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Abstract

Determining optimal subspace projections that can maintain task-relevant information in the data is an important problem in machine
learning and pattern recognition. In this paper, we propose a nonparametric nonlinear subspace projection technique that maintains class
separability maximally under the Shannon mutual information (MI) criterion. Employing kernel density estimates for nonparametric
estimation of MI makes possible an interesting marriage of kernel density estimation-based information theoretic methods and kernel
machines, which have the ability to determine nonparametric nonlinear solutions for difficult problems in machine learning. Significant
computational savings are achieved by translating the definition of the desired projection into the kernel-induced feature space, which
leads to obtain analytical solution.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Dimensionality reduction is an important step in a variety
of applications including pattern recognition, data compres-
sion, and exploratory data analysis. In practice, the relevant
information about the data structure can often be represented
by a lower dimensional manifold embedded in the original
Euclidian data space. Specifically, in pattern recognition, a
high-dimensional feature vector is available, but usually the
classification task can be achieved equally well by a fea-
ture vector of reduced dimensionality. In practice, reducing
the number of features will also help the classifier learn
a more robust solution and achieve a better generalization
performance. This is due to the fact that irrelevant feature
components are eliminated by the optimal subspace projec-
tion. Recent developments in kernel machines indicate that
robust solutions to nonlinear problems in pattern recogni-
tion can be obtained by first projecting the data into a higher
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dimensional space (possibly infinite). The regularization of
the solution is achieved by the proper selection of the kernel.
In this paper, we develop a technique based on kernel mu-
tual information (MI) estimation for finding nonlinear pro-
jections by first projecting the data to such a space and then
projecting it down to a much lower dimensionality.

Subspace projection is typically achieved either by fea-
ture selection or by feature transformation. Optimal feature
selection coupled with a specific classifier topology, namely
the wrapper approach, results in a combinatorial computa-
tional requirement, thus, is unsuitable for adaptive learning
of feature projections. In addition, feature selection is a spe-
cial case of feature transformations; therefore, we will fo-
cus on the general case of determining optimal nonlinear
transformations.

Adaptive learning of nonlinear feature transformations,
namely the filter approach, is achieved by optimizing a
suitable criterion. The possibility of learning the optimal
feature projections sequentially decreases the computational
requirements making the filter approach especially attrac-
tive. Perhaps, historically the first dimensionality reduction
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technique is linear principle components analysis (PCA)
[1,2]. Although this technique is widely used, its shortcom-
ings for pattern recognition are well known. A generalization
to nonlinear projections, Kernel PCA [3], still exhibits the
same shortcoming; the projected features are not necessarily
useful for classification. Another unsupervised (i.e., ignorant
of class labels) projection method is independent compo-
nent analysis (ICA), a modification of the uncorrelatedness
condition in PCA to independence, in order to account for
higher order statistical dependencies in non-Gaussian distri-
butions [4]. Besides statistical independence, source sparsity
and nonnegativity are also utilized as a statistical assumption
in achieving dimensionality reduction through sparse bases,
a technique called nonnegative matrix factorization (NMF)
[5]. These methods, however, are linear and restricted in their
ability to generate versatile projections for curved data dis-
tributions. Local linear projections is an obvious method to
achieve globally nonlinear yet locally linear dimensionality
reduction. One such method that aims to achieve dimension-
ality reduction while preserving neighborhood topologies is
local linear embedding (LLE) [6]. Extensions of this ap-
proach to supervised local linear embeddings that consider
class label information also exist [7].

Linear discriminant analysis (LDA) attempts to eliminate
the shortcoming of PCA by finding linear projections that
maximize class separability under the Gaussian distribution
assumption [8]. The LDA projections are optimized based
on the means and covariance matrix of each class, which are
not descriptive of an arbitrary probability density function
(pdf). In addition, only linear projections are considered.
Kernel LDA [9], generalizes this principle to finding non-
linear projections under the assumption that the kernel func-
tion induces a nonlinear transformation (dependent on the
eigenfunctions of the kernel) that first projects the data to a
hypothetical high-dimensional space where the Gaussianity
assumption is satisfied. However, the kernel functions used
in practice do not necessarily guarantee the validity of this
assumption.

Traditionally, second-order statistical methods have
found widespread application in adaptive signal process-
ing, machine learning, and pattern recognition, as we can
observe from the literature easily. In more contemporary
approaches, many researchers have realized the importance
of exploiting the additional freedom that nonlinear sys-
tems give over convenient linear systems (such as linear
projections in the feature subspace projection context). In
addition, the insufficiency of mere second-order statistics
in many application areas have been discovered and more
advanced concepts including higher-order statistics, espe-
cially those stemming from information theory are now
being studied and applied in many contexts by researchers
in machine learning and signal processing. The value of
information theoretic approaches combined with nonlin-
ear topologies have been demonstrated in many applica-
tions, Torkkola’s recent work on quadratic MI-based linear
projections, which is built on early work on information

theoretic learning [10] is one of the most prominent [11].
Unfortunately, despite these recent advances in the under-
standing of the role of nonlinear topologies and information
theoretic concepts in pattern recognition, the use of tradi-
tional second-order statistical linear rules such as PCA and
LDA (or their variations) continue to find widespread use
possibly due to the delay in the dissemination of recent
results in information theoretic learning in the scientific
community.

In the filter approach, it is important to optimize a crite-
rion that is relevant to Bayes risk, which is typically mea-
sured by the probability of error. A suitable criterion is MI
between the projected features and the class labels, which
is motivated by lower and upper bounds in information the-
ory that relate this quantity to probability of error. In princi-
ple, MI measures nonlinear dependencies between a set of
random variables taking into account higher order statisti-
cal structures existing in the data, as opposed to linear and
second-order statistical measures such as correlation and co-
variance [12].

Evaluating the MI between two scalar random variables
(one being the discrete class labels) is relatively easy as
compared to estimating it for random vectors. Consequently,
MI-based feature selection is widely recognized as a power-
ful method in the literature [13–16]. Since features are gen-
erally mutually dependent, feature selection in this manner
is typically suboptimal in the sense of maximum MI.

