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Abstract

This paper contributes a tutorial level discussion of some interesting properties of
the recent Cauchy-Schwarz (CS) divergence measure between probability density
functions. This measure brings together elements from several different machine
learning fields, namely information theory, graph theory and Mercer kernel - and
spectral theory. These connections are revealed when estimating the CS divergence
non-parametrically using the Parzen window technique for density estimation. An
important consequence of these connections is that they enhance our understanding
of the different machine learning schemes relative to each other.
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1 Introduction

Recently, a new scheme for statistically based machine learning has emerged, coined
information theoretic learning (ITL) [1]. The starting point is a data set that glob-
ally conveys information about a real-world event. The goal in ITL is to capture,
or learn, this information in the form of the parameters of an adaptive system.
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Fig. 1. Illustration of ITL setup.

This is done using information theoretic cost functions as learning criteria. As op-
posed to the traditional mean squared error criterion, information theoretic cost
functions take into account statistical dependencies beyond correlations. This is
important in many problems in machine learning, such as blind source separation
and independent component analysis, blind equalization and deconvolution, sub-
space projections, dimensionality reduction and manifold learning, feature extrac-
tion, classification and clustering.

Figure 1 shows a schematic illustration of ITL. Typically, ITL is an iterative process,
where the data exemplar xi is presented to the system at iteration i, and the output
is given by yi = g(W)xi. The function g(W) represents a possibly non-linear
data transformation, and the goal is to perform a specific task, according to an
information theoretic criterion. The system may be guided by a correction term ei,
and the system may receive external input in the form of a desired response.

The ITL scheme implicitly requires probability density functions (pdfs) to be esti-
mated, in order to evaluate the information theoretic criterion. Since it is oftentimes
desirable to make as few assumptions as possible about the structure of the pfds
in question, Principe et al. [1] argued that Parzen windowing is the appropriate
density estimation technique. Combined with information theoretic criteria based
on Renyi’s quadratic entropy, ITL has been applied with great success on several
supervised and unsupervised learning schemes, see for example [2–9,6,10].

The choice of using information theoretic criteria based on Renyi’s quadratic entropy
as opposed to measures based on for example Shannon’s entropy was not arbitrary.
One important reason for introducing these new cost functions into machine learning
was that they may be estimated without making any approximations besides the
Parzen windowing itself. One important quantity which was proposed was the so-
called Cauchy-Schwarz (CS) pdf divergence. The CS divergence is a measure of
the “distance” between two probability density functions, p1(x) and p2(x). This
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measure is given by

DCS(p1, p2) = − log

∫

p1(x)p2(x)dx
√

∫

p2
1(x)dx

∫

p2
2(x)dx

. (1)

This is a symmetric measure, such that 0 ≤ DCS < ∞, where the minimum is
obtained if and only if p1(x) = p2(x).

This paper provides a tutorial level discussion of some interesting properties of the
Cauchy-Schwarz divergence. It turns out that when Parzen windowing is used to
estimate the CS divergence, the resulting cost function can be interpreted both in
terms of graph theory and Mercer kernel - and spectral theory. Figure 2 illustrates
these connections, which we will discuss further in the following sections. Hence,
these links indicate that graph theoretic measures and Mercer kernel based measures
are closely related to information theory and non-parametric density estimation.
Graph theory and Mercer kernel based theory have been important parts of machine
learning research in recent years.

Graph theory [11] has been used for decades in various scientific fields for many
purposes. In the last decade, it has also been introduced to the field of computer
vision and machine learning, by optimizing the so-called graph cut [12] The graph
cut provides a measure of the cost of partitioning a graph into two subgraphs.

Mercer kernel based methods [13–16] have been dominating in machine learning and
pattern recognition since the introduction of the support vector machine [17–20].
Here, the main idea is to implicitly map the data points into a potentially infinite
dimensional non-linear feature space using Mercer kernels. In the Mercer kernel
feature space, it is more likely to obtain linearly separable data, and linear machine
learning techniques may be used.

Quite recently, yet another machine learning field has received significant attention,
namely the spectral methods [13]. Spectral methods refer to techniques using the
eigenvalues (spectrum) and eigenvectors of certain data matrices to perform the
machine learning tasks. See for example [21–25]. Kernel PCA [26] is one prominent
example of a spectral method. It basically performs a principal component analysis
(PCA) approximation to Mercer kernel feature spaces.

