynomial
series expansion). In essence, most ICA algorithms can be under-
stood as some form of mutual information minimization.

Suppose that a measurement vector of mixed signals are
available and the underlying generative model for these mix-
tures is z = Hs, where the mixture z and the source s are real-
valued n-dimensional vectors and H is the unknown mixing
matrix. (Without loss of generality, we assume that E [z] = 0.)
The goal of ICA is to determine the separation matrix that will
transform z into y, such that the entries of y are independent.
This can be achieved in two stages: whitening and rotation.

Whitening simply refers to trans-
forming the mixtures such that
the result has a covariance matrix
of identity. This can be simply
achieved by determining the
eigendecomposition of the mix-
ture covariance matrix
�z = Q�QT . The whitening
matrix is then W = �−1/2QT and
x = Wz has identity covariance.
The whitened mixture x is then
made independent by determining
the rotation matrix R that mini-
mizes the output mutual informa-
tion. Since the mutual
information is the sum of margin-
al output entropies minus their
joint entropy and since the joint
entropy is invariant to rotations,
the cost function reduces to mini-
mizing the sum of marginal
entropies. While the whitening
stage is necessary for algorithms
based on maximizing non-
Gaussianity based on the mini-
mization of the sum of marginal
output entropies (or their approx-
imations), it is suggested as a use-
ful initialization step for all

algorithms, since many researchers have observed that this pro-
cedure increases the speed of convergence.

The rotation matrix is typically parameterized using Givens
angles, where each angle determines the rotation in a principal
plane of the n-dimensional vector space. Specifically, the overall
rotation matrix is given by

R (θ) =
n−1∏
i =1

n∏
j=i+1

R ij (θi j) (49)

where Rij is the rotation matrix in the i j-plane. While Shannon’s
mutual information is typically used, which leads to the sum of
Shannon marginal entropies, the criterion can be more general-
ly written as the sum of marginal Renyi entropies (to include
Shannon as a special case) [30]

J (θ) =
n∑

o=1

Hα(yo). (50)

The angles can be optimized by minimizing (50) using gradi-
ent descent and updating all angles at every gradient itera-
tion. Alternatively, the angles can be updated in a rotating
manner in accordance with the Jacobi iteration scheme. The
batch expression for the gradient when using entropy estima-
tor (26) will have computational complexity O(N 2), which
makes the algorithm prohibitively slow. Therefore, the SIG is
typically preferred even in offline training. Multiple epochs of
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[FIG2] Residual error probability distributions over regression error values: (solid) for (a) MEE and (b)
MSE optimized models with 100 samples corrupted by Laplacian noise (dashed) and 40 outliers
with distribution N(10,4). Reprinted from [70], with permission from Elsevier.
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SIG updates always lead to the optimal solution one would
obtain using batch gradient, while the stochastic nature of
SIG also usually helps avoid local minima in the cost func-
tion [19], [31].

An extensive comparison of various algorithms in separating
audio recordings was per-
formed, and a summary of
results obtained from the most
popular and best-performing
algorithms have been provided
below, specifically, criterion (50)
for Renyi’s quadratic entropy
minimized using SIG (MRMI-SIG), same criterion for Shannon
entropy (MSMI), JADE [5], FastICA [33], Comon’s MI method [9],
and InfoMax [3]. The experiment consists of separating artificial-
ly mixed speech and music randomly selected from a pool of 50
source signals (24 speech, 26 music). In each Monte Carlo run,
the mixing matrix is also randomly selected. In a simulation with
M = 5 sources, where the number of samples N is varied MRMI-
SIG consistently outperforms the other algorithms in terms of
the signal-to-interference ratio (SIR) of the solution, as shown in
Figure 3(a). Repeating a similar experiment with fixed (10,000)
samples and varying the number of sources also yields the same
comparative result, shown in Figure 3(b).

MAXIMALLY DISCRIMINATIVE PROJECTIONS
VIA MUTUAL INFORMATION
Dimensionality reduction is an important procedure in pattern
recognition due to at least two important potential benefits: fil-
tering out irrelevant components while maintaining discrimina-
tive information in the original high-dimensional features and
increasing implementation practicality by reducing computa-
tional complexity and memory requirements. In the pattern
recognition context, input dimensionality reduction is per-
formed in two ways: wrapper and filter. The wrapper approach

attempts to determine the best projection specific to a classifier
topology and therefore requires repeated training and testing of
the classifier until an acceptable result is achieved. While this
technique determines a good projection for the specific classifi-
er, it also eliminates the flexibility of employing another classifi-

er topology. On the other
hand, the filter approach tries
to determine the best projec-
tion based on the optimization
of a suitable criterion inde-
pendent from the specific clas-
sifier topology to be utilized.