MI is defined in terms of the probability density of the
data; hence, requires a pdf estimate. Since the data pdf
might take complex forms, in practice, in many applica-
tions determining a suitable parametric family becomes a
nontrivial task. Therefore, MI should be estimated nonpara-
metrically from the training samples [17,18]. Although this
is a challenging problem for two continuous-valued random
vectors, in the feature transformation setting the class labels
are discrete-valued. This reduces the problem to simply
estimating entropies of continuous random vectors. The
multi-dimensional entropy can be estimated nonparamet-
rically using a number of techniques. Entropy estimators
based on sample spacing, such as the minimum spanning
tree, are not differentiable making them unsuitable for adap-
tive learning of feature projections [18–22]. On the other
hand, entropy estimators based on kernel density estima-
tion (KDE) provide a differentiable alternative [17,22,23].
Torkkola recently proposed utilizing a quadratic MI mea-
sure, estimated using KDE [10], to determine optimal linear
feature projections [11].

In this paper, we propose a method for determining
optimal nonlinear feature projections that maximize the
Shannon MI between the projections and the class labels.
Nonparametric entropy estimation using KDE results in
O(N2) complexity, where N is the number of training
samples. Therefore, gradient-based adaptation is computa-
tionally prohibitive for large training sets, especially with
local optima problems in training nonlinear topologies.
We propose to avoid this complication by exploiting the
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kernel-induced feature (KIF) transformation to obtain an an-
alytical solution for the optimal nonlinear multi-dimensional
projections that can be expressed in terms of the eigenvec-
tors and eigenvalues of the kernel matrix.

2. Theoretical background

The goal of feature subspace projections is to improve
classifier robustness by reducing data dimensionality in or-
der to facilitate better generalization, as well as reducing the
learning and operating complexity of the classifiers. While
doing so, classification performance must not be compro-
mised by throwing away components that provide useful in-
formation regarding the class labels. Theoretically, optimal
feature projections should minimize the Bayes risk function
for the given problem; the average probability of error is a
widely used and accepted risk function and merits special
attention.1

The average probability of error has been shown to be
related to MI between the feature vectors and the class
labels. Specifically, Fano’s, Hellman and Raviv’s bounds
demonstrate that probability of error is bounded from be-
low and above by quantities that depend on the Shannon
MI between these variables [24,25]. Maximizing this MI
reduces both bounds, therefore, forces the probability of
error to decrease. A similar result was also obtained by
Erdogmus and Principe using Renyi’s MI; a parametric
family of lower and upper bounds for the probability of er-
ror was provided [17,26]. Specifically, Hellman and Raviv
showed that the probability of error for a C-class problem
is bounded by P(error)�(HS(c) − IS(y, c))/2, where
HS(c) is the Shannon entropy of the a priori probabilities
of the classes and IS(y, c) is the Shannon MI between the
continuous-valued feature vectors and the discrete-valued
class labels. Consequently, maximizing the MI between the
projected features and the class labels potentially improves
classification performance, and therefore, has drawn much
attention [11,14,15,27].

MI was first introduced by Shannon in the context of
digital communications between discrete random variables
and was generalized to continuous random variables. In fea-
ture extraction, we are interested in the MI between the
continuous-valued feature vector y and the discrete-valued
class labels c. Shannon MI between y and c is defined in
terms of the entropies of the overall data and the individual
classes as [12]

IS(y; c) = HS(y) −
∑

c

pcHS(y|c), (1)

1 For different risk functions, the following results can easily be
modified.
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Fig. 1. Determining optimal feature subspace projections using mutual
information.

where pc are the prior class probabilities. The Shannon en-
tropy is given by

HS(y) = −
∫

p(y) log p(y) dy,

HS(y|c) = −
∫

p(y|c) log p(y|c) dy, (2)

where p(y|c) are the class conditional distributions and the
overall data distribution is

p(y) =
∑

c

pcp(y|c). (3)

Under the framework of optimal feature subspace projec-
tions that maximize MI with class labels, the adaptive learn-
ing procedure to find these optimal projections follows the
block diagram shown in Fig. 1. In the most general case, a
high-dimensional feature vector is projected to a lower di-
mensional vector by a nonlinear parametric function (such
as a neural network), whose weights (denoted by w) are
optimized to maximize the MI criterion [10,11,27]. Since
learning rules based on MI measures are typically computa-
tionally intensive, nonlinear projections are avoided and one
resorts to linear projections of the form y = Wx [11,27].

As seen in Eq. (1), in order to estimate MI we need
to estimate the conditional class entropies as well as the
overall data entropy. As mentioned earlier, entropy estima-
tors based on sample spacing are not suitable for gradient-
based adaptation. A feasible alternative is the KDE-based
plug-in estimator [17,22,23]. Given a set of independent
and identically distributed (iid) samples {y1, . . . , yN }, which
can be partitioned into subsets corresponding to each class
as {yc

1, . . . , yc
Nc

}, the entropies in Eq. (1) can be estimated
by [22]

HS(y) = − 1

N

N∑
j=1

log
1

N

N∑
i=1

K(yj − yi ),

HS(y|c) = − 1

Nc

Nc∑
j=1

log
1

Nc

Nc∑
i=1

K(yc
j − yc

i ). (4)

Clearly, optimizing a nonlinear topology to maximize (1)
using the estimators in Eq. (4) will be computationally ex-
pensive as N increases. In the next section, we propose a
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nonparametric nonlinear topology that stems from the the-
ory of reproducing kernels in Hilbert spaces.

3. Spectral transformations and maximally separable
projections

We are given a set of features {x1, x2, . . . , xN } and their
corresponding class labels {c1, c2, . . . , cN }. The number of
samples in each class is denoted by Nc and the total number
of classes is C. We are interested in finding a nonlinear sub-
space projection y=g(x) such that Shannon MI between the
projection and the class labels, i.e. IS(y, c), is maximized.