The remainder of the paper is organized as follows. In section 2 the Parzen window
technique for density estimation is discussed. In section 3, it is shown how the CS
divergence may be estimated non-parametrically using the Parzen window method.
Furthermore, in section 4, the connection to graph theory is discussed, and in section
5 the connection to Mercer kernel - and spectral methods is discussed. Section 6
discusses an extension of the CS divergence. We make our concluding remarks in
section 7.
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Fig. 2. The Cauchy-Schwarz (CS) divergence estimated using Parzen windowing
(PW) has equivalent expressions in graph theory, Mercer kernel theory and spectral
theory.

2 Parzen Windowing

In this section, we will review a well-known technique for probability density func-
tion estimation that is known as Parzen windowing, or kernel density estimation.
Our review follows those given in [27–29].

There are two approaches for estimating the pdf of a random variable from its in-
dependent and identically distributed samples; parametric and non-parametric. In
parametric density estimation, it is assumed that a parametric model for the pdf
in question is known apriori. The task is then to estimate the model parameters
from the samples, using for example the maximum likelihood principle. However,
it is frequently the case that we have no apriori information about the form of the
densities. In that case, it is not recommended to select a specific model for the den-
sity, because it may not describe the data samples well at all. On the contrary, it is
desirable to be able to estimate the density without making any model assumptions,
that is, we wish to estimate the density non-parametrically.

There are several approaches to non-parametric density estimation. One of the most
well-known and widely used techniques is known as Parzen windowing [30]. As-
sume that we wish to estimate the density f(x) of the process generating the d-
dimensional sample x1, . . . ,xN . The Parzen window estimator for this distribution
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is defined as

f̂(x) =
1

N

N
∑

l=1

Wσ2(x,xl). (2)

Here, Wσ2 is the Parzen window, or kernel, and σ2 controls the width of the kernel.
The Parzen window must integrate to one, and is typically chosen to be a pdf itself,
such as the Gaussian kernel. Hence,

Wσ2(x,xl) =
1

(2πσ2)
d

2

exp

{

−
||x − xl||

2

2σ2

}

. (3)

Other window functions may also be used, such as the triangle, Epanechnikov,
biweight and triweight kernels [28].

It is well-known that the most important parameter in Parzen windowing is the
kernel size, given by σ, and to a lesser extent the actual form of the window used.
To illustrate the dependence on σ, we have created a simple one-dimensional data
set, and show in Fig. 3 the resulting pdf estimates for different σ. The 50 data
samples used is generated from a standard normal density. In Fig. 3 (a), the Parzen
window pdf estimate (solid line) using a kernel size σ = 0.1 is shown. The estimate
is compared to a standard normal density (stapled line). Clearly, the estimate is not
smooth enough, and does not approximate the true underlying density very well. In
(b), we show the estimate corresponding to σ = 2. In this case the opposite effect is
observed, and the estimate is clearly too smooth. Finally, in (c) we show the result
obtained using σ = 0.45. In this case the estimate approximates the true density
quite well. This poses the question; is there any data-driven method to determine
σ = 0.45 as the appropriate kernel size?

2.1 Determining the Parzen Window Width

It is easily shown that Eq. (2) is an asymptotically unbiased and consistent estimator
provided σ decays to zero at a certain rate as N tends to infinity [30]. In the finite
sample case, the kernel size has to be chosen in a trade-off between estimation bias
and variance. We illustrate this in the one-dimensional case. The mean integrated
squared error (MISE) is the appropriate measure for analyzing f̂(x), where

MISE
{

f̂(x)
}

=

∫

[

E
{

f̂(x)
}

− f(x)
]2
dx+

∫

V ar
{

f̂(x)
}

dx, (4)

where E
{

[f̂(x) − f(x)]2
}

=
[

E
{

f̂(x)
}

− f(x)
]2

+V ar
{

f̂(x)
}

is the mean squared

error. Finding the kernel size which minimizes the MISE can be obtained by various
cross-validation techniques [29]. Another straight-forward approach is to analyze
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Fig. 3. Using the Parzen window method to estimate a density based on 50 samples
drawn from a standard normal density. The Parzen window estimate is shown using
a solid line. The location of each sample is indicated by the symbol ?. The standard
normal density is shown using a stapled line. The kernel size, given by σ, has a
visible effect on the resulting estimates.