Although the filter approach does not optimize the feature pro-
jection based on the classification error of a certain topology,
with a suitable selection of the optimality criterion, its results
can be expected to be good and consistent over a wide range of
classifier topologies.

The literature is rich in feature selection (mostly in the wrap-
per context), linear and nonlinear feature projection, and feature
extraction algorithms based on a variety of optimality criteria.
While the traditional approach to dimensionality reduction
involves PCA, LDA, and their variations [13], the consensus
among many researchers is that the mutual information between
the projected features and the class labels is the natural measure
of discriminability. This is mainly motivated by the information
theoretic bounds on the classification performance: specifically
Hellman and Raviv’s bound [28] and extended Fano’s bounds
using Renyi’s mutual information [18]. However, due to practical
difficulties in estimating this quantity, various heuristic and
principled approximations have been employed. Especially, the
difficulties in estimating mutual information in high dimensions
motivate heuristic single-dimensional approaches in feature
selection. Recently, Torkkola proposed utilizing the quadratic
mutual information measures based on the divergence measures
(16) and (17) and the kernel density estimates of these quantities

[FIG3] (a) SIR versus number of samples for five audio sources and (b) SIR versus number of sources for 10,000 samples. Reprinted with
permission from [32].
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[64]. He has shown that discriminative information in the
high-dimensional features can be effectively preserved through
linear and nonlinear projections optimized through ITL.
Alternatively, other divergence measures and other discrim-
inability measures stemming from information theoretic meas-
ures can be utilized. The effective reason for Shannon mutual
information being a good discriminability measure is that max-
imizing it amounts to maximizing the overall data entropy
while minimizing the within-
class entropies. In essence,
this is a generalization of the
Fisher discriminant principle
to non-Gaussian distributions.
Consequently, it is not crucial
to use Shannon’s definition of
mutual information to this
end. A broad family of discriminability criteria that is suitable
for determining optimal subspace projections are given by
Renyi’s entropy

J (w) = Hα(y) −
∑

c
pcHα(y |c). (51)

In (51), y = g(x, w) is the projected feature, x is the original
high-dimensional feature, pc is the class prior, and g(., w) is the
parametric projection topology. The necessary entropy terms
can be easily estimated nonparametrically from samples: the
first term is calculated using all samples and (26), while the con-
ditional entropy terms are estimated using only the samples
from the corresponding class. The optimization can again be
achieved using a gradient-based algorithm. Using SIG will also
improve computational efficiency. An important consideration
in multidimensional projections is to maintain mutual inde-
pendence of the individual projections as much as possible. For
example, in the case of linear projections, this can be achieved
by enforcing an orthogonality constraint as in PCA.

A comparison of various methods including wrapper and fil-
ter approaches as well as traditional and information theoretic

techniques have been performed over three benchmark UCI
datasets: Pima, Landsat, Letter [65]. Using the following meth-
ods, features from all three datasets are projected to lower
dimensionalities (from one to the original data dimensionality)
and classification errors are averaged over Monte Carlo runs
and datasets: criterion in (51) for Renyi’s quadratic entropy
optimized using SIG (MeRMaId-SIG), Euclidean-distance based
mutual information measure as proposed by Torkkola opti-

mized using SIG (ED-QMI-
SIG) [64]; PCA, LDA, feature
ranking individually based on
their classification error (FR);
feature selection considering
all combinations in a brute-
force manner (FS), wrapper
approach based on classifier

MSE with class labels (MSE) [8]; wrapper approach based on
classification error (MCE) [35]; and random projection weights
in [−1, 1] (random).

The summarized results in Figure 4 demonstrate that the
discriminability measure in (51) works effectively in determin-
ing the linear projection direction that maximizes classifica-
tion performance. The qualitative ordering of algorithms is
also preserved for projections to higher dimensionalities.