According to the theory of reproducing kernels for Hilbert
spaces (RKHS), the eigenfunctions {�̄1(x), �̄2(x), . . .} col-
lected in vector notation as �̄(x), of a kernel function K that
satisfy the Mercer conditions [28] form a basis for the Hilbert
space of finite power nonlinear functions [29,30].2 There-
fore, every finite-L2-norm nonlinear transformation gd(x)

can be expressed as a linear combination of these bases:

yd = gd(x) = vT
d �̄(x), (5)

where yd is the dth component of the projection vector y.
As we will show next, such linear combinations of non-
linear basis functions arise naturally from the KDE-based
nonparametric estimates of MI in the context of feature sub-
space projections. Having the KDE-based MI estimate, one
can define the projection in the KIFS to obtain an objective
function that is to be optimized. Interestingly, the optimizer
of this objective function is given by an analytical solution;
hence, no optimization method is required.

To grasp an intuition of the approach before the detailed
derivation, one should first consider the characteristics of the
data mapping into KIFS. KIFS is a potentially infinite di-
mensional space and the kernel trick defines a transformation
from the original data space to a hyper-sphere in this space.
For a symmetric translation invariant nonnegative (since we
will connect to density estimation later) kernel, we can write

K(x − x′) =
∞∑

k=1

�̄k�̄k(x)�̄k(x
′) = �̄T(x)�̄�̄(x′)�0. (6)

Notice that for a nonnegative kernel, KIFS transformation
maps all the data points into the same half of this hyper-
sphere; i.e., the angles between all transformed data pairs
are less than � radians.

In the following, we will demonstrate how the nonlinear
projections in Eq. (5) can be optimally determined for max-
imal MI. The determination of the optimal solution is much
easier in the KIFS, therefore, we will start with the kernel
MI estimator in the original data space and employ the ker-
nel trick in Eq. (6) to express the problem equivalently in the

2 The true eigenfunctions and eigenvalues of the reproducing kernel
will be denoted using variables with a bar. This will help to distinguish
quantities related to the continuous kernel function from the equivalent
quantities related to the kernel matrix.

KIFS. Following the nonlinear projection to the very high-
dimensional kernel space, we will perform a subspace pro-
jection to determine the low-dimensional overall nonlinear
projections.

3.1. Estimating the Shannon mutual information
nonparametrically using kernel density estimates

Consider the Shannon MI between the high-dimensional
original feature vectors and the class labels,

IS(x; c) =
∑

c

∫
pxc(x, c) log

pxc(x, c)

px(x)pc

dx

=
∑

c

∫
px|c(x|c)pc log

px|c(x|c)pc

px(x)pc

dx

=
∑

c

pc

∫
px|c(x|c) log

px|c(x|c)
px(x)

dx

=
∑

c

pcEx|c
[

log
px|c(x|c)
px(x)

]
. (7)

The pdfs px|c and px in Eq. (7) are estimated using KDE
with K(.) as the kernel. The conditional expectation can
be approximated by a sample mean over the appropriate
samples.3 This leads to

IS(x; c) ≈
∑

c

pc

Nc

Nc∑
j=1

log
px|c(xc

j |c)
px(xc

j )

≈
∑

c

pc

Nc

Nc∑
j=1

log
(1/Nc)

∑Nc

i=1K(xc
j − xc

i )

(1/N)
∑N

i=1K(xc
j − xi )

. (8)

Assuming that K is a reproducing kernel with an eigende-
composition as in Eq. (6), the MI estimate becomes

IS(x; c) ≈
∑

c

pc

Nc

Nc∑
j=1

log

[
N�̄T(xc

j )�̄�̄xmc

Nc�̄T(xc
j )�̄�̄x1

]
, (9)

where we define the membership vector mc for each class
c, such that mci =1 if ci = c, 0 otherwise, and the vectors ei

whose ith entry is 1 and all others are zeros, as well as a vec-
tor of ones, denoted by 1. The class priors are estimated us-
ing sample counts from the training data, i.e., pc =Nc/N . In
addition, we introduced the matrix �̄x = [�̄(x1) . . . �̄(xN)],
where N = N1 + · · · + NC . Defining the average vectors of
the transformed features for each class and for the whole
training set as �̄c = (1/Nc)�̄xmc (for the feature vectors
from class c) and �̄ = (1/N)�̄x1 (for the whole data set),
we equivalently obtain:

IS(x; c) ≈
∑

c

pc

Nc

Nc∑
j=1

log

[
�̄T(xj )�̄�̄c

�̄T(xj )�̄�̄

]
. (10)

3 Note that this estimation technique maintains certain consistency
requirements, such as the Bayes relationship between the estimated overall
density p(x) and the class-conditional densities p(x|c).
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Note that so far we have only utilized the true eigenfunctions
and the eigenvalues of the kernel function; however, the true
eigenfunctions cannot be obtained analytically in general. In
the next subsection we will estimate these eigenfunctions,
and rewrite the projection scheme given in Eq. (5) using
these approximations.

3.2. Spectral transformations that the maximize Shannon
mutual information in the kernel-induced feature space

According to the projection model in Eq. (5), the projec-
tion is accomplished in the kernel-induced �-space. If the
target reduced dimensionality is D, we have y = VT�̄(x),
where V = [v1 . . . vD] consists of orthonormal columns vd .
The normality constraint helps reduce redundancy in the rep-
resentation of these nonlinear projections since the scale of
the projection does not carry information relevant to classi-
fication (samples from all classes are scaled), and orthogo-
nality ensures efficient subspace representation and uncor-
related projections. The back-projection of y to the KIFS is
given by

�̄(y) = VVT�̄(x). (11)

This leads to the following cost function that needs to be
maximized by optimizing V:

J (V) =
∑

c

pc

Nc

Nc∑
j=1

log

[
�̄T(xj )VVT�̄VVT�̄c

�̄T(xj )VVT�̄VVT�̄

]
. (12)

In practice, analytical expressions for the (infinitely
many) eigenfunctions of the kernel function are not avail-
able. Therefore, these must be approximated using the
available training samples. Spectral methods provide the
necessary tools to achieve this. Following the common pro-
cedure in spectral methods, and using all training samples
in pairs as Kij = K(xi − xj ), we define the symmetric ker-
nel matrix K (also called the affinity matrix). The matrix
K can be decomposed into its eigenvalues and eigenvectors
as K = �T

x ��x, which are essentially approximations of
the sought eigenfunctions and eigenvalues of the kernel
function. Specifically, according to the Nystrom routine
[31], the eigenfunctions can be approximated using the
eigendecomposition of the affinity matrix K as follows:

�̄(x) ≈ �(x) = √
N�−1�xk(x), (13)

where k(x) = [K(x − x1), . . . , K(x − xN)]T. With this sub-
stitution, the nonlinear feature transformations become y =
VT�(x) and the approximation for the criterion in Eq. (12)
becomes

J (V) =
∑

c

pc

Nc

Nc∑
j=1

log

[
�T(xj )VVT�VVT�c

�T(xj )VVT�VVT�

]
, (14)

where �c = (1/Nc)�xmc and � = (1/N)�x1 are the class
and overall mean vectors of the data in the �-space. Note
that � = p1�1 + · · · + pC�C .

3.3. Analytical solution for C-1 and lower dimensional
projections

Observing the numerator and the denominator of the ar-
gument of the logarithm in Eq. (14), one can notice that
this criterion can be maximized by selecting V such that
its columns span the intersection of the subspace orthogo-
nal to the mean vector �, and the subspace spanned by the
set of class mean vectors {�1, �2, . . . , �C}.4 The subspace
spanned by the columns of V, by construction, can be at
most C-1 dimensional and is uniquely defined by the class
structure of the data. In fact, all the lower dimensional op-
timal subspace projections are also contained in this sub-
space, and the analytical solution for these projections can
be easily determined as we will show next.

A very important observation is that the class mean vec-
tors in the KIFS are orthogonal to each other with their
individual norms equal to p

−1/2
c , pc being the class prior

probability. We introduce the following matrix consisting
of the class mean vectors in its columns:

M = [�1 . . . �C], (15)

where M satisfies MTM = P−1 (see Appendix B), with
p = [p1, . . . , pC] and P = diag(p). The overall data mean
vector is then � = Mp. These identities easily lead to the
conclusion that � is unit-norm. The columns of the matrix
V defined below spans the desired solution subspace:

V = M − �(�TM) = M − �(pTMTM) = M − �1T, (16)

where 1 denotes a vector of ones.

3.4. Algorithm for determining optimal projections to
fewer dimensions

In this section, we generalize the intuition developed in
the previous section about determining the optimal projec-
tions by finding orthogonal directions to the mean vector
�. To this end, a procedure based on Gram–Schmidt or-
thogonalization will be employed. Note that the deflation
will be implemented through the class mean vectors �c,
therefore, the computational complexity of this algorithm is
relatively low.

We start by constructing the matrix M=[�1 . . . �C]. Con-
sequently, all columns lie in one half of the vector space.
This matrix is renamed as MC to denote that its column
rank is C. We introduce the sign vector sC =[1, . . . , 1]T for
reasons that will become clear shortly. Using the elemen-
twise multiplication operator ·, we calculate rC = sC · p.

The overall mean vector �C is then given by �C = MCrC .

4 Since � also lies in the span of the set {�1, �2, . . . , �C }, and is not
equal to any of the members of this set for nonzero prior probabilities,
choosing V in the suggested manner will lead the numerator to remain
always finite.
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Table 1
The overall algorithm

Outline of the algorithm:
• Given a set of training data {x1, x2, . . . , xN } and their corresponding class labels {c1, c2, . . . , cN }, determine the kernel size (for Gaussian kernels

according to Silverman’s rule of thumb):

�2 = 1
n tr(�x)(4/((2n + 1)N))2/(n+4)

• Construct the kernel matrix K, where Kij = K(xi − xj )

• Decompose K into its eigenvectors and eigenvalues such that K = �T
x ��x

• For the training data, calculate the kernel induced feature transformations as follows:

�(xj ) = √
N�−1�xk(xj )

• Determine the class means and the overall mean using �c = (1/Nc)�xmc and � = (1/N)�x1
• Perform the following deflation procedure until the desired projection dimensionality is reached:

1. Set sC-d = [1, . . . , 1]T in the first step, or according to Appendix B in the following steps
2. Calculate rC-d =sC-d ·p and determine the new overall mean vector �C-d by �C-d =MC-drC-d (The symbol · denotes elementwise vector product.)
3. Construct the matrix MC-d = [�C-d

1 . . .�C-d
C ]. If C-d is the desired projection dimension, determine the eigenvectors of MC-dMC-d,T that

correspond to the C-d nonzero eigenvalues. Assign these eigenvectors to V
4. Otherwise, perform the following deflation operation and go back to the first step:

MC-1 =
(

IN − �C�CT

‖�C‖2

)
MC

The optimal projection of the data to C-1 dimensions is
determined by the C-1 dimensional subspace orthogonal to
�C ; therefore, MC is deflated as

MC-1 =
(

IN − �C�CT

‖�C‖2

)
MC . (17)

Any orthonormal bases that span the same space as the
columns of the deflated matrix MC-1 is a valid candi-
date for the projection matrix V with C-1 orthonormal
columns. A possible method to obtain these bases is to em-
ploy Gram–Schmidt orthonormalization to the columns of

MC-1 and determine the eigenvectors of MC-1MC-1,T that
correspond to the C-1 nonzero eigenvalues (which could be
achieved sequentially). An efficient algorithm for sequential
determination of these eigenvectors is provided in Appendix
A. In the latter case, for example, the determined eigenvec-
tors can be immediately assigned as V.

The procedure continues similarly for reducing dimen-
sionality further. The vector sC-1 is constructed (see Ap-
pendix C for the procedure for the construction of sC-d , since
for d > 0 this step requires some care). The mean vector in
the deflated space is calculated using �C-1 =MC-1rC-1. The
class means matrix is deflated using

MC-2 =
(

IN − �C-1�C-1,T

‖�C-1‖2

)
MC-1. (18)

As before, the orthonormal projection matrix V to C-2 di-
mensions is determined by finding the nonzero eigenvectors
of MC-2MC-2,T. The procedure is carried out in this manner
until deflation down to the desired number of dimensions is
achieved.