the MISE asymptotically, i.e. when the number of samples N goes to infinity. The
resulting expression for the asymptotic MISE (AMISE) becomes

AMISE
{

f̂(x)
}

=
σ4µ2

2(K)R(f ′′)

4
+
R(K)

σN
, (5)

where K is in this case the standard normal density function, µ2(K) =
∫

z2K(z)dz,

R(f ′′) =
∫

{f ′′(x)}2dx where f ′′(x) = d2

dx2 f(x), and R(K) =
∫

K(z)2dz. It can be
seen that the left term on the right-hand side of Eq. (5) is minimized by minimizing
σ. This is the bias part. However, the right term, which is the variance part, is
minimized by maximizing σ. Hence, there is an inherent bias-variance trade-off
associated with the Parzen window technique for density estimation.
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Note that one may obtain an explicit formula for the AMISE optimal kernel size by
differentiating Eq. (5) and equating it to zero, obtaining

σAMISE =

[

R(K)

µ2
2(K)R(f ′′)N

]

1

5

. (6)

One straight-forward approach is to estimate R(f ′′) with reference to a normal
density. This quantity is then plugged back into Eq. (6) to obtain an estimate for
σAMISE. It can be shown that the corresponding kernel size is given by σ̂AMISE ≈
1.06σ̂N− 1

5 , where σ̂ is an estimate of the standard deviation of the normal density
[27]. In the d-dimensional case, the normal reference rule becomes

σAMISE = σ̂

[

4

(2d+ 1)N

]
1

d+4

, (7)

where σ̂2 = d−1 ∑

i Σii, and Σii are the diagonal elements of the sample covariance
matrix.

In fact, when determining the Parzen window width in the simple example illus-
trated in Fig. 3, the normal reference rule yields σ = 0.45.

3 Cauchy-Schwarz Divergence

Measures of how close two pdfs p1(x) and p2(x) are in some specific sense, are
provided by the information theoretic divergences, such as the Kullback-Leibler
divergence [31] or the Chernoff divergences [32]. In this paper, we focus on the
so-called Cauchy-Schwarz divergence, recently proposed by Principe et al. [1].

Define the inner-product between two square-integrable functions h(x) and g(x) as
〈h, g〉 =

∫

h(x)g(x)dx. Then, by the Cauchy-Schwarz inequality

∣

∣

∣

∣

∫

h(x)g(x)dx

∣

∣

∣

∣

2

≤

∫

|h(x)|2 dx

∫

|g(x)|2 dx, (8)

with equality if and only if the two functions are linearly dependent. Now consider
two pdfs, p1(x) and p2(x), i.e. non-negative functions which integrate to one. In
this case, a measure of the “distance” between the pdfs may be defined, which was
named the Cauchy-Schwarz divergence [1]. We repeat the expression, as

DCS(p1, p2) = − log

∫

p1(x)p2(x)dx
√

∫

p2
1(x)dx

∫

p2
2(x)dx

. (9)
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As mentioned, this is a symmetric measure, such that 0 ≤ DCS < ∞, where the
minimum is obtained if and only if p1(x) = p2(x).

Let us estimate this quantity by replacing the actual pdfs by their Parzen window
estimators. Let xi, i = 1, . . . , N1, be data points drawn from the density p1(x), and
let xj , j = 1, . . . , N2, be data points drawn from p2(x). Then, the Parzen window
estimators for these distributions are [30]

p̂1(x) =
1

N1

N1
∑

i=1

Wσ2(x,xi), p̂2(x) =
1

N2

N2
∑

j=1

Wσ2(x,xj), (10)

It can be shown that according to the convolution theorem for Gaussian functions,
the following relation holds

∫

Wσ2(x,xl)Wσ2(x,xl′)dx = W(
√

2σ)2(xl,xl′). (11)

For simplicity, we will in the remainder of this paper denote W(
√

2σ)2(xl,xl′) by kll′ .

Thus, when we replace the actual densities in the argument of (9) by the Parzen
pdf estimators of (10), and utilize (11), we obtain

∫

p1(x)p2(x)dx≈

∫

p̂1(x)p̂2(x)dx

=
1

N1N2

N1,N2
∑

i,j=1

∫

Wσ2(x,xi)Wσ2(x,xj)dx

=
1

N1N2

N1,N2
∑

i,j=1

kij , (12)

where the index i is associated with p1(x) and the index j is associated with p2(x).