AN INFORMATION THEORETIC
FRAMEWORK FOR SPECTRAL CLUSTERING
Clustering is an important problem in machine learning that
has various applications in a number of data-oriented disci-
plines. Most researchers agree that the current state-of-the-art
in clustering is spectral clustering, a special case of pairwise
affinity-based clustering that is based on the eigendecomposi-
tion of an affinity graph constructed nonparametrically using
pairwise interactions of samples. While Fiedler is perhaps the
first to notice that clustering could be achieved using the
eigenvectors of the Laplacian of the connectivity graph [20],
more recent results demonstrate clearly that the definition of
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[FIG4] (a) Correct classification rates for projections to one dimension and (b) average correct classification rate over all projection
dimensionalities. Note that FS and FR are identical for projections to a single dimension.
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the Laplacian could be relaxed by defining affinity matrices in
different ways according to context and clustering can be
achieved by determining the optimal graph cut [44], [52], [54].
Most notably, it has been shown that the normalized cut algo-
rithm is shown to be related to Markov random walks [41],
[54] and there are theoretical conditions under which these
algorithms will separate the clusters correctly. The construc-
tion of the affinity matrix through the use of kernel functions
is the general trend, inspired by the intuition offered regarding
the operation of the kernel machines (e.g., support vector
machines). Kernel machines operate linearly by transforming
the data to a high-dimensional feature space where inner prod-
uct operations are sufficient to solve the task. Perhaps the
most widely used spectral clustering algorithm is based on this
principle [52], [43]. A current practical problem to which a
theoretical answer is not known is what is a good kernel for the
given problem. The current state of the art is basically to solve
the problem with a variety of kernel choices and then select
the best performing one.

The clustering problem is really one of discrimination.
Consequently, a natural criterion for discriminability is the sep-
aration between the distributions of the clusters. Information
theoretic or algebraic density divergence/distance measures
provide a wide range of possibilities to measure cluster separa-
bility. Suppose that we assume the CSD of (17). Assuming a
two-cluster problem for illustration purposes, we denote the
current estimates of the two cluster distributions by p1(x) and
p2(x). Given a sample set {x1, . . . , xN}, using the current mem-
bership assignments we create two N × 1 membership vectors
m1 and m2 for the clusters, such that mc has ones at entries
corresponding to samples assigned to cluster c and zeros other-
wise. Now, employing a weighted kernel density estimator for
each cluster using the samples assigned to that cluster
{xc

1, . . . , xc
N1

}, we obtain the estimates

pc(x) = 1
�c

Nc∑
t=1

αc
t Kσ

(
x − xc

t
)

(52)

where �c = αc
1 + · · · + αc

Nc
. The weights introduced to the

estimator determine how much each sample contributes to the
density estimate, and they can be interpreted as the Lagrange
coefficients in support vector machines. Their significance in
spectral clustering will become apparent shortly. Substituting
(52) in (17) and simplifying the expression with the standard
calculations used in all of the previous examples, we obtain [34]

DCS(p1, p2) ≈ − log
mT

1 Kαm2√
(mT

1 Kαm1)(mT
1 Kαm2)

(53)

where Kα is the overall data affinity matrix with entries
Kα,ts = αtK√

σ 2
1 +σ 2

2
(xt, xs)αs for s, t = 1, . . . , N.

A typical spectral clustering algorithm will utilize the eigen-
vectors of the affinity matrix (which might be constructed in dif-

ferent ways). In particular, we are interested in the algorithms
that use the eigenvectors as the projections to a high dimen-
sional feature space, as in the kernel-machine context [43], [52],
[54]. Proceeding as usual, the eigendecomposition of the affinity
matrix is determined Kα = �T

x ��x , where �T
x is the orthonor-

mal eigenvector matrix and � is the diagonal eigenvalue matrix.
The columns of �x correspond to the feature-transformed data
points in accordance with standard spectral clustering and
kernel-machine practice (see Figure 5). Substituting the eigen-
decomposition in (53) and defining the cluster mean vectors in
the feature space as µc = (1/Nc)�xmc, the equivalent optimali-
ty criterion in the kernel induced feature space for this cluster-
ing problem becomes (denoting by 〈•, •〉� the weighted inner
product as in the Mahalanobis distance)

DCS(p1, p2) ≈ − log
µT

1�µ2√(
µT

1�µ1
) (

µT
2�µ2

)

= − log
< µ1, µ2 >�

||µ1||� · ||µ2||� . (54)

Since the goal is to assign memberships to samples that
maximize separability, the vectors mc must be selected such
that (53) and (54) are maximized. This expression explains
why the normalization of the samples to unit norm is crucial
in the proposed heuristic approaches that employ, for example
C-means [43] on the transformed data. In the density diver-
gence framework, normalization comes naturally from the
criterion. This is also why the algorithm of Shi and Malik [54]
works extremely well: it corresponds to a normalized density
distance measure in the original data space. In fact, in the
above illustration, if the sample weights of (52) are selected to