Once the column-orthonormal projection matrix V, which
is N ×D, is obtained previously unseen test samples can be

transformed using

�(y) = √
NVT�−1�xk(x). (19)

The overall algorithm is summarized in Table 1.
Note that the procedure described here requires deter-

mining the eigenvectors of an N × N kernel matrix. Unless
certain simplifications are introduced, this process can po-
tentially become O(N3). It is possible to avoid this level
of complexity by determining the required eigenvectors
sequentially using an algorithm as the one described in
Appendix A. Nevertheless, such algorithms still require
O(N2) calculations per eigenvector per iteration. Due to the
iterative nature, the overall complexity might easily exceed
analytical methods, such as those based on factorization
techniques [32]. Alternatively, the eigendecomposition of
the kernel matrix could be performed on smaller data ma-
trices using representative subsets, and the Lanczos method
or the Nystrom routine could be employed [31,32]. In fact,
such an approach using a balanced number of samples
from each class to determine the eigenfunctions could be-
come preferable, as the prior class probabilities become
more unbalanced, the eigenfunction estimates will become
more biased towards emphasizing the stronger classes, thus
yielding high-variance projection solutions.

3.5. The special case of projections to a single dimension

For illustration, we first focus on finding a one-
dimensional nonlinear projection that maximizes MI with
the class labels. For multi-dimensional projections the de-
flation procedure can be employed, yielding the optimal
projection directions sequentially. The case of projections
into an arbitrary number of dimensions will be discussed in
the following section.
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µ1 µ2

µ

v

Fig. 2. The optimal subspace projection into one dimension in a two-class
case, where � denotes the overall data mean, �1 and �2 denote class
means and v is the projection direction.

Since M spans the subspace that the single dimensional
projection vector v resides in, we express it as

v = MP1/2�, (20)

where �T� = 1, and the projections of a data to one dimen-
sion under this methodology can be completely determined
by choosing � as composed of the entries of the following
set {p1/2

1 , . . . , p
1/2
C }, by shuffling them and modifying their

signs as necessary (and perhaps replacing some with as de-
termined by the appropriate rotation matrix).

In the case of two classes (C = 2), the two solu-
tions are � = [−p

1/2
2 , p

1/2
1 ]T and its negative, which is

an equivalent solution from the aspect of projection. In
the case of three classes, the three distinct solutions are
given by � = [−p

1/2
2 , p

1/2
1 , 0]T, � = [−p

1/2
3 , 0, p

1/2
1 ]T,

� = [0, −p
1/2
3 , p

1/2
2 ]T. These solutions differ in their order-

ing of the projected classes on the projection axis and in
general. The deflation procedure selects the solution that
utilizes the two larger class probabilities, placing the class
with the smallest probability in the center on the projection
axis.
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Fig. 3. The original samples for both classes indicated by + and · signs are shown at the left (a). At the right (b), the values of the one-dimensional
projection are shown for both classes with the same signs. The ♦ symbols in both the plots indicate the classification errors made using a threshold on
the projections values.

Similar analytical expressions could be derived for can-
didate projections in the case of more than three classes,
but the general iterative procedure proposed in the previous
section already considers these issues and constructs the so-
lution without the need to go through all possible solutions
(local maxima). Nevertheless, for cases with few classes,
these direct analytical solutions are very practical. A ge-
ometric interpretation of the one-dimensional projection
solution for the two-class case is shown in Fig. 2. Here �
denotes the overall data mean, �1 and �2 denote class means
and v is the projection direction. Since v can be defined
only by the class mean vectors and class a priori probabili-
ties, the computational load of the projection is mostly due
to the eigenvector decomposition of the kernel matrix.

A practical consideration in selecting the kernel function
in all spectral methods is the selection of the functional form
of the kernel as well as the width of the kernel. Due to the
kernel density estimation connection, it is natural to select
this parameter based on the accuracy of the density estimate.
This is discussed in Appendix D.

4. Experiments

In order to illustrate how the proposed nonparametric non-
linear projection scheme works, simulations using a syn-
thetic data set—the crescent data set—and real data sets
from the UCI database. Comparisons with Kernel LDA will
be shown. These experiments demonstrate the effectiveness
of the nonlinear projections obtained through this method-
ology in determining nonparametric projections to separate
classes with nonlinear discriminant boundaries.

4.1. Crescent data set

This data set consists of two crescent-shaped classes
with a nonlinear class boundary. For each class, 300
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Fig. 4. The Prob(decide 1|true 2) vs Prob(decide2|true 1) curves for the
crescent data set for various degrees of overlap (Gaussian radius standard
deviations of 0.2, 0.3, 0.4, and 0.5).
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Fig. 5. The kernel matrix constructed using Silverman’s rule and a spherically symmetric kernel is presented at the top left (a). The ROC curves for
Kernel LDA and the proposed method are presented at the top right (b)—the proposed method outperforms KLDA significantly. The projection results
of the proposed method for both classes indicated by + and · signs are shown at the bottom (c), where the ♦ symbols indicate the classification errors
made using a zero threshold on the projections. The results for Kernel LDA are presented in (d) in the same manner.

two-dimensional samples are generated by uniformly select-
ing the angle in a �-radian arc and perturbing the radius
with Gaussian distributed random values. The centers of the
semicircles describing the classes are also shifted to create
the nonlinear separation boundary. The class centers are se-
lected to eliminate the possibility of having a linear projec-
tion direction on which the classes become easily separable.
Therefore, nonlinear projections are required.

A sample simulation result using the crescent classes is
presented in Fig. 3. The original data are shown in Fig. 3a and
the values of the one-dimensional projection are presented
in Fig. 3b. In both subfigures, the errors based on the optimal
threshold on the nonlinear projection values are also indi-
cated by diamonds. Note that the errors occur at the samples
that are also visually separated well from their true classes.