Now we may perform an exactly similar calculation for the two quantities in the
denominator of (9), yielding

∫

p2
1(x)dx ≈

1

N2
1

N1,N1
∑

i,i′=1

kii′ ,

∫

p2
2(x)dx ≈

1

N2
2

N2,N2
∑

j,j′=1

kjj′ . (13)

Based on these expressions, the non-parametric sample-based estimator we obtain
for the Cauchy-Schwarz pdf divergence is given by

D̂CS(p1, p2) = − log

∑N1,N2

i,j=1 kij
√

∑N1,N1

i,i′=1 kii′
∑N2,N2

j,j′=1 kjj′

. (14)
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Notice that we can obtain the same expression also using non-Gaussian Parzen
windows. This is shown in the Appendix.

4 Relation to Graph Theory

In this section we will introduce the graph cut. The graph cut has been an important
cost function used for example in image segmentation [12]. Thereafter, we will show
that the CS divergence is actually closely related to the graph cut.

4.1 The Graph Cut

A set of points, xl, l = 1, . . . , N , in an arbitrary data space can be represented as a
weighted undirected graph G. Each node in the graph corresponds to a data point.
The edge formed between a pair of nodes, say l and l ′, is weighted according to the
similarity between the corresponding data points. The edge-weight is denoted vll′ .

One way to measure the cost of partitioning the graph G into two subgraphs G1 and
G2 is provided by the graph cut, defined as

Cut(G1,G2) =
N1,N2
∑

i,j=1

vij, (15)

where the index i = 1, . . . , N1, runs over the N1 nodes of subgraph G1 and the index
j = 1, . . . , N2, runs over the N2 nodes of subgraph G2. That is, the cut measures
the weight of the edges of G which have to be removed in order to create G1 and G2.

Any similarity measure can be used in order to define the edge-weights. However,
oftentimes the exponential kernel is used, i.e.

vll′ = exp

{

−
||xl − xl′ ||

2

2σ2

}

, (16)

where σ is a very important scale-parameter which the user must specify.

4.2 The CS Divergence as a Normalized Graph Cut

By comparing Eq. (15) with Eq. (12), it turns out that the CS divergence is related
to the graph cut. This can be seen by considering the constants kll′ as edge-weights,
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that is, equivalent to the weights given by vll′ . Hence, we relate the samples corre-
sponding to p1(x) with a graph G1, and the samples corresponding to p2(x) with a
graph G2. In that case

∫

p̂1(x)p̂2(x)dx ∝
N1,N2
∑

i,j=1

kij = Cut(G1,G2). (17)

In graph theory, a quantity known as the volume of a graph is given by the sum of
all the edge-weights in the graph. Hence, we may write

V ol(G1) =
N1,N1
∑

i,i′=1

kii′ ∝

∫

p̂2
1(x)dx. (18)

Similarly, we have V ol(G2) =
∑N2,N2

j,j′=1 kjj′. The following quantity can therefore be
defined, which was called the information cut (IC) in [33]

IC(G1,G2) =
Cut(G1,G2)

√

V ol(G1)V ol(G2)
. (19)

Of course, D̂(p1, p2) = − log IC(G1,G2). The name information cut reflects the fact
that a well-defined normalized version of the graph cut has been obtained from
an information theoretic starting point. This means that when the CS divergence,
estimated using Parzen windowing, is optimized for machine learning tasks, we are
at the same time optimizing a graph theoretic quantity.

Note that much effort has been made in order to construct modifications to the
cut-cost [34–37]. The reason is that the cut-cost alone has the undesirable property
that it is minimized when isolating one single node in one of the subgraphs, and
all the rest of the nodes in the other subgraph. Up to this point in time, all the
proposed modifications to the cut-cost have been motivated by this observation,
and several suggestions based on heuristics have been made. However, based on
the CS divergence and Parzen windowing, we have obtained a completely new and
theoretically well-defined normalization based on the subgraph volumes. This is
illustrated in Fig. 4. In (a) it is shown (solid straight line) that based on the cut-
cost, the optimum partitioning is obtained by isolating one single node. This is not
the case when using the information cut. In this case, the normalization due to the
subgraph volumes will prevent the optimum from being reached when one single
node is isolated. Rather, the optimum partitioning will be obtained by splitting the
graph along the solid curve shown in (b).