[FIG5] Illustration of spectral clustering: (a) synthetic data set, (b)
estimated data probability distribution, and (c) transformed data
in the feature space (projected to the first two principal
eigenvectors). 
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be αs = p−1/2(xs), where p(x) is the overall data distribution
evaluated using traditional kernel density estimation,
p(xs) ≈ (1/N)

∑N
t=1 Kσ (xs, xt)� ds and the diagonal matrix

D = diag {d1, . . . , dN} is defined, the affinity matrix Kα

becomes Kf = D−1/2KD−1/2 , where the matrix K is simply
constructed using the entries Kσ (xs, xt) for its (s, t) entry.
The resultant affinity matrix Kf is equivalent to the graph
Laplacian that is used in earlier work on spectral clustering
[43]. Under the density divergence framework, this leads to an
interesting interpretation of the Bayesian risk function that
this particular spectral clustering algorithm tries to optimize.
It is straightforward to demonstrate that, for this choice of
the weights the asymptotic Bayesian risk function of the crite-
rion in (53) is approximately

Risk =
√

q2

q1
P(Decide 2 | True 1)

+
√

q1

q2
P(Decide 1 | True 2) (55)

where qc denotes the cluster prior probabilities [34].
Therefore, the clustering algorithms based on the graph
Laplacian penalize clustering errors in samples belonging to
less-likely clusters more.

MULTIMODAL IMAGE REGISTRATION
In a variety of signal processing problems, measurements come
from different sensors working under measurement modalities,
thus creating the problem of how to fuse the information col-
lected from these various sensors. For example, in video-audio
processing, image frames are measured synchronously with
accompanying audio, and it is reasonable to assume that the
movements of some physical objects in the video are related to
some temporal aspects of the audio being recorded [21]. In med-
ical image registration, on the other hand, measurements are
taken using different imaging modalities (e.g., MR, CT), where
the alignment of the images requires exploiting the correlated
spatial behavior between the images, such as edges.

In recent years, there has been an increasing amount of
interest in employing ITL techniques for solving these multi-
modal signal processing problems. This interest is backed up
by the formal representation of physical processes as Markov
chains of cause-effect relationships. The introduction of prob-
abilistic points of views is naturally accompanied by the use of
information theoretic tools. An important preprocessing step
in multimodal signal processing is the extraction of appropri-
ate features for all measurement modalities, and this selection
must be done in a principled manner. Maximizing the mutual
information between the features obtained from different
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[FIG6] Image registration using the normalized entropy criterion. CT-MR registration: (a) CT image, (b) MR image with contours of CT
overlaid, and (c) affine registration of CT and MR using the normalized entropy criterion between edge features. MR-MR registration: (d)
reference MR image, (e) MR image with strong bias field and contours of reference MR overlaid, and (f) affine registration of the two MR
images using the normalized entropy criterion between intensity features. Reprinted with permission from Elsevier, Copyright (2005).
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modalities seem to be the natural choice [21], [63]; however,
certain robustness requirements might impose normalization
constraints on the optimality criterion for feature extraction.
For example, in medical image registration, the immediate
use of mutual information was observed to be problematic,
leading to the normalized entropy criterion [62], [63] (not to
be confused with (41) in model order selection)

NE(A, B) = HS(A) + HS(B)

HS(A, B)
= IS(A, B)

HS(A, B)
+ 1 (56)

where A and B are random variables corresponding to images
from the two modalities. Maximizing (56) corresponds to maxi-
mizing mutual information between the features, while keep-
ing their joint entropy low. Therefore, it could be regarded as
introducing a feature efficiency constraint to the optimal fea-
ture extraction problem. Other
normalization terms are also
possible, such as the sum of
marginal feature entropies
instead of their joint entropy, as
well as measures that utilize
Renyi’s definitions to control
the emphasis that one puts on
different density regions in each
component. Under the tradi-
tional Gaussianity assumption,
feature efficiency coefficients of the type presented in (56) will
clearly reduce to measures based on covariance [49].