The optimal classification threshold in the projection do-
main can be determined using the ROC curves5 over a val-
idation set with a data-oriented design philosophy, however,
theoretically, the optimal threshold for a one-dimensional

5 The ROC stands for receiver operating characteristics.
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projection is zero. For various degrees of overlap (controlled
by the variance of the Gaussian radial perturbation), the ROC
curves for the crescent data set are depicted in Fig. 4. As ex-
pected, increasing the overlap results in worse ROC curves.
The optimal threshold for a given data set is determined by
the intersection point of the ROC curve with the line pass-
ing through the origin with slope p1/p2. Theoretically, this
optimal threshold is zero, as also seen from Fig. 3b.

In the case of two-classes, there are two equivalent optimal
solutions corresponding to the projection shown in Fig. 2b
and its negative.

4.2. Comparison with Kernel LDA

To provide comparison with an existing similar bench-
mark nonlinear subspace projection method, the results of
the proposed MI based projection scheme is compared with
those of Kernel LDA. The comparisons are performed over
three benchmark data sets on UCI database [33], namely
handwritten digit recognition data set, Wisconsin breast can-
cer data set and ionosphere data set.

Handwritten digit classification database contains 250
samples from 44 subjects. Although the original database
contains 10 digits, for ease of illustration, we utilize only
the digits one and two. Being 16-dimensional, the origi-
nal data are impossible to present in a figure even with a
suitable two-dimensional subspace projection. For this data
set, the original kernel matrix K constructed for the same
kernel size with the one that has been used in our algorithm
is presented along with the projection results into one di-
mension in Fig. 5. The optimal threshold of zero is assumed
(since in the two-class case, the overall data mean vector in
the KIFS determines the linear separation boundary, thus,
the projections to its orthogonal must be separated by the
zero-threshold). For Kernel LDA, the projection results cor-
responding to the optimal threshold value are demonstrated,
and to generalize the performance comparison, ROC curves
of these two methods are employed.

Similar experiments are performed using Wisconsin
breast cancer data set and ionosphere data set. Preserving
the a priori class probabilities in the training and testing
sets, one-third of the data set is used for the training and the
testing results corresponding to the remaining part are pre-
sented in Fig. 6. Gaussian kernels with Silverman’s kernel
size are used for the experiments and ROC curves corre-
sponding to demonstrated for Wisconsin breast cancer data
set and ionosphere data set in Fig. 6a and b, respectively.

4.3. Landsat data set

Another real-data illustration is presented in this section
for the Landsat data, which can be found in the UCI database
[33]. This is a 36-dimensional data set with six classes, and
200 samples of these data points for each class are used for
both training and testing. Results for the testing set perfor-
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Fig. 6. ROC curves for (a) Wisconsin breast cancer data set and (b)
ionosphere data set. Classification errors are shown with solid lines for
MI projections and with dashed lines for Kernel LDA.

mance are presented in Fig. 7. Being sorted according to
their class labels, 1200 testing samples are projected to the
�-space and the matrix consisting of the cosine of the an-
gle between each data pair is shown in Fig. 7a as an image.
Fig. 7b shows the pairwise cosine-angle image for the six-
dimensional projections (in general, for a C-class data set,
up to C projections can be considered with both the pro-
posed and KLDA methods before the projection covariance
matrices become rank-zero). The samples from the same
class are expected to have a small angle between them, and
larger angles are expected for interclass pairs. Note that for
a given kernel selection, which is given by the Silverman
rule of thumb here, the classification errors that one would
make with the full dimensional data naturally leads to errors
in the projections. This is due to the fact that if the original
class distributions overlap then the projection cannot resolve
this overlap. The class structure is more pronounced in the
projection image than in the original data image in Fig. 7.
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Fig. 7. The kernel matrix constructed using Silverman’s rule and a spher-
ically symmetric kernel is presented at the top. The bottom image shows
the cosine of the angles between the six-dimensional projections deter-
mined by the proposed algorithm. In both images, the diagonal entries
are zeroed and all other values are scaled linearly to the unit interval to
maximize visual contrast.

5. Conclusions

Subspace projections are important tools in pattern recog-
nition, as they can potentially improve classifier accuracy
and generalization performance by eliminating redundant
features and reducing dimensionality to allow for simpler
classifier topologies, which in turn helps generalization. In
addition, lower dimensional inputs to the classifiers help
reduce computational complexity, therefore, can increase
throughput.

Most traditional techniques are based on simple linear
topologies (such as PCA and LDA) or parametric nonlin-
ear topologies (such as radial basis functions or multi-layer
perceptrons), which can be trained to optimize certain suit-
able class separability criteria. For example, LDA uses a
separability criterion based on the assumption of Gaussian
class conditional distributions. Linear or nonlinear paramet-
ric subspace projection topologies can be trained using more
advanced separability criteria, such as MI between the pro-
jected features and the class labels.

In this paper, we have proposed a nonparametric nonlin-
ear subspace projection methodology based on maximizing
the Shannon MI between the projections and the class la-
bels. Interpreting the nonparametric kernel estimator for MI
as a nonparametric kernel-machine, we are able to deter-
mine nonlinear projections that maintain class separability
nonparametrically. The proposed method lays out an inter-
esting framework under which nonparametric kernel-density
estimates of information theoretic optimality criteria can be
linked to nonparametric nonlinear kernel-machines. The pro-
posed approach first maps the original data to a very high-
dimensional KIFS and then determines an optimal mapping
from this space to a much lower dimensional space. Theoret-
ically, projections of dimensionality more than the number
of classes are not necessary.

The most important feature of the proposed approach
is that the kernel calculations are done only once for the
training data in order to determine the optimal nonlin-
ear projection. Once the original data are projected to the
KIFS (through the eigenfunctions of the kernel function
used in the density estimation phase), the procedure re-
duces to a possibly analytical optimization routine, which
only depends on the class priors and the simple lower-
order statistics of the data (in this case, the mean vectors
of the classes in the KIFS). In contrast, more traditional
parametric projection algorithms based on optimizing the
same nonparametric MI estimate would have to rely on
gradient updates of the weights, which requires the O(N2)

kernel matrix calculations at every iteration of the gradient
algorithm. Consequently, the proposed method not only
eliminates the unnecessary kernel evaluations introduced by
such algorithms, but also allows us to determine the optimal
solution in the KIFS analytically.