Moreover, the connection to Parzen windowing gives us a theoretical criterion for
determining appropriate graph edge-weights, namely by using a Parzen window
where the window size is determined for example by Eq. (7). This is a very important
side-effect of the connection between the CS divergence and Parzen windowing and
graph theory.
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(a) Graph cut.
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(b) Information cut.

Fig. 4. Illustrating the different graph partitioning obtained by (a) the cut-cost, (b)
the information cut.

5 Relation to Mercer Kernel Theory

In this section, we will explain the idea behind Mercer kernel-based machine learning
algorithms. We will then show that the CS divergence can be considered a distance
measure in such a Mercer kernel feature space. We will discuss how the Mercer
kernel feature space can be approximated using spectral techniques, and show that
the distance measure represented by the CS divergence makes sense in such a feature
space.

5.1 Mercer Kernel Theory

Mercer kernel-based learning algorithms [13–16] make use of the following idea: via
a nonlinear mapping

Φ : Rd →F

x→Φ(x) (20)

the data x1, . . . ,xN ∈ Rd is mapped into a potentially much higher dimensional
feature space F . For a given learning problem one now considers the same learning
problem in F instead of in Rd, working with Φ(x1), . . . ,Φ(xN ) ∈ F .

The learning algorithm itself is typically linear in nature, and can be expressed
solely in terms of inner-product evaluations. This makes it possible to apply the
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algorithm in feature space without actually carrying out the data mapping. The
key ingredient is a highly effective trick for computing inner products in the feature
space using kernel functions. One therefore implicitly executes the linear algorithm
in kernel feature space. This property is advantageous since execution of the learning
algorithm in a very high dimensional space is avoided. Because of the non-linear data
mapping, the linear operation in kernel feature space corresponds to a non-linear
operation in the input space.

Consider a symmetric kernel function ρ(x,y). If ρ : C×C → R is a continuous kernel
of a positive integral operator in a Hilbert space L2(C) on a compact set C ∈ Rd,
i.e.

∀ψ ∈ L2(C) :

∫

C

ρ(x,y)ψ(x)ψ(y)dxdy ≥ 0. (21)

Then there exists a space F and a mapping Φ : Rd → F , such that by Mercer’s
theorem [38]

ρ(x,y) = 〈Φ(x),Φ(y)〉 =
NF
∑

l=1

λlφl(x)φl(y), (22)

where 〈·, ·〉 denotes an inner product, the φl’s are the eigenfunctions of the kernel
and NF ≤ ∞ [39,18]. This operation is known as the “kernel-trick”, and it implicitly
computes an inner-product in the kernel feature space via ρ(x,y).

A kernel which satisfies Eq. (21) is known as a Mercer kernel. The most widely used
Mercer kernel is the exponential function

ρ(x,y) = exp

{

−
||x − y||2

2σ2

}

, (23)

where σ is a scale parameter which controls the width of the function. Such a kernel
corresponds to an infinite-dimensional Mercer kernel feature space, since it has an
infinite number of eigenfunctions.

5.2 The CS Divergence in a Mercer Kernel Feature Space

It also turns out that the CS divergence may be considered a distance measure in a
Mercer kernel feature space. Assume that we use a Gaussian Parzen window when
constructing the coefficients kll′ . By comparing Eq. (11) with Eq. (23), it is clear
that the kll′ ’s are also Mercer kernels. Hence, we may express the CS divergence in
terms of Mercer kernel feature spaces.
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Thus, kll′ = 〈Φ(xl),Φ(xl′)〉 where Φ is the mapping of the input data to a kernel
feature space. Hence, we may rewrite the information cut as

IC =
1

N1N2

∑N1,N2

i,j=1 〈Φ(xi),Φ(xj)〉
√

1
N2

1

∑N1,N1

i,i′=1 〈Φ(xi),Φ(xi′)〉
1

N2
2

∑N2,N2

j,j′=1

〈

Φ(xj),Φ(xj′)
〉

=

〈

1
N1

∑N1

i=1 Φ(xi),
1

N2

∑N2

j=1 Φ(xj)
〉

√

〈

1
N1

∑N1

i=1 Φ(xi),
1

N1

∑N1

i′=1 Φ(xi′)
〉 〈

1
N2

∑N2

j=1 Φ(xj),
1

N2

∑N2

j′=1 Φ(xj′)
〉

=
〈m1,m2〉

√

〈m1,m1〉 〈m2,m2〉
= cos 6 (m1,m2), (24)

where m1 = 1
N1

∑N1

i=1 Φ(xi) and m2 = 1
N2

∑N2

j=1 Φ(xj) can be considered mean
vectors of feature space data clusters corresponding to the data points associated
with p1(x) and p2(x), respectively. This means that D̂(p1, p2) = − log cos 6 (m1,m2).
Thus, the information theoretic divergence divergence measure between pdfs that
we started out with turns out to have a dual expression in a Mercer kernel feature
as a measure of the cosine of the angle between the cluster mean vectors.