To illustrate these concepts, we focus in the medical image
registration example and present some results on alignment.
Conventional medical image registration approaches based on
mutual information or other information theoretic measures
rely on the gray-scale intensity levels as the feature of choice in
determining the correct alignment between two images [62],
[68]. An alternative feature of choice would be the edge informa-
tion, which could be estimated using standard edge-detection
techniques, for example. These two features are compared in CT-
MR image registration using the local gradient as a measure of
edginess [63], where it has been shown that while registration
based on the mutual information of intensity features fail to reg-
ister the images correctly in the case of affine transformations,
the edge features achieve correct registration with the optimiza-
tion of the normalized entropy criterion in (56). The existence of
strong magnetic field bias due to inhomogeneity in the MR
measurements also causes problems for registration algorithms
[58] and in mutual information based registration using intensi-
ty features this might create catastrophic results if the bias dis-
tortions are strong enough to mask the actual image. The
conventional approach to resolve this difficulty is to correct the
bias problem with a minimum entropy criterion [42], [68]
before proceeding with the registration (which is typically fol-
lowed by segmentation). In fact, the so-called normalized
entropy criterion (which could be renamed as the normalized
mutual information criterion) can achieve both goals simulta-

neously. As seen in Figure 6, the normalized entropy criterion
can be used to successfully register multimodal and unimodal
images under both scenarios with appropriate features.

CONCLUSIONS
Adaptive filtering techniques have been an integral part of
optimal signal processing. Especially online adaptation rules,
such as the LMS algorithm, are extensively used in optimal
real-time signal processing where a priori design of such fil-
ters are not possible or feasible. An increasingly larger num-
ber of contemporary such signal processing applications
demand for more advanced filter topologies and optimality
criteria that extract information more efficiently from meas-
ured signals. Higher-order statistics and especially informa-
tion theoretic optimality measures attract ever-increasing
attention to this end, since they provide a natural framework

where the information content
of available data can be
assessed. These information
theoretic measures also provide
the basis of a unified adaptive
information filtering methodol-
ogy that improves performance
and facilitates online imple-
mentation.

In this article, we reviewed
the ITL framework based on the

smooth Parzen window estimates of entropy and divergence.
The ITL methodology allows simple gradient-based learning
rules to be constructed for the optimization of nonlinear filter
topologies under information theoretic optimization criteria
under extremely general conditions. The performance of the fil-
ters designed using information theoretic criteria is, in almost
all realistic scenarios, better than the traditional solutions
offered by second-order statistical criteria. Here we presented
applications of ITL to density estimation, nonlinear system iden-
tification, blind source separation, data dimensionality reduc-
tion, clustering, and multimodal information fusion. While
these sample applications were selected for illustrative purposes,
the ITL framework is applicable to any signal processing that
requires the data-oriented optimal design of filter topologies.
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APPENDIX
PARAMETRIC ENTROPY ESTIMATION
The parametric approach relies on assuming a family of distri-
butions (such as the Gaussian, beta, exponential) that paramet-
rically describes each candidate distribution. The optimal pdf
estimate for the data is then determined using Bayesian tech-
niques, such as ML or MAP. For example, the ML estimate yields
p(x; θML) as the density estimate by solving

θML = arg max
θ

N∑
k=1

log p(xk ; θ) (A.1)

where p(x ; θ) is the selected parametric family of distributions.
It can be shown that the ML density estimate asymptotically
converges to the member of the parametric family that mini-
mizes the KLD with the true underlying density. To observe this,
suppose that the samples are generated by a density q(x) and a
parametric family p(x ; θ) is considered for data modeling

θKLD = arg min
θ

DKL(q ; pθ )

= arg min
θ

∫
q(x) log[q(x)]/[p(x ; θ)]dx

= arg min
θ

− HS(X) − EX [log p(X ; θ)]

= arg max
θ

EX [log p(X ; θ)]

= lim
N→∞

θML. (A.2)

The MAP estimate asymptotically converges to the same
KLD-optimal parameters since the weight of the a priori param-
eter distribution asymptotically diminishes. The modeling capa-
bility of the parametric approach can be enhanced by allowing
mixture models (such as mixture of Gaussians). Nevertheless,
the parametric entropy estimation approach encounters two dif-
ficulties in ITL applications: each adaptation step requires solv-
ing one ML model fitting procedure and insufficient model
complexity for general-purpose data modeling given the typical-
ly constrained parametric models.

Another interesting approach to entropy estimation is to use
the duality between the pdf of a random variable and the power
spectral density (PSD) of an associated stochastic process [2].
The samples of the random variable can be used to generate the
samples from which the PSD of the associated process can be
estimated using traditional and established spectral estimation
techniques [59]. [SP]
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