Future work will focus on reducing the memory and
computational requirements of the nonparametric projec-
tion by determining accurate approximations to the spectral
projection to a higher dimensional space and improving
performance by incorporating variable kernel size density
estimation to the presented framework.

Appendix A

Here, we present a simple algorithm to determine the
largest eigenvectors sequentially. The algorithm makes use
of the Rayleigh quotient. For a symmetric matrix R, from
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the eigenvector equation, Rv=�v, we observe that for a unit
variance eigenvector v, � = vTRv. Therefore, the unit-norm
eigenvector is a fixed point of the following iteration:

vk+1 = T vk + (1 − T )
Rvk

vT
k Rvk

. (A.1)

The stepsize T is introduce to eliminate the limit cycle that
arises from the dynamics behavior of the fixed point algo-
rithm with T = 0. For T ∈ (0, 1), the iterations in Eq. (A.1)
can be shown to converge to the largest eigenvector of the
symmetric positive definite matrix R.

In order to obtain the subsequent large eigenvectors, de-
flation can be employed after the convergence of Eq. (A.1).
This is accomplished by replacing R with its deflated
version:

R = (I − (vT∞Rv∞)v∞vT∞)R. (A.2)

For the deflated R, the iterations in Eq. (A.1) will con-
verge to the second largest eigenvector of the original R
and so on.

Appendix B

Since the data transformations are calculated using (13)
for both training and testing data, the class mean vectors are
orthogonal to each other with their individual norms equal
to p

−1/2
c , pc being the class prior probability. This leads to

the following:

�c = 1

Nc

Nc∑
j=1

√
N�−1�xk(xc

j )

≈
√

N

Nc

�̃
−1

�x

Nc∑
j=1

�T
x ��̄(xc

j )

=
√

N

Nc

Nc∑
j=1

�̄(xc
j )

≈
√

N

Nc

�xmc. (B.1)

Now consider the inner product between two mean vectors:

�T
c �d = N

NcNd

mc
T
c �T

x �xmd

= N

NcNd

mT
c md =

{
N/Nc if c = d,

0 if c �= d.
(B.2)

Thus, the mean vectors of each class in the �-space create
an orthogonal (but not normal) basis for the space in which
our optimization variable V resides.

Appendix C

In the algorithm provided in Section 3.4, at every defla-
tion step, some of the class mean vectors must be flipped
in order to ensure that all class mean vectors lie in one half
of the C-d dimensional space at the dth step of deflation.
This process guarantees that the argument of the logarithm
in the criterion remains positive. Initially, we have C mean
vectors in the C-dimensional space, and in each deflation
step the dimensionality (rank) is reduced by one. In the dth
step of deflation, the d classes with the lowest a priori prob-
abilities may need to be flipped, i.e., their corresponding
sC-d entry is selected to be −1. The remaining C-d class
means are not changed. In order to determine which mean
vectors (with small probabilities will be flipped, after sort-
ing the vectors according to their decreasing a priori class
probabilities as {�′

1, . . . , �
′
C}, using the normalized versions

of the mean vectors {�′
1, . . . , �

′
C-d} we calculate the vec-

tor uC-d = �′
1/‖�′

1‖ + · · · + �′
C-d/‖�′

C-d‖. The correspond-
ing sC-d entries of the vectors {�′

C-d+1, . . . , �
′
C} are set to

s′
j
C-d = sign(�′

j
TuC-d). Although this is not the only pos-

sible selection of sC-d , flipping the class means with low-
est prior probabilities leads us to the best solution, which
maximizes the separation between the classes that have the
highest a priori probabilities.

Appendix D

Typically, the problem is simplified by assuming a para-
metric family of kernels and trying to optimize the parame-
ters based on the quality of the solutions obtained [34]. Even
when the functional form of the kernel is fixed, there seems
to be no principled way of setting the kernel size, in the lit-
erature, prior to solving the problem. In fact, often the ker-
nel size is varied and the one that gives the best solution is
selected. This is definitely an unacceptable and unnecessary
computational load on all spectral algorithms.

The connection to density estimation, presented in Eq. (8),
clearly indicates that the kernel function should be selected
to match the distribution of the data as much as possible.
There is a wide literature on how to select kernel sizes for
kernel density estimates, including methods that range from
heuristics to principled Bayesian approaches such as max-
imum likelihood [35–37]. For simplicity, in the following
experiments, a circular Gaussian kernel is assumed and its
width parameter (variance) is determined utilizing the rule
of thumb by Silverman [38]:

�2 = 1

n
tr(�x)

(
4

(2n + 1)N

)2/(n+4)

, (D.1)

where n is the dimensionality of the data x, N is the num-
ber of samples, and �x is the sample covariance of the
training set. Clearly, certain obvious improvements include
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utilizing a different kernel size for each class or even each
data point itself, and allowing anisotropic covariances as
kernel width, as well as using kernel size optimization pro-
cedures that do not assume Gaussianity [39]. For now, we
leave these discussions to be studied as a future work, since
the goal of this paper is to demonstrate the concept, rather
than optimizing every little implementation detail.

References

[1] E. Oja, Subspace Methods of Pattern Recognition, Wiley, New York,
1983.

[2] P.A. Devijver, J. Kittler, Pattern Recognition: A Statistical Approach,
Prentice-Hall, London, 1982.

[3] B. Scholkopf, A. Smola, K.R. Muller, Nonlinear component
analysis as a kernel eigenvalue problem, Neural Comput. 10 (1998)
1299–1319.

[4] A. Hyvarinen, J. Karhunen, E. Oja, Independent Component
Analysis, Wiley, New York, 2001.

[5] D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative
matrix factorization, Nature 401 (1999) 788–791.

[6] S. Roweis, L. Saul, Nonlinear dimensionality reduction by locally
linear embedding, Science 290 (5500) (2000) 2323–2326.

[7] J. Costa, A.O. Hero, Classification constrained dimensionality
reduction, Proceedings of ICASSP, vol. 5, 2005, pp. 1077–1080.