Thus, when optimizing the CS divergence for machine learning tasks, we are at
the same time optimizing a quantity in a Mercer kernel feature space. Moreover,
a theoretical criterion for determining the Mercer kernel size can be obtained via
optimal Parzen windowing. The Parzen window defines the Mercer kernel. Hence,
by determining the Parzen window size using for example Eq. (7), the Mercer kernel
size is also determined. This is a very important side-effect of the connection between
the CS divergence and Mercer kernel feature spaces.

5.3 Spectral Approximation

The kernel PCA method [26] was introduced as a technique for projecting data
samples represented in a Mercer kernel feature space onto the principal axes in
that space. This provides a means for performing the machine learning tasks on the
kernel PCA projected data. The dimensionality of the kernel PCA data is normally
reduced, since in theory the mapping produces N dimensional data.

The first step in kernel PCA is to collect the inner-product evaluations in a matrix.
Since the inner-product between Φ(xl) and Φ(xl′) are calculated using a kernel
function, which we denote kll′ , the corresponding matrix K is often referred to as
the kernel matrix. Hence, the kernel matrix is defined such that element ll ′ of K

equals kll′ , for l = 1, . . . , N and l′ = 1, . . . , N .

The kernel PCA mapping, depending on the eigenstructure of the correlation matrix
in the Mercer kernel feature space, can be expressed in terms of the eigenvalues and
eigenvectors of the kernel matrix. The kernel matrix can be expressed as K =
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EDET , where the columns of E contains the eigenvectors ei, i = 1, . . . , N , of K,
and the diagonal matrix D contains the corresponding eigenvalues λi, i = 1, . . . , N ,
λ1 ≥, . . . ,≥ λN . It can be shown that if the data set consists of C clusters which are
“infinitely” far apart, then the kernel PCA mapping is C-dimensional. It is therefore
common to reduce the dimension of the kernel PCA data set from N to C by using
only the eigenvectors corresponding to the C largest eigenvalues. In that case, the
C-dimensional kernel PCA data mapping is given by [26]

Φ(xl) ≈ [

√

λ̃1e1l, . . . ,

√

λ̃CeCl]
T , l = 1, . . . , N, (25)

where eil denotes the l’th element of the i’th eigenvector. This data mapping has
also been derived using different approaches [40,41]. Such a data mapping approach
has been used for example in clustering [24] and in classification [42]. In that case,
these machine learning methods are known as spectral methods, since they depend
on the spectral properties of the kernel matrix.

We may use the spectral approximation to the Mercer kernel feature space in order
to evaluate the appropriateness of the CS divergence as a distance measure between
cluster mean vectors in that space. Figure 5 (a) shows a data set consisting of two
clusters. We determine the Parzen window size by Eq. (7), and create the kernel
matrix K. Thereafter, we perform a two-dimensional kernel PCA data mapping.
The resulting data set is shown in Fig. 5 (b). This data set can be considered an
approximation to the Mercer kernel feature space data set. Interestingly, in the
spectral domain, the data is distributed along two lines radially from the origin, in
two different angular directions. Hence, the mean vectors of the clusters will be in
the same direction as the lines, clearly indicating that a distance measure between
the clusters that is based on angles between mean vectors makes sense. The same
effect is observed for the data set shown in Fig. 5 (c). This data set consists of three
clusters, so the kernel PCA mapping is three-dimensional. Again, using Eq. (7) to
determine the kernel size, we obtain the data set shown in Fig. 5 (d). Also in this
case, the data is distributed along lines radially from the origin, again indicating
the appropriateness of an angular distance measure in that space.