[8] K. Fukunaga, Introduction to Statistical Pattern Recognition,
Academic Press, New York, 1990.

[9] G. Baudat, F. Anouar, Generalized discriminant analysis using a
kernel approach, Neural Comput. 12 (2000) 2385–2404.

[10] J.C. Principe, J.W. Fisher, D. Xu, Information theoretic learning, in:
S. Haykin (Ed.), Unsupervised Adaptive Filtering, Wiley, New York,
2000, pp. 265–319.

[11] K. Torkkola, Feature extraction by non-parametric mutual
information maximization, J. Mach. Learn. Res. 3 (2003) 1415–1438.

[12] T. Cover, J. Thomas, Elements of Information Theory, Wiley,
New York, 1991.

[13] D. Koller, M. Sahami, Toward optimal feature selection, Proceedings
of the International Conference on Machine Learning, Bari, Italy,
1996, pp. 284–292.

[14] R. Battiti, Using mutual information for selecting features in
supervised neural net learning, Neural Networks 5 (4) (1994)
537–550.

[15] B.V. Bonnlander, A.S. Weigend, Selecting input variables
using mutual information and nonparametric density estimation,
Proceedings of International Symposium on Artificial Neural
Networks, Tainan, Taiwan, 1994, pp. 42–50.

[16] H. Yang, J. Moody, Data visualization and feature selection: new
algorithms for nonGaussian data, Adv. Neural Inf. Process. Syst.
(2000) 687–693.

[17] D. Erdogmus, Information theoretic learning: Renyi’s entropy and
its applications to adaptive system training, Ph.D. Dissertation,
University of Florida, Gainesville, Florida, 2002.

[18] A. Kraskov, H. Stoegbauer, P. Grassberger, Estimating mutual
information, Phys. Rev. E 69 (2004) 066138.

[19] E.G. Learned-Miller, J.W. Fisher III, ICA using spacings estimates
of entropy, J. Mach. Learn. Res. 4 (2003) 1271–1295.

[20] O. Vasicek, A test for normality based on sample entropy, J. R. Stat.
Soc. B 38 (1) (1976) 54–59.

[21] A.O. Hero III, B. Ma, O.J.J. Michel, J. Gorman, Applications of
entropic spanning graphs, IEEE Signal Process. Mag. 19 (5) (2002)
85–95.

[22] J. Beirlant, E.J. Dudewicz, L. Gyorfi, E.C. van der Meulen,
Nonparametric entropy estimation: an overview, Int. J. Math. Stat.
Sci. 6 (1) (1997) 17–39.

[23] D. Erdogmus, J.C. Principe, An error-entropy minimization algorithm
for supervised training of nonlinear adaptive systems, IEEE Trans.
Signal Process. 50 (7) (2002) 1780–1786.

[24] R.M. Fano, Transmission of Information: A Statistical Theory of
Communications, MIT Press, New York, 1961.

[25] M.E. Hellman, J. Raviv, Probability of error, equivocation and the
Chernoff bound, IEEE Trans. Inf. Theory 16 (1970) 368–372.

[26] D. Erdogmus, J.C. Principe, Lower and upper bounds for
misclassification probability based on Renyi’s information, J. VLSI
Signal Process. Syst. 37 (2/3) (2004) 305–317.

[27] K.D. Bollacker, J. Ghosh, Linear feature extractors based on mutual
information, Proceedings of International Conference on Pattern
Recognition, Vienna, Austria, 1996, pp. 720–724.

[28] J. Mercer, Functions of positive and negative type, and their
connection with the theory of integral equations, Trans. London
Philos. Soc. A 209 (1909) 415–446.

[29] G. Wahba, Spline Models for Observational Data, SIAM,
Philadelphia, PA, 1990.

[30] H. Weinert (Ed.), Reproducing Kernel Hilbert Spaces: Applications in
Statistical Signal Processing, Hutchinson Ross Pub. Co., Stroudsburg,
PA, 1982.

[31] C. Fowlkes, S. Belongie, F. Chung, J. Malik, Spectral grouping using
the Nystrom method, IEEE Trans. Pattern Anal. Mach. Intell. 23
(2004) 298–305.

[32] G.H. Golub, C.F. van Loan, Matrix Computations, third ed., Johns
Hopkins University Press, Baltimore, MA, 1996.

[33] UCI Machine Learning Repository, 〈http://www.ics.uci.edu/
∼mlearn/MLSummary.html〉.

[34] M. Seeger, Gaussian processes for machine learning, Int. J. Neural
Syst. 14 (2) (2004) 69–106.

[35] R.P.W. Duin, On the choice of the smoothing parameters for Parzen
estimators of probability density functions, IEEE Trans. Comput. 25
(11) (1976) 1175–1179.

[36] L. Devroye, G. Lugosi, Combinatorial Methods in Density
Estimation, Springer, New York, 2001.

[37] N.N. Schraudolph, Gradient-based manipulation of nonparametric
entropy estimates, IEEE Trans. Neural Networks 15 (4) (2004)
828–837.

[38] B.W. Silverman, Density Estimation for Statistics and Data Analysis,
Chapman & Hall, London, 1986.

[39] N. Kumar, A.G. Andreou, Heteroscedastic discriminant analysis
and reduced rank HMMs for improved speech recognition, Speech
Commun. 26 (4) (1998) 283–297.

http://www.ics.uci.edu/mlearn/MLSummary.html
http://www.ics.uci.edu/mlearn/MLSummary.html

	Spectral feature projections that maximize Shannon mutualinformation with class labels
	Introduction
	Theoretical background
	Spectral transformations and maximally separable projections
	Estimating the Shannon mutual information nonparametrically using kernel density estimates
	Spectral transformations that the maximize Shannon mutual information in the kernel-induced feature space
	Analytical solution for C-1 and lower dimensional projections
	Algorithm for determining optimal projections to fewer dimensions
	The special case of projections to a single dimension

	Experiments
	Crescent data set
	Comparison with Kernel LDA
	Landsat data set

	Conclusions
	Appendix A 
	Appendix B 
	Appendix C 
	Appendix D 
	References