6 Extension to the Multi-PDF Case

The CS divergence may also be extended, such that it measures the overall “dis-
tance” between several pdfs at the same time, as follows

DCS(p1, . . . , pC) = − log
C−1
∑

i=1

∑

j>i

〈pi, pj〉

κ
√

〈pi, pi〉 〈pj, pj〉
, (26)

where κ =
∑C−1

c=1 c and 0 ≤ DCS(p1, . . . , pC) < ∞. Note that DCS = 0 only for
p1(x) = . . . = pC(x). When replacing the actual pdfs by their Parzen window
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Fig. 5. Approximating a Mercer kernel feature space using kernel PCA. The CS
divergence, corresponding to the cosine of the angle between cluster mean vectors
in the Kernel PCA space, clearly makes sense.

estimators, it can easily be shown that

D̂CS(p1, . . . , pC) =− log
C−1
∑

i=1

∑

j>i

1

κ
IC(Gi,Gj)

=− log
C−1
∑

i=1

∑

j>i

1

κ
cos 6 (mi,mj). (27)

Hence, the Parzen window based estimator for the multi-pdf CS divergence basically
measures the sum of pairwise information cuts, or equivalently the sum of cosines
between cluster mean vectors in the Mercer kernel feature space.
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7 Discussion

In this paper, some recent connections between the information theoretic Cauchy-
Schwarz pdf divergence measure, graph theory and Mercer kernel - and spectral the-
ory have been presented. These connections are revealed when the CS divergence is
estimated using the Parzen window technique for probability density function esti-
mation. Thus, these connections have the important consequence that they enhance
our understanding of these seemingly different machine learning schemes relative to
each other, since they have been shown to be equivalent in many respects. The
equivalence between the CS divergence and Mercer kernel methods depends on the
Parzen window satisfying the Mercer conditions. Some of the CS properties were
presented in [33,43,44].

A very important side-effect the equivalence between the CS divergence and graph
theory and Mercer kernel theory has, concerns the kernel size. A kernel size must be
selected both in graph theory and in Mercer kernel theory. To this date, no widely
accepted theoretically well-defined criterion for kernel size selection exist, neither
in graph theory nor in Mercer kernel theory. However, in Parzen windowing, such
a theoretical criterion for kernel size selection does exist. We have shown that the
Parzen window may define the kernel function both in graph theory and in Mercer
kernel theory. Therefore, in theory at least, it provides a solution for the kernel size
selection problem in graph theory and Mercer kernel theory too.

The Cauchy-Schwarz pdf divergence has already been applied in several machine
learning problems, especially for data clustering, for example in a hierarchical clus-
tering procedure presented in [45]. The connections to graph theory were utilized in
a clustering algorithm presented in [33] and in [46]. Several attempts have also been
made to use the CS divergence in connection with Mercer kernel-based and spectral
theory. A preliminary information theoretic spectral clustering algorithm was pre-
sented in [47]. A new classifier based on the so-called Laplacian matrix and the CS
divergence was presented at the ICASSP 2005 conference [42], and was shown to pro-
duce very promising results. Quite recently, new algorithms for clustering have also
been presented, further fusing together information theoretic ideas, non-parametric
density estimation and Mercer kernel-based and spectral theory [48].

In the future, new and more powerful machine learning algorithms may be developed
by further fusing toghether information theory, non-parametric density estimation,
graph theory and Mercer kernel - and spectral theory.
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Appendix

Eq. (9) can be rewritten as

DCS = − log
Ep1

{p2(x)}
√

Ep1
{p1(x)}Ep2

{p2(x)}
, (28)

where Ep{·} denotes the expectation operator with respect to the density p. Using
the sample mean to estimate the expectations, we obtain

Ep1
{p2(x)} ≈

1

N1

N1
∑

i=1

p2(xi)

=
1

N1

N1
∑

i=1

1

N2

N2
∑

j=1

W (xi,xj)

=
1

N1N2

N1,N2
∑

i,j=1

W (xi,xj), (29)

whereW is some (non-Gaussian) Parzen window. In a similar manner,Ep1
{p1(x)} ≈

1
N1N1

∑N1,N1

i,i′=1 W (xi,xi′) and Ep2
{p2(x)} ≈ 1

N2N2

∑N2,N2

j,j′=1 W (xj,xj′), such that we
obtain

IC(G1,G2) =

∑N1,N2

i,j=1 kij
√

∑N1,N1

i,i′=1 kii′
∑N2,N2

j,j′=1 kjj′

, (30)

where we have defined W (xl,xl′) = kll′ .
